

# CNC MELD/IS AC SERVO/SPINDLE MDS-C1 Series

# **INSTRUCTION MANUAL**



MELDAS is a registered trademark of Mitsubishi Electric Corporation. Other company and product names that appear in this manual are trademarks or registered trademarks of their respective companies.

# Introduction

Thank you for selecting the Mitsubishi numerical control unit.

This instruction manual describes the handling and caution points for using this AC servo/spindle.

Incorrect handling may lead to unforeseen accidents, so always read this instruction manual thoroughly to ensure correct usage.

Make sure that this instruction manual is delivered to the end user.

Always store this manual in a safe place.

All specifications for the MDS-C1 Series are described in this manual. However, each CNC may not be provided with all specifications, so refer to the specifications for the CNC on hand before starting use.

# Notes on Reading This Manual

- (1) Since the description of this specification manual deals with NC in general, for the specifications of individual machine tools, refer to the manuals issued by the respective machine manufacturers. The "restrictions" and "available functions" described in the manuals issued by the machine manufacturers have precedence to those in this manual.
- (2) This manual describes as many special operations as possible, but it should be kept in mind that items not mentioned in this manual cannot be performed.

# **Precautions for safety**

Please read this manual and auxiliary documents before starting installation, operation, maintenance or inspection to ensure correct usage. Thoroughly understand the device, safety information and precautions before starting operation.

The safety precautions in this instruction manual are ranked as "WARNING" and "CAUTION".



When there is a potential risk of fatal or serious injuries if handling is mistaken.

When operator could be fatally or seriously injured if handling is mistaken.



When a dangerous situation may occur if handling is mistaken leading to medium or minor injuries, or physical damage.

Note that some items described as **CAUTION** may lead to major results depending on the situation. In any case, important information that must be observed is described.

The numeric control unit is configured of the control unit, operation board, servo drive unit, spindle drive unit, power supply unit, servomotor and spindle motor, etc.

In this section "Precautions for safety", the following items are generically called the "servomotor".

- Servomotor
- Spindle motor

In this section "Precautions for safety", the following items are generically called the "servo drive unit".

- Servo drive unit
- Spindle drive unit
- Power supply unit

# MARNING I. Electric shock prevention M Do not open the front cover while the power is ON or during operation. Failure to observe this could lead to electric shocks. M Do not operate the unit with the front cover removed. The high voltage terminals and charged sections will be exposed, and can cause electric shocks. M Do not remove the front cover even when the power is OFF unless carrying out wiring work or periodic inspections. The inside of the units is charged, and can cause electric shocks. M Wait at least 15 minutes after turning the power OFF before starting wiring, maintenance or inspections. Failure to observe this could lead to electric shocks. M Ground the servo drive unit and servomotor with Class C (former class 3) grounding or higher. M Wiring, maintenance and inspection work must be done by a qualified technician. M Wire the servo drive unit and servomotor after installation. Failure to observe this could lead to electric shocks. M Do not touch the switches with wet hands. Failure to observe this could lead to electric shocks.

Do not damage, apply forcible stress, place heavy items on the cables or get them caught. Failure to observe this could lead to electric shocks.

# 

# 1. Fire prevention



Install the servo drive units, servomotors and regenerative resistor on noncombustible material. Direct installation on combustible material or near combustible materials could lead to fires.



Shut off the power on the servo drive unit side if the servo drive unit fails. Fires could be caused if a large current continues to flow.

When using a regenerative resistor, provide a sequence that shuts off the power with the regenerative resistor's error signal. The regenerative resistor could abnormally overheat and cause a fire due to a fault in the regenerative transistor, etc.



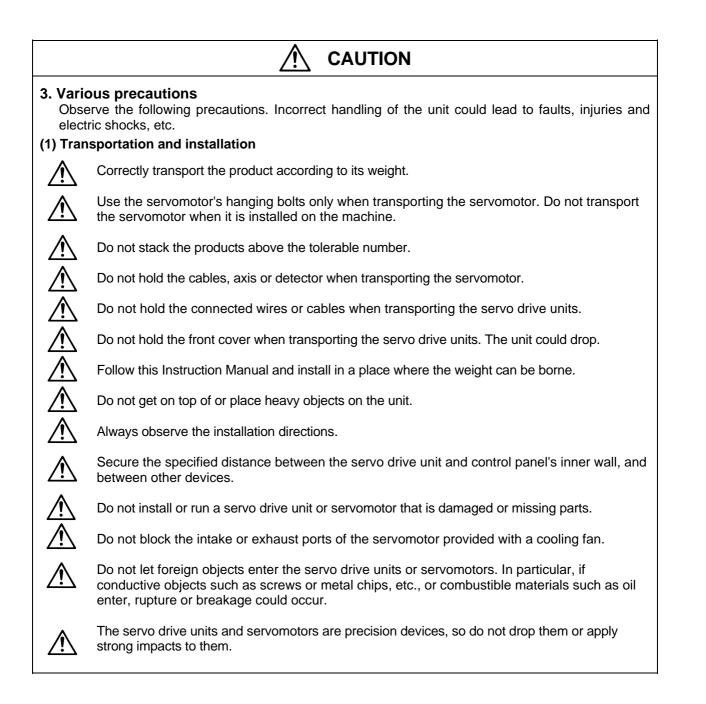
The battery unit could heat up, ignite or rupture if submerged in water, or if the poles are incorrectly wired.

# 2. Injury prevention



Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to ruptures or damage, etc.




Do not mistake the terminal connections. Failure to observe this item could lead to ruptures or damage, etc.



Do not mistake the polarity  $(\oplus, \bigcirc)$ . Failure to observe this item could lead to ruptures or damage, etc.



The servo drive unit's fins, regenerative resistor and servomotor, etc., may reach high temperatures while the power is ON, and may remain hot for some time after the power is turned OFF. Touching these parts could result in burns.



# 

Store and use the units under the following environment conditions.

| Environment                                  | Conditions                                                                                                                                   |                                                 |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Environment                                  | Servo drive unit                                                                                                                             | Servomotor                                      |
| Ambient temperature                          | 0°C to +55°C (with no freezing)                                                                                                              | 0°C to +40°C (with no freezing)                 |
| Ambient humidity                             | 90%RH or less (with no dew condensation)                                                                                                     | 80% RH or less<br>(with no dew condensation)    |
| Storage temperature                          | -15°C to +70°C                                                                                                                               |                                                 |
| Storage humidity                             | 90%RH or less (with no dew condensation)                                                                                                     |                                                 |
| Atmosphere                                   | Indoors (where unit is not subject to direct sunlight),<br>with no corrosive gas, combustible gas, oil mist,<br>dust or conductive particles |                                                 |
| Altitude                                     | 1,000m or less above sea level                                                                                                               |                                                 |
| Vibration 4.9m/s <sup>2</sup> (0.5G) or less |                                                                                                                                              | To follow each unit and motor<br>specifications |



Securely fix the servomotor to the machine. Insufficient fixing could lead to the servomotor slipping off during operation.



Always install the servomotor with reduction gear in the designated direction. Failure to do so could lead to oil leaks.



Structure the rotary sections of the motor so that it can never be touched during operation. Install a cover, etc., on the shaft.



When installing a coupling to a servomotor shaft end, do not apply an impact by hammering, etc. The detector could be damaged.



Do not apply a load exceeding the tolerable load onto the servomotor shaft. The shaft could break.



Store the motor in the package box.



When inserting the shaft into the built-in IPM motor, do not heat the rotor higher than 130°C. The magnet could be demagnetized, and the specifications characteristics will not be ensured.

If the unit has been stored for a long time, always check the operation before starting actual operation. Please contact the Service Center or Service Station.

## Ą CAUTION (2) Wiring Correctly and securely perform the wiring. Failure to do so could lead to runaway of the servomotor. Do not install a condensing capacitor, surge absorber or radio noise filter on the output side of the servo drive unit. Correctly connect the output side (terminals U, V, W). Failure to do so could lead to abnormal operation of the servomotor. Do not directly connect a commercial power supply to the servomotor. Failure Servodrive unit Servodrive unit to observe this could result in a fault. сом сом (24VDC (24VDC) ► When using an inductive load such as a relay, always connect a diode as a noise Control output Control output RA measure parallel to the load. signal signal When using a capacitance load such as a lamp, always connect a protective resistor as a noise measure serial to the load. Do not reverse the direction of a diode which connect to a DC relay for the control output signals to suppress a surge. Connecting it backwards could cause the drive unit to malfunction so that signals are not output, and emergency stop and other safety circuits are inoperable. Do not connect/disconnect the cables connected between the units while the power is ON. Securely tighten the cable connector fixing screw or fixing mechanism. An insecure fixing could cause the cable to fall off while the power is ON. When using a shielded cable instructed in the connection manual, always ground the cable with a cable clamp, etc. Always separate the signals wires from the drive wire and power line. Use wires and cables that have a wire diameter, heat resistance and flexibility that conforms to the system.

# 

# (3) Trial operation and adjustment



Check and adjust each program and parameter before starting operation. Failure to do so could lead to unforeseen operation of the machine.



Do not make remarkable adjustments and changes as the operation could become unstable.

# (4) Usage methods



Install an external emergency stop circuit so that the operation can be stopped and power shut off immediately.



Turn the power OFF immediately if smoke, abnormal noise or odors are generated from the servo drive unit or servomotor.

Unqualified persons must not disassemble or repair the unit.

Never make modifications.

Reduce magnetic damage by installing a noise filter. The electronic devices used near the servo drive unit could be affected by magnetic noise.

Use the servo drive unit, servomotor and regenerative resistor with the designated combination. Failure to do so could lead to fires or trouble.

The brake (magnetic brake) assembled into the servomotor is for holding, and must not be used for normal braking.

There may be cases when holding is not possible due to the magnetic brake's life or the machine construction (when ball screw and servomotor are coupled via a timing belt, etc.). Install a stop device to ensure safety on the machine side.



<u>/</u>]

<u>/</u>?

After changing the programs/parameters or after maintenance and inspection, always test the operation before starting actual operation.

Do not enter the movable range of the machine during automatic operation. Never place body parts near or touch the spindle during rotation.

Follow the power supply specification conditions given in the separate specifications manual for the power (input voltage, input frequency, tolerable sudden power failure time, etc.).

Set all bits to "0" if they are indicated as not used or empty in the explanation on the bits.

Do not use the dynamic brakes except during the emergency stop. Continued use of the dynamic brakes could result in brake damage.

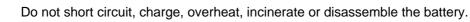
If a breaker is shared by several power supply units, the breaker may not activate when a short-circuit fault occurs in a small capacity unit. This is dangerous, so never share the breakers.

#### CAUTION (5) Troubleshooting If a hazardous situation is predicted during power failure or product trouble, use a servomotor with magnetic brakes or install an external brake mechanism. Use a double circuit configuration Shut off with the servomotor Shut off with NC brake brake control output. control PLC output. that allows the operation circuit for the magnetic brakes to be operated Servomotor MBR EŃG even by the external emergency പ്പ $\cap$ C stop signal. Magnetic 24VDC brake Always turn the input power OFF when an alarm occurs. Never go near the machine after restoring the power after a power failure, as the machine could start suddenly. (Design the machine so that personal safety can be ensured even if the machine starts suddenly.)

# (6) Maintenance, inspection and part replacement



Always carry out maintenance and inspection after backing up the servo drive unit's programs or parameters.


The capacity of the electrolytic capacitor will drop over time. To prevent secondary disasters due to failures, replacing this part every five years when used under a normal environment is recommended. Contact the Service Center or Service Station for replacement.



Do not perform a megger test (insulation resistance measurement) during inspections.



If the battery low warning is issued, save the machining programs, tool data and parameters



with an input/output unit, and then replace the battery.

# (7) Disposal



Treat this unit as general industrial waste. Note that MDS Series unit with a heat dissipating fin protruding from the back of the unit contains substitute Freon. Do not dispose of this type of unit as general industrial waste. Always return to the Service Center or Service Station.



Do not disassemble the servo drive unit or servomotor parts.



Dispose of the battery according to local laws.

# (8) General precautions

The drawings given in this Specifications and Maintenance Instruction Manual show the covers and safety partitions, etc., removed to provide a clearer explanation. Always return the covers or partitions to their respective places before starting operation, and always follow the instructions given in this manual.

# CONTENTS

| 1. Instal | lation                                                                                       |      |
|-----------|----------------------------------------------------------------------------------------------|------|
| 1-1 Ins   | stallation of servomotor                                                                     | 1-2  |
| 1-1-1     |                                                                                              |      |
| 1-1-2     | Quakeproof level                                                                             |      |
| 1-1-3     | Cautions for mounting load (prevention of impact on shaft)                                   | 1-3  |
| 1-1-4     | Installation direction                                                                       | 1-3  |
| 1-1-5     | Shaft characteristics                                                                        | 1-4  |
| 1-1-6     | Oil/water standards                                                                          | 1-5  |
| 1-1-7     | Cable stress                                                                                 | 1-7  |
| 1-2 Ins   | stallation of spindle motor                                                                  | 1-8  |
| 1-2-1     | Environmental conditions                                                                     | 1-8  |
| 1-2-2     | Shaft characteristics                                                                        | 1-9  |
| 1-3 Ins   | stallation of the control unit                                                               | 1-10 |
| 1-3-1     | Environmental conditions                                                                     |      |
| 1-3-2     | Installation direction and clearance                                                         |      |
| 1-3-3     | Prevention of entering of foreign matter                                                     |      |
| 1-3-4     | Panel installation hole work drawings (Panel cut drawings)                                   |      |
| 1-3-5     | Heating value                                                                                |      |
| 1-3-6     | Heat radiation countermeasures                                                               |      |
|           | stalling the spindle detector                                                                |      |
|           | Magnetic sensor                                                                              |      |
|           | Spindle end detector                                                                         |      |
|           | Spindle end PLG                                                                              |      |
|           | ise measures                                                                                 |      |
|           |                                                                                              |      |
|           | g and Connection                                                                             | 2.2  |
|           | rt system connection diagramain circuit connector                                            |      |
|           |                                                                                              |      |
| 2-2-1     | Names and applications of main circuit terminal block signals and control circuit connectors |      |
| 2-2-2     | Connector pin assignment                                                                     |      |
|           | and drive unit connection                                                                    |      |
|           | tor and detector connection                                                                  |      |
|           | Connecting the servomotor                                                                    |      |
|           | Connecting the full-closed loop system                                                       |      |
|           | Connecting the synchronous control system                                                    |      |
|           | Connection of the spindle motor                                                              |      |
|           | onnection of power supply                                                                    |      |
|           | Power supply input connection                                                                |      |
|           | Connecting the grounding cable                                                               |      |
|           | Main circuit control                                                                         |      |
|           | ring of the motor brake                                                                      |      |
| 2-6-1     | Wiring of the motor magnetic brake                                                           |      |
|           |                                                                                              |      |
| 2-6-2     | Dynamic brake unit wiring                                                                    |      |
|           | pheral control wiring                                                                        |      |
|           | Input/output circuit wiring                                                                  |      |
|           | Spindle coil changeover                                                                      |      |
| 2-7-3     | Wiring of an external emergency stop                                                         | 2-46 |

| 3. Setup |                                                                                                                         |      |
|----------|-------------------------------------------------------------------------------------------------------------------------|------|
| 3-1 Init | tial setup                                                                                                              |      |
| 3-1-1    |                                                                                                                         |      |
| 3-1-2    | Transition of LED display after power is turned ON                                                                      | 3-3  |
| 3-1-3    | Servo standard specifications and high-gain specifications                                                              | 3-4  |
| 3-2 Se   | tting the initial parameters for the servo drive unit (High-gain specifications)                                        | 3-5  |
| 3-2-1    |                                                                                                                         |      |
| 3-2-2    | List of standard parameters for each servomotor                                                                         | 3-11 |
| 3-2-3    | Servo parameter list                                                                                                    | 3-23 |
| 3-3 Se   | tting the initial parameters for the servo drive unit (Standard specifications)                                         | 3-39 |
| 3-3-1    |                                                                                                                         |      |
| 3-3-2    |                                                                                                                         |      |
| 3-3-3    | Servo parameter list                                                                                                    |      |
|          | strictions on servo control                                                                                             |      |
| 3-4-1    |                                                                                                                         |      |
| 3-4-2    | Restrictions on absolute position control                                                                               |      |
| 3-5 Se   | tting the initial parameters for the spindle drive unit                                                                 | 3-65 |
| 3-5-1    |                                                                                                                         |      |
|          | List of spindle parameters                                                                                              |      |
|          | tial adjustment of the spindle PLG                                                                                      |      |
|          | Adjusting the PLG installation                                                                                          |      |
|          | Z phase automatic adjustment                                                                                            |      |
| 3-6-3    |                                                                                                                         |      |
| 3-6-4    | Spindle end PLG automatic adjustment                                                                                    |      |
|          | <ul> <li>Adjustment</li> <li>A output specifications for servo drive unit</li> <li>D/A output specifications</li> </ul> |      |
|          | Output data settings                                                                                                    |      |
|          | Setting the output magnification                                                                                        |      |
|          | an adjustment                                                                                                           |      |
|          | Current loop gain                                                                                                       |      |
| 4-2-2    | 10                                                                                                                      |      |
| 4-2-3    | 1 15                                                                                                                    |      |
| -        | aracteristics improvement                                                                                               |      |
| 4-3-1    | Optimal adjustment of cycle time                                                                                        |      |
| 4-3-2    | Vibration suppression measures                                                                                          |      |
| 4-3-3    | Improving the cutting surface precision                                                                                 |      |
| 4-3-4    | Improvement of characteristics during acceleration/deceleration                                                         |      |
| 4-3-5    | Improvement of protrusion at quadrant changeover                                                                        |      |
| 4-3-6    | Improvement of overshooting                                                                                             |      |
| 4-3-7    | Improvement of the interpolation control path                                                                           |      |
|          | justment during full closed loop control                                                                                |      |
| 4-4-1    | Outline                                                                                                                 |      |
| 4-4-2    | Speed loop delay compensation                                                                                           |      |
| 4-4-3    |                                                                                                                         |      |
| -        | ttings for emergency stop                                                                                               |      |
| 4-5-1    |                                                                                                                         |      |
|          | Vertical axis drop prevention control                                                                                   |      |
|          | otective functions                                                                                                      |      |
| 4-6-1    | Overload detection                                                                                                      |      |
| 4-6-2    | Excessive error detection                                                                                               | 4-43 |
| 4-6-3    | Collision detection                                                                                                     | 4-44 |

|          | lle Adjustment                                                          |                                        |
|----------|-------------------------------------------------------------------------|----------------------------------------|
| 5-1 D/   | A output specifications for spindle drive unit                          | 5-2                                    |
|          | D/A output specifications                                               |                                        |
| 5-1-2    | Setting the output data                                                 | 5-3                                    |
| 5-1-3    | Setting the output magnification                                        | 5-4                                    |
| 5-2 Sp   | bindle control signal                                                   | 5-6                                    |
| 5-2-1    | Spindle control input (NC to SP)                                        | 5-6                                    |
| 5-2-2    |                                                                         | 5-15                                   |
| 5-3 Ac   | ljustment procedures for each control                                   | 5-26                                   |
| 5-3-1    | Basic adjustments                                                       | 5-26                                   |
| 5-3-2    | Adjusting the acceleration/deceleration operation                       | 5-27                                   |
|          | Adjusting the orientation control                                       |                                        |
|          | Adjusting the synchronous tap control                                   |                                        |
|          | Adjusting the C-axis control.                                           |                                        |
| 5-3-6    | Adjusting the spindle synchronous control                               |                                        |
| 6 Troub  | bleshooting                                                             |                                        |
|          | bints of caution and confirmation                                       | 6-2                                    |
|          | LED display when alarm or warning occurs                                |                                        |
|          | otective functions list of units                                        |                                        |
|          | List of alarms                                                          |                                        |
|          | List of warnings                                                        |                                        |
|          | cubleshooting                                                           |                                        |
| 6-3-1    | Troubleshooting at power ON                                             |                                        |
| 6-3-2    | Troubleshooting for each alarm No.                                      |                                        |
|          |                                                                         |                                        |
| 6-3-3    | Troubleshooting for each warning No.                                    |                                        |
| 6-3-4    | Parameter numbers during initial parameter error                        |                                        |
| 6-3-5    | Troubleshooting the spindle system when there is no alarm or warning    | 6-45                                   |
| 7. Maint |                                                                         |                                        |
|          | spections                                                               |                                        |
|          | ervice parts                                                            |                                        |
| 7-3 Ac   | Iding and replacing units and parts                                     | 7-3                                    |
| 7-3-1    | Replacing the drive unit                                                | 7-3                                    |
| 7-3-2    | Replacing the unit fan                                                  | 7-4                                    |
| Append   | ix 1. Cable and Connector Specifications                                |                                        |
|          | ix 1-1 Selection of cable                                               | Δ1-2                                   |
|          | ndix 1-1-1 Cable wire and assembly                                      |                                        |
|          | ndix 1-1-2 Flexible conduits                                            |                                        |
|          | ix 1-2 Cable connection diagram                                         |                                        |
|          | ix 1-3 Connector outline dimension drawings                             |                                        |
| A        |                                                                         |                                        |
|          | ix 2. Compliance to EC Directives<br>ix 2-1 Compliance to EC Directives | Δ2-2                                   |
|          | ndix 2-1-1 European EC Directives                                       |                                        |
|          | Idix 2-1-1 European EC Directives                                       |                                        |
| Thhe     |                                                                         | ·····\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |

| Appendix 3. EMC   | Installation Guidelines                                              |       |
|-------------------|----------------------------------------------------------------------|-------|
|                   | troduction                                                           |       |
| Appendix 3-2 El   | MC instructions                                                      | A3-2  |
| Appendix 3-3 El   | MC measures                                                          | A3-3  |
| Appendix 3-4 M    | easures for panel structure                                          | A3-3  |
| Appendix 3-4-1    | Measures for control panel unit                                      | A3-3  |
| Appendix 3-4-2    | Measures for door                                                    | A3-4  |
| Appendix 3-4-3    | Measures for operation board panel                                   | A3-4  |
| Appendix 3-4-4    | Shielding of the power supply input section                          | A3-4  |
| Appendix 3-5 M    | easures for various cables                                           | A3-5  |
| Appendix 3-5-1    | Measures for wiring in panel                                         | A3-5  |
| Appendix 3-5-2    | Measures for shield treatment                                        | A3-5  |
| Appendix 3-5-3    | Servo/spindle motor power cable                                      | A3-6  |
| Appendix 3-5-4    | Servo motor feedback cable                                           | A3-7  |
| Appendix 3-5-5    | Spindle motor feedback cable                                         | A3-7  |
| Appendix 3-6 El   | MC countermeasure parts                                              | A3-8  |
| Appendix 3-6-1    | Shield clamp fitting                                                 | A3-8  |
| Appendix 3-6-2    | Ferrite core                                                         | A3-9  |
| Appendix 3-6-3    | Power line filter                                                    | A3-10 |
| Appendix 3-6-4    | Surge protector                                                      | A3-15 |
| Appendix 4. Serve | o/spindle drive unit categories based on higher harmonic suppression |       |

| 1              |            |
|----------------|------------|
| countermeasure | guidelines |

| Appendix 4-1 | Servo/spindle drive unit circuit categories based on higher harmonic suppression |
|--------------|----------------------------------------------------------------------------------|
|              | countermeasure guidelinesA4-2                                                    |

# Contents for MDS-C1 Series SPECIFICATIONS MANUAL (BNP-C3040D)

|                                                                                                                                                                                                 | uction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1-1 S                                                                                                                                                                                           | ervo/spindle drive system configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2                                                                                                                                  |
| 1-1-1                                                                                                                                                                                           | System configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-2                                                                                                                                  |
| 1-1-2                                                                                                                                                                                           | Unit outline type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-3                                                                                                                                  |
| 1-2 E                                                                                                                                                                                           | xplanation of type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-4                                                                                                                                  |
| 1-2-1                                                                                                                                                                                           | Servomotor type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |
| 1-2-2                                                                                                                                                                                           | Servo drive unit type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-8                                                                                                                                  |
| 1-2-3                                                                                                                                                                                           | Spindle motor type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-10                                                                                                                                 |
| 1-2-4                                                                                                                                                                                           | Spindle drive unit type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-12                                                                                                                                 |
| 1-2-5                                                                                                                                                                                           | Power supply unit type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |
| 1-2-6                                                                                                                                                                                           | AC reactor type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-14                                                                                                                                 |
| 2. Speci                                                                                                                                                                                        | fications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2                                                                                                                                  |
| -                                                                                                                                                                                               | ervomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |
| 2-1-1                                                                                                                                                                                           | Specifications list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |
| 2-1-2                                                                                                                                                                                           | Torque characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |
|                                                                                                                                                                                                 | pindle motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |
| 2-2-1                                                                                                                                                                                           | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      |
| 2-2-2                                                                                                                                                                                           | Output characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |
|                                                                                                                                                                                                 | Prive unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |
| 2-3-1                                                                                                                                                                                           | Servo drive unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |
| 2-3-2                                                                                                                                                                                           | Spindle drive unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| 2-3-3                                                                                                                                                                                           | Power supply unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-23                                                                                                                                 |
| 2-3-4                                                                                                                                                                                           | AC reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-24                                                                                                                                 |
| 2-3-5                                                                                                                                                                                           | D/A output specifications for servo drive unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      |
| 2-3-6                                                                                                                                                                                           | D/A output specifications for spindle drive unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-26                                                                                                                                 |
| 2-3-7                                                                                                                                                                                           | Explanation of each part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-27                                                                                                                                 |
| 2-4 R                                                                                                                                                                                           | estrictions on servo control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |
| 2-4-1                                                                                                                                                                                           | Restrictions of electronic gear setting value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-30                                                                                                                                 |
| 2-4-2                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |
| 2-4-2                                                                                                                                                                                           | Restrictions on absolute position control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-32                                                                                                                                 |
|                                                                                                                                                                                                 | Restrictions on absolute position control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-32                                                                                                                                 |
| 3. Chara                                                                                                                                                                                        | acteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                      |
| 3. Chara                                                                                                                                                                                        | acteristics<br>ervomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-2                                                                                                                                  |
| 3. Chara<br>3-1 S<br>3-1-1                                                                                                                                                                      | acteristics<br>ervomotor<br>Environmental conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-2<br>3-2                                                                                                                           |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2                                                                                                                                                             | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-2<br>3-2<br>3-2                                                                                                                    |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3                                                                                                                                                    | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-2<br>3-2<br>3-2<br>3-3                                                                                                             |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4                                                                                                                                           | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-2<br>3-2<br>3-2<br>3-3<br>3-4                                                                                                      |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5                                                                                                                                  | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake                                                                                                                                                                                                                                                                                                                                                                                                        | 3-2<br>3-2<br>3-3<br>3-3<br>3-4<br>3-5                                                                                               |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6                                                                                                                | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics                                                                                                                                                                                                                                                                                                                                                                       | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8                                                                                               |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S                                                                                                                | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>spindle motor                                                                                                                                                                                                                                                                                                                                                      | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10                                                                                       |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1                                                                                                       | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>epindle motor<br>Environmental conditions                                                                                                                                                                                                                                                                                                                          | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10                                                                               |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2                                                                                              | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>pindle motor<br>Environmental conditions<br>Shaft characteristics                                                                                                                                                                                                                                                                                                  | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-10                                                                       |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 D                                                                                     | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>epindle motor<br>Environmental conditions<br>Shaft characteristics<br>Drive unit characteristics                                                                                                                                                                                                                                                                   | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-11                                                                       |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 D<br>3-3-1                                                                            | acteristics<br>ervomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-11<br>3-11                                                               |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 C<br>3-3-1<br>3-3-2                                                                   | acteristics<br>ervomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12                                                       |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 C<br>3-3-1<br>3-3-2<br>3-3-3                                                          | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>pindle motor<br>Environmental conditions<br>Shaft characteristics<br>Drive unit characteristics<br>Environmental conditions<br>Heating value<br>Overload protection characteristics                                                                                                                                                                                | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12                                                       |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 C<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic                                              | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>pindle motor<br>Environmental conditions<br>Shaft characteristics<br>Drive unit characteristics<br>Environmental conditions<br>Heating value<br>Overload protection characteristics<br>ated Options                                                                                                                                                                | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12<br>3-13                                               |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 C<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic                                              | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>pindle motor<br>Environmental conditions<br>Shaft characteristics<br>Drive unit characteristics<br>Environmental conditions<br>Heating value<br>Overload protection characteristics<br>ated Options<br>ervo options                                                                                                                                                | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12<br>3-13<br>4-2                                |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 C<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic                                              | acteristics<br>ervomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12<br>3-13<br>4-2                                |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 E<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic<br>4-1 S                                     | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>pindle motor<br>Environmental conditions<br>Shaft characteristics<br>Drive unit characteristics<br>Environmental conditions<br>Heating value<br>Overload protection characteristics<br>ated Options<br>ervo options                                                                                                                                                | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12<br>3-13<br>4-2                                |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 C<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic<br>4-1 S<br>4-1-1                            | acteristics<br>ervomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-8<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12<br>3-13<br>4-2<br>n)4-3                               |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3 C<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic<br>4-1 S<br>4-1-1                            | acteristics<br>ervomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-10<br>3-10<br>3-11<br>3-11<br>3-11<br>3-13<br>4-2<br>n)4-3<br>4-5                               |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3-1<br>3-2-2<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic<br>4-1 S<br>4-1-1<br>4-1-2          | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>pindle motor<br>Environmental conditions<br>Shaft characteristics<br>Prive unit characteristics<br>Environmental conditions<br>Heating value<br>Overload protection characteristics<br>ated Options<br>Battery and terminator option (mandatory selection<br>Dynamic brake unit (MDS-B-DBU)<br>(mandatory selection for large capacity)                            | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12<br>3-13<br>4-2<br>n)4-3<br>4-5<br>4-7                        |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3-1<br>3-2-2<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic<br>4-1 S<br>4-1-1<br>4-1-3          | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>pindle motor<br>Environmental conditions<br>Shaft characteristics<br>Prive unit characteristics<br>Environmental conditions<br>Heating value<br>Overload protection characteristics<br>ated Options<br>Battery and terminator option (mandatory selection<br>Dynamic brake unit (MDS-B-DBU)<br>(mandatory selection for large capacity)<br>Ball screw end detector | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12<br>3-13<br>4-2<br>n)4-3<br>4-5<br>4-7<br>4-8                 |
| 3. Chara<br>3-1 S<br>3-1-1<br>3-1-2<br>3-1-3<br>3-1-4<br>3-1-5<br>3-1-6<br>3-2 S<br>3-2-1<br>3-2-2<br>3-3-1<br>3-2-2<br>3-3-1<br>3-3-2<br>3-3-3<br>4. Dedic<br>4-1 S<br>4-1-1<br>4-1-3<br>4-1-4 | acteristics<br>ervomotor<br>Environmental conditions<br>Quakeproof level<br>Shaft characteristics<br>Oil/water standards<br>Magnetic brake<br>Dynamic brake characteristics<br>pindle motor<br>Environmental conditions<br>Shaft characteristics<br>Prive unit characteristics<br>Environmental conditions<br>Heating value<br>Overload protection characteristics<br>ated Options<br>Battery and terminator option (mandatory selection<br>Dynamic brake unit (MDS-B-DBU)<br>(mandatory selection for large capacity)<br>Ball screw end detector | 3-2<br>3-2<br>3-3<br>3-4<br>3-5<br>3-10<br>3-10<br>3-10<br>3-11<br>3-11<br>3-12<br>3-13<br>4-2<br>n)4-3<br>4-5<br>4-7<br>4-8<br>4-10 |

| 4-2 Spindle option                                                                                                                                                                                                                                                                                                                                                                                                                | 4-14                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 4-2-1 Magnetic sensor                                                                                                                                                                                                                                                                                                                                                                                                             | .4-16                                                                               |
| 4-2-2 Spindle end detector                                                                                                                                                                                                                                                                                                                                                                                                        | 4.40                                                                                |
| (OSE-1024-3-15-68, OSE-1024-3-15-68-8)                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
| 4-2-4 C-axis detector (MBE90K)                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |
| 4-2-5 C-axis detector (MHE90K)                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |
| 4-2-6 Spindle end PLG (MXE128/180/256/512)                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |
| 4-2-7 Detector conversion unit (MDS-B-PJEX)                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |
| 4-3 Cables and connectors                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |
| 4-3-1 Cable connection diagram                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |
| 4-3-2 List of cables and connectors                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |
| 5. Peripheral Devices                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
| 5-1 Selecting the wire size                                                                                                                                                                                                                                                                                                                                                                                                       | 5-2                                                                                 |
| 5-2 Selection the AC reactor, contactor                                                                                                                                                                                                                                                                                                                                                                                           | J-Z                                                                                 |
| and no-fuse breaker                                                                                                                                                                                                                                                                                                                                                                                                               | 5-5                                                                                 |
| 5-2-1 Standard selection                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
| 5-2-2 Selection when a contactor is shared                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |
| 5-3 Circuit protector                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
| 5-4 Circuit protector                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
| 5-5 Noise filter                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |
| 5-6 Surge absorber                                                                                                                                                                                                                                                                                                                                                                                                                | 5-10                                                                                |
| 5-7 Speedometer and load meter                                                                                                                                                                                                                                                                                                                                                                                                    | 5-11                                                                                |
| 5-8 Cable for peripheral control                                                                                                                                                                                                                                                                                                                                                                                                  | 5-12                                                                                |
| 5-8-1 Cable for external emergency stop                                                                                                                                                                                                                                                                                                                                                                                           | .5-12                                                                               |
| 5-8-2 Cable for servomotor magnetic brake                                                                                                                                                                                                                                                                                                                                                                                         | .5-13                                                                               |
| Appendix 1. Outline Dimension Drawings                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
| Appendix 1-1 Servomotor outline dimension drawing                                                                                                                                                                                                                                                                                                                                                                                 | าร                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
| Appendix 1-1-1 HC Series                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
| Appendix 1-1-2 HA Series                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
| Appendix 1-2 Outline dimension drawings                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |
| of spindle motor                                                                                                                                                                                                                                                                                                                                                                                                                  | A1-12                                                                               |
| Appendix 1-2-1 SJ Series                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
| Appendix 1-2-2 SJ-V Series                                                                                                                                                                                                                                                                                                                                                                                                        | .A1-15                                                                              |
| Appendix 1-2-3 SJ-VS Series                                                                                                                                                                                                                                                                                                                                                                                                       | .A1-25                                                                              |
| Appendix 1-2-4 SJ-PMF Series (IPM motor)                                                                                                                                                                                                                                                                                                                                                                                          | .A1-27                                                                              |
| Appendix 1-3 Unit outline dimension drawings                                                                                                                                                                                                                                                                                                                                                                                      | A1-28                                                                               |
| Appendix 1-3-1 Servo/spindle drive unit                                                                                                                                                                                                                                                                                                                                                                                           | .A1-28                                                                              |
| Appendix 1-3-2 Power supply unit                                                                                                                                                                                                                                                                                                                                                                                                  | .A1-37                                                                              |
| Appendix 1-3-3 AC rector                                                                                                                                                                                                                                                                                                                                                                                                          | .A1-41                                                                              |
| Appendix 2. Table and Connector Specifications                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |
| Appendix 2-1 Selection of cable                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
| •••                                                                                                                                                                                                                                                                                                                                                                                                                               | . A2-2                                                                              |
| Appendix 2-1-1 Cable wire and assembly                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
| Appendix 2-1-1 Cable wire and assembly<br>Appendix 2-1-2 Flexible conduits                                                                                                                                                                                                                                                                                                                                                        | .A2-2                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | .A2-2<br>.A2-4                                                                      |
| Appendix 2-1-2 Flexible conduits                                                                                                                                                                                                                                                                                                                                                                                                  | .A2-2<br>.A2-4<br>.A2-6                                                             |
| Appendix 2-1-2         Flexible conduits           Appendix 2-2         Cable connection diagram                                                                                                                                                                                                                                                                                                                                  | .A2-2<br>.A2-4<br>.A2-6                                                             |
| Appendix 2-1-2       Flexible conduits         Appendix 2-2       Cable connection diagram         Appendix 2-3       Connector outline dimension drawings                                                                                                                                                                                                                                                                        | .A2-2<br>.A2-4<br>.A2-6                                                             |
| Appendix 2-1-2 Flexible conduits<br>Appendix 2-2 Cable connection diagram<br>Appendix 2-3 Connector outline dimension drawing:<br>Appendix 3. Selection                                                                                                                                                                                                                                                                           | .A2-2<br>.A2-4<br>.A2-6<br>S<br>.A2-12                                              |
| Appendix 2-1-2 Flexible conduits<br>Appendix 2-2 Cable connection diagram<br>Appendix 2-3 Connector outline dimension drawings<br>Appendix 3. Selection<br>Appendix 3-1 Selecting the servomotor series                                                                                                                                                                                                                           | .A2-2<br>.A2-4<br>.A2-6<br>.A2-12<br>.A2-12                                         |
| Appendix 2-1-2       Flexible conduits         Appendix 2-2       Cable connection diagram         Appendix 2-3       Connector outline dimension drawings         Appendix 3.       Selection         Appendix 3-1       Selecting the servomotor series         Appendix 3-1-1       Motor series characteristics                                                                                                               | .A2-2<br>.A2-4<br>.A2-6<br>.A2-12<br>.A2-12<br>.A3-2<br>.A3-2                       |
| Appendix 2-1-2       Flexible conduits                                                                                                                                                                                                                                                                                                                                                                                            | .A2-2<br>.A2-4<br>.A2-6<br>s<br>.A2-12<br>.A3-2<br>.A3-2<br>.A3-3                   |
| Appendix 2-1-2       Flexible conduits         Appendix 2-2       Cable connection diagram         Appendix 2-3       Connector outline dimension drawings         Appendix 3.       Selection         Appendix 3-1       Selecting the servomotor series         Appendix 3-1-1       Motor series characteristics                                                                                                               | .A2-2<br>.A2-4<br>.A2-6<br>s<br>.A2-12<br>.A3-2<br>.A3-2<br>.A3-3<br>.A3-4          |
| Appendix 2-1-2       Flexible conduits         Appendix 2-2       Cable connection diagram         Appendix 2-3       Connector outline dimension drawings         Appendix 3.       Selection         Appendix 3-1       Selecting the servomotor series         Appendix 3-1-1       Motor series characteristics         Appendix 3-1-2       Servomotor precision         Appendix 3-2       Selection of servomotor capacity | .A2-2<br>.A2-4<br>.A2-6<br>5<br>.A2-12<br>.A3-2<br>.A3-2<br>.A3-3<br>.A3-4<br>.A3-4 |

(Note) This is the content for SPECIFICATION MANUAL version D. The structure of section and page number may be different other than version D.

# Contents for MDS-C1 Series SPECIFICATIONS MANUAL (BNP-C3040D)

| Appendix 3-3     | Example of servo selection                          | A3-7    |
|------------------|-----------------------------------------------------|---------|
| Appendix 3-3-1   | Motor selection calculation                         | A3-7    |
| Appendix 3-3-2   | Servo selection results                             | A3-10   |
| Appendix 3-3-3   | Motor shaft conversion load torque                  | A3-11   |
| Appendix 3-3-4   | Expressions for load inertia calculation            | A3-12   |
| Appendix 3-4     | Selecting the power supply                          | A3-13   |
| Appendix 3-4-1   | Selecting according to the continuous rate          | ed      |
|                  | capacity                                            | A3-13   |
| Appendix 3-4-2   | Selection with maximum momentary capa               | icity   |
|                  |                                                     | A3-14   |
| Appendix 3-4-3   | Selection example                                   | A3-15   |
|                  | anation of Large Capacity Spindle Un<br>cifications | it      |
| Appendix 4-1     | Explanation of large capacity spindle               | unit    |
|                  | specifications                                      | A4-2    |
| Appendix 4-1-1   | Outline                                             | A4-2    |
| Appendix 4-1-2   | List of units                                       | A4-2    |
| Appendix 4-1-3   | Selection of AC reactor (B-AL),                     |         |
|                  | contactor and NFB                                   | A4-2    |
| Appendix 4-1-4   | Outline dimension drawings                          | A4-3    |
| Appendix 4-1-5   | Panel cut dimension drawing                         | A4-8    |
| Appendix 4-1-6   | Heating value                                       | A4-9    |
| Appendix 4-1-7   | Selecting the power capacity                        | A4-9    |
| Appendix 4-1-8   | Selecting the wire size                             | A4-9    |
| Appendix 4-1-9   | Drive unit connection screw size                    | A4-10   |
| Appendix 4-1-10  | Connecting each unit                                | A4-10   |
| Appendix 4-1-11  | Restrictions                                        | A4-12   |
| Appendix 4-1-12  | Parameters                                          | A4-14   |
| Appendix 4-1-13  | Precautions                                         | A4-14   |
| Appendix 5. Trar | sportation Restrictions for Lithium Ba              | tteries |
| Appendix 5-1     | Transportation restrictions                         |         |
|                  | for lithium batteries                               | A5-2    |
| Appendix 5-1-1   | Target products                                     | A5-2    |
| Appendix 5-1-2   | Handling by user                                    | A5-3    |
| Appendix 5-1-3   | Regulations enforcement timing                      | A5-4    |
| Appendix 6. Com  | pliance to EU EC Directives                         |         |
| Appendix 6-1     | Compliance to EC Directives                         | A6-2    |
| Appendix 6-1-1   | European EC Directives                              | A6-2    |
| Appendix 6-2-2   | Cautions for EC Directive compliance                | A6-2    |

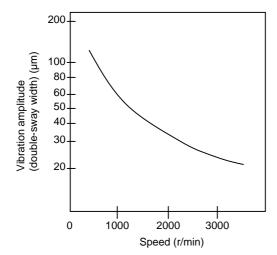
| Appendix 7. EM  | S Instruction Guidelines                                                   |       |
|-----------------|----------------------------------------------------------------------------|-------|
| Appendix 7-1    | Introduction                                                               | A7-2  |
| Appendix 7-2    | EMC instructions                                                           | A7-2  |
| Appendix 7-3    | EMC measures                                                               | A7-3  |
| Appendix 7-4    | Measures for panel structure                                               | A7-3  |
| Appendix 7-4-1  | Measures for control panel unit                                            | A7-3  |
| Appendix 7-4-2  | Measures for door                                                          | A7-4  |
| Appendix 7-4-3  | Measures for operation board panel                                         | A7-4  |
| Appendix 7-4-4  | Shielding of the power supply input section                                |       |
|                 |                                                                            | A7-4  |
| Appendix 7-5    | Measures for various cables                                                | A7-5  |
| Appendix 7-5-1  | Measures for wiring in panel                                               | A7-5  |
| Appendix 7-5-2  | Measures for shield treatment                                              | A7-5  |
| Appendix 7-5-3  | Servomotor power cable                                                     | A7-6  |
| Appendix 7-5-4  | Servomotor feedback cable                                                  | A7-6  |
| Appendix 7-5-5  | Spindle motor power cable                                                  | A7-7  |
| Appendix 7-5-6  | Spindle motor feedback cable                                               | A7-7  |
| Appendix 7-6    | EMC countermeasure parts                                                   | A7-8  |
| Appendix 7-6-1  | Shield clamp fitting                                                       | A7-8  |
| Appendix 7-6-2  | Ferrite core                                                               | A7-9  |
| Appendix 7-6-3  | Power line filter                                                          | A7-10 |
| Appendix 7-6-4  | Surge protector                                                            | A7-15 |
|                 | ruction Manual for Compliance with UL/<br>ndard                            | c-UL  |
| Appendix 8. Ins | struction Manual for Compliance                                            |       |
|                 | with UL/c-UL Standard                                                      | A8-2  |
| Cer             | npliance with China Compulsory Productification (CCC Certification) System | ct    |
| Appendix 9-1    | Outline of China Compulsory Product                                        |       |
|                 | Certification System                                                       | A9-2  |
| Appendix 9-2    | First Catalogue of Products subject to                                     |       |
|                 | Compulsory Product Certification                                           |       |
| Appendix 9-3    | Precautions for Shipping Products                                          |       |
| Appendix 9-4    | Application for Exemption                                                  | A9-4  |
| Appendix 9-5    | Mitsubishi NC Product Subject to                                           |       |
|                 | /Not Subject to CCC Certification                                          | A9-5  |
|                 |                                                                            |       |

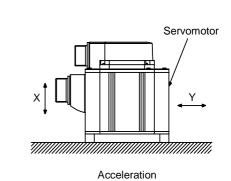
(Note) This is the content for SPECIFICATION MANUAL version D. The structure of section and page number may be different other than version D.

| 1-1 Installation of servomotor                                   |      |
|------------------------------------------------------------------|------|
| 1-1-1 Environmental conditions                                   |      |
| 1-1-2 Quakeproof level                                           |      |
| 1-1-3 Cautions for mounting load (prevention of impact on shaft) | 1-3  |
| 1-1-4 Installation direction                                     |      |
| 1-1-5 Shaft characteristics                                      |      |
| 1-1-6 Oil/water standards                                        | 1-5  |
| 1-1-7 Cable stress                                               | 1-7  |
| 1-2 Installation of spindle motor                                |      |
| 1-2-1 Environmental conditions                                   |      |
| 1-2-2 Shaft characteristics                                      | 1-9  |
| 1-3 Installation of the control unit                             | 1-10 |
| 1-3-1 Environmental conditions                                   | 1-10 |
| 1-3-2 Installation direction and clearance                       |      |
| 1-3-3 Prevention of entering of foreign matter                   |      |
| 1-3-4 Panel installation hole work drawings (Panel cut drawings) | 1-12 |
| 1-3-5 Heating value                                              |      |
| 1-3-6 Heat radiation countermeasures                             | 1-14 |
| 1-4 Installing the spindle detector                              | 1-16 |
| 1-4-1 Magnetic sensor                                            | 1-16 |
| 1-4-2 Spindle end detector                                       | 1-18 |
| 1-4-3 Spindle end PLG                                            |      |
| 1-5 Noise measures                                               | 1-22 |

# 1-1 Installation of servomotor

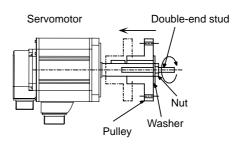
|  | <ol> <li>Do not hold the cables, axis or detector when transporting the motor. Failure to observe this could lead to faults or injuries.</li> <li>Securely fix the motor to the machine. Insufficient fixing could lead to the motor deviating during operation. Failure to observe this could lead to injuries.</li> <li>When coupling to a servomotor shaft end, do not apply an impact by hammering, etc. The detector could be damaged.</li> <li>Never touch the rotary sections of the motor during operations. Install a cover, etc., on the shaft.</li> <li>Do not apply a load exceeding the tolerable load onto the servomotor shaft. The shaft could break. Failure to observe this could lead to injuries.</li> <li>Do not connect or disconnect any of the connectors while the power is ON.</li> </ol> |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


# **1-1-1 Environmental conditions**

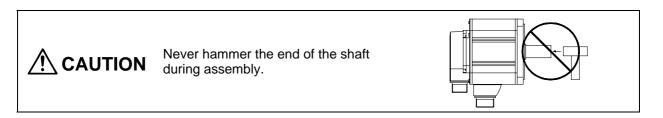

| Environment         | Conditions                                             |  |
|---------------------|--------------------------------------------------------|--|
| Ambient temperature | 0°C to +40°C (with no freezing)                        |  |
| Ambient humidity    | 80%RH or less (with no dew condensation)               |  |
| Storage temperature | -15°C to +70°C (with no freezing)                      |  |
| Storage humidity    | 90%RH or less (with no dew condensation)               |  |
| Atmosphere          | Indoors (Where unit is not subject to direct sunlight) |  |
|                     | No corrosive gases, flammable gases, oil mist or dust  |  |
| Altitude            | Operation/storage: 1000m or less above sea level       |  |
|                     | Transportation: 10000m or less above sea level         |  |

# 1-1-2 Quakeproof level

| Motor type                        | Acceleration direction              |                                      |  |
|-----------------------------------|-------------------------------------|--------------------------------------|--|
|                                   | Axis direction (X)                  | Direction at right angle to axis (Y) |  |
| HC52 to HC152, HC53 to HC153      | 9.8m/s <sup>2</sup> (1G) or less    | 24.5m/s <sup>2</sup> (2.5G) or less  |  |
| HC103R to HC503R, HA053N to HA33N |                                     |                                      |  |
| HC202, HC352, HC203, HC353        | 19.6m/s <sup>2</sup> (2G) or less   | 49.0m/s <sup>2</sup> (5G) or less    |  |
| HC452, HC702, HC453, HC703        | 11.7m/s <sup>2</sup> (1.2G) or less | 29.4m/s <sup>2</sup> (3G) or less    |  |
| HA-LF11K2-S8, HA-LF15K2-S8        | 11.711/s (1.2G) of less             | 29.411/s (3G) of less                |  |
| HC902                             | 9.8m/s <sup>2</sup> (1G) or less    | 24.5m/s <sup>2</sup> (2.5G) or less  |  |


The vibration conditions are as shown below.

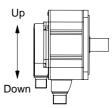





# 1-1-3 Cautions for mounting load (prevention of impact on shaft)

- [1] When using the servomotor with key way, use the screw hole at the end of the shaft to mount the pulley onto the shaft. To install, first place the double-end stud into the shaft screw holes, contact the coupling end surface against the washer, and press in as if tightening with a nut. When the shaft does not have a key way, use a frictional coupling, etc.
- [2] When removing the pulley, use a pulley remover, and make sure not to apply an impact on the shaft.




- [3] Install a protective cover on the rotary sections such as the pulley installed on the shaft to ensure safety.
- [4] The direction of the detector installed on the servomotor cannot be changed.

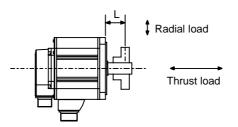


#### 1-1-4 Installation direction

[1] There are no restrictions on the installation direction. Installation in any direction is possible, but as a standard the motor is installed so that the motor power line and detector cable cannon plugs (lead-in wires) face downward. Installation in the standard direction is effective against dripping. Measure to prevent oil and water must be taken when not installing in the standard direction. When the motor is not installed in the standard direction, refer to section "1-1-6 Oil/water standards" and take the appropriate measures.

The brake plates may make a sliding sound when a servomotor with magnetic brake is installed with the shaft facing upward, but this is not a fault.



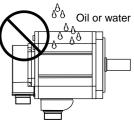

Standard installation direction

# 1-1-5 Shaft characteristics

There is a limit to the load that can be applied on the motor shaft. Make sure that the load applied on the radial direction and thrust direction, when mounted on the machine, is below the tolerable values given below. These loads may affect the motor output torque, so consider them when designing the machine.

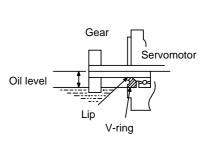
| Servomotor                                                       | Tolerable radial load | Tolerable thrust load |
|------------------------------------------------------------------|-----------------------|-----------------------|
| HA053NS, HA13NS                                                  | 78.4N (L=26mm)        | 49N                   |
| HA23NS, HA33NS<br>HA23NT, HA33NT                                 | 245N (L=30 mm)        | 147N                  |
| HC103RT, HC153RT, HC203RT                                        | 392N (L=45 mm)        | 196N                  |
| HC52T, HC102T, HC152T<br>HC53T, HC103T, HC153T                   | 392N (L=58 mm)        | 490N                  |
| HC103RS, HC153RS, HC203RS                                        | 686N (L=45 mm)        | 196N                  |
| HC353RS, HC503RS                                                 | 980N (L=63 mm)        | 392N                  |
| HC52S, HC102S, HC152S<br>HC53S, HC103S, HC153S                   | 980N (L=55 mm)        | 490N                  |
| HC202S, HC352S, HC452S, HC702S<br>HC203S, HC353S, HC453S, HC703S | 2058N (L=79 mm)       | 980N                  |
| HC902S<br>HA-LF11K2-S8                                           | 2450N (L=85 mm)       | 980N                  |
| HA-LF15K2-S8                                                     | 2940N (L=100 mm)      | 980N                  |

Note: The symbol L in the table refers to the value of L below.

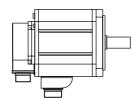


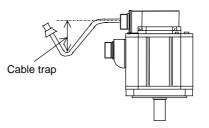

L : Length from flange installation surface to center of load weight [mm]

|  | <ol> <li>Use a flexible coupling when connecting with a ball screw, etc., and keep the shaft core deviation to below the tolerable radial load of the shaft.</li> <li>When directly installing the gear on the motor shaft, the radial load increases as the diameter of the gear decreases. This should be carefully considered when designing the machine.</li> <li>When directly installing the pulley on the motor shaft, carefully consider so that the radial load (double the tension) generated from the timing belt tension is less than the values shown in the table above.</li> <li>In machines where thrust loads such as a worm gear are applied, carefully consider providing separate bearings, etc., on the machine side so that loads exceeding the tolerable thrust loads are not applied to the motor.</li> <li>Do not use a rigid coupling as an excessive bending load will be applied on the shaft and could cause the shaft to break.</li> </ol> |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


## 1-1-6 Oil/water standards

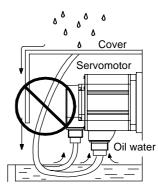
[1] The motor protective format uses the IP type, which complies with IEC Standard. However, these Standards are short-term performance specifications. They do not guarantee continuous environmental protection characteristics. Measures such as covers, etc., must be taken if there is any possibility that oil or water will fall on the motor, and the motor will be constantly wet and permeated by water. Note that the motor's IP-type is not indicated as corrosion-resistant.





- Servomotor
- [2] When a gear box is installed on the servomotor, make sure that the oil level height from the center of the shaft is higher than the values given below. Open a breathing hole on the gear box so that the inner pressure does not rise.

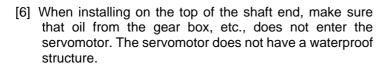
| Servomotor                 | Oil level (mm) |  |
|----------------------------|----------------|--|
| HA053N, HA13N              | 8              |  |
| HA23N, HA33N               | 10             |  |
| HC52, HC102, HC152         |                |  |
| HC53, HC103, HC153         | 20             |  |
| HC103R, HC153R, HC203R     | 20             |  |
| HC353R, HC503R             |                |  |
| HC202, HC352, HC452, HC702 | 25             |  |
| HC203, HC353, HC453, HC703 | 25             |  |
| HC902                      | 30             |  |
| HA-LF11K2-S8               | 34             |  |
| HA-LF15K2-S8               | 48             |  |

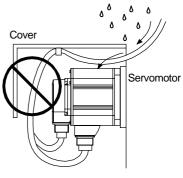



[3] When installing the servomotor horizontally, set the power cable and detector cable to face downward. When installing vertically or on an inclination, provide a cable trap.

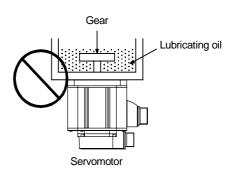





|  | 2. | The servomotors, including those having IP65 specifications, do not have a completely waterproof (oil-proof) structure. Do not allow oil or water to constantly contact the motor, enter the motor, or accumulate on the motor. Oil can also enter the motor through cutting chip accumulation, so be careful of this also.<br>When the motor is installed facing upwards, take measures on the machine side so that gear oil, etc., does not flow onto the motor shaft.<br>Do not remove the detector from the motor. (The detector installation screw is treated for sealing.) |
|--|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


[4] Do not use the unit with the cable submerged in oil or water. (Refer to right drawing.)




<Fault> Capillary tube phenomenon

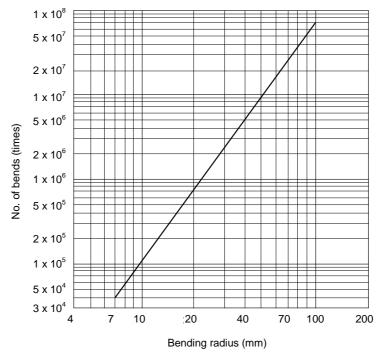
[5] Make sure that oil and water do not flow along the cable into the motor or detector. (Refer to right drawing.)

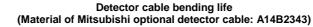




<Fault> Respiration




## 1-1-7 Cable stress


- [1] Sufficiently consider the cable clamping method so that bending stress and the stress from the cable's own weight is not applied on the cable connection part.
- [2] In applications where the servomotor moves, make sure that excessive stress is not applied on the cable.

If the detector cable and servomotor wiring are stored in a cable bear and the servomotor moves, make sure that the cable bending part is within the range of the optional detector cable.

- Fix the detector cable and power cable enclosed with the servomotor.
- [3] Make sure that the cable sheathes will not be cut by sharp cutting chips, worn by contacting the machine corners, or stepped on by workers or vehicles.

The bending life of the detector cable is as shown below. Regard this with a slight allowance. If the servomotor/spindle motor is installed on a machine that moves, make the bending radius as large as possible.



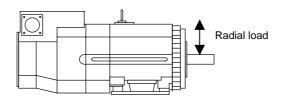


(Note) The values in this graph are calculated values and are not guaranteed.

# **1-2** Installation of spindle motor

|  | <ol> <li>Do not hold the cables, axis or detector when transporting the motor. Failure to observe this could lead to faults or injuries.</li> <li>Securely fix the motor to the machine. Insufficient fixing could lead to the motor deviating during operation. Failure to observe this could lead to injuries.</li> <li>When coupling to a servomotor shaft end, do not apply an impact by hammering, etc. The detector could be damaged.</li> <li>Never touch the rotary sections of the motor during operations. Install a cover, etc., on the shaft.</li> <li>Do not apply a load exceeding the tolerable load onto the servomotor shaft. The shaft could break. Failure to observe this could lead to injuries.</li> <li>Do not connect or disconnect any of the connectors while the power is ON.</li> </ol> |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# **1-2-1** Environmental conditions


| Environment         | Conditions                                             |  |
|---------------------|--------------------------------------------------------|--|
| Ambient temperature | 0°C to +40°C (with no freezing)                        |  |
| Ambient humidity    | 90%RH or less (with no dew condensation)               |  |
| Storage temperature | -20°C to +65°C (with no freezing)                      |  |
| Storage humidity    | 90%RH or less (with no dew condensation)               |  |
| Atmosphere          | Indoors (Where unit is not subject to direct sunlight) |  |
|                     | No corrosive gases, flammable gases, oil mist or dust  |  |
| Altitude            | Operation/storage: 1000m or less above sea level       |  |
|                     | Transportation: 10000m or less above sea level         |  |

(Note) Refer to each spindle motor specifications for details on the spindle motor vibration conditions.

# 1-2-2 Shaft characteristics

There is a limit to the load that can be applied on the motor shaft. Make sure that the load applied on the radial direction, when mounted on the machine, is below the tolerable values given below. These loads also affect the motor output torque, so consider them when designing the machine.

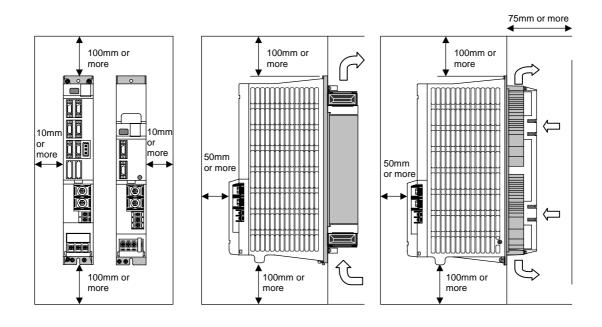
| Spindle motor                                             | Tolerable radial load |
|-----------------------------------------------------------|-----------------------|
| SJ-V3.7-02ZM                                              | 490 N                 |
| SJ-V2.2-01, SJ-V3.7-01                                    | 980 N                 |
| SJ-V7.5-03ZM, SJ-V11-06ZM                                 | 300 11                |
| SJ-V5.5-01, SJ-V11-08ZM                                   | 1470 N                |
| SJ-PMF01830-00                                            | 1470 N                |
| SJ-V7.5-01, SJ-V11-01                                     | 1960 N                |
| SJ-V22-06ZM, SJ-V30-02ZM, SJ-PMF03530-00                  | 1960 N                |
| SJ-V11-09, SJ-V15-01, SJ-V15-03, SJ-V18.5-01, SJ-V18.5-03 | 2940 N                |
| SJ-V22-01, SJ-V22-05, SJ-V26-01, SJ-30A                   | 2940 N                |
| SJ-22XW5 3920                                             |                       |
| SJ-37BP                                                   | 4900 N                |
| SJ-22XW8, SJ-45BP                                         | 5990 N                |
| SJ-V55-01                                                 | 5880 N                |



(Note) The load point is at the one-half of the shaft length.

# 1-3 Installation of the control unit

|          | 1. In | nstall the unit on noncombustible material. Direct installation on               |
|----------|-------|----------------------------------------------------------------------------------|
|          | C     | ombustible material or near combustible materials may lead to fires.             |
|          | 2. F  | ollow the instructions in this manual and install the unit while allowing for    |
|          | th    | ne unit weight.                                                                  |
|          | 3. D  | o not get on top of the units or motor, or place heavy objects on the unit.      |
|          |       | ailure to observe this could lead to injuries.                                   |
|          |       | lways use the unit within the designated environment conditions.                 |
|          |       | o not let conductive objects such as screws or metal chips, etc., or             |
|          |       | ombustible materials such as oil enter the units.                                |
|          | 6. D  | o not block the units intake and outtake ports. Doing so could lead to           |
|          |       | ailure.                                                                          |
|          | 7. T  | he units and servomotor are precision devices, so do not drop them or apply      |
|          |       | trong impacts to them.                                                           |
|          |       | to not install or run units or servomotor that is damaged or missing parts.      |
|          |       | Vhen storing for a long time, please contact your dealer.                        |
|          |       | Iways observe the installation directions. Failure to observe this could lead to |
|          |       | aults.                                                                           |
|          |       | secure the specified distance between the units and panel, or between the        |
|          |       | nits and other devices. Failure to observe this could lead to faults.            |
| <u> </u> | ŭ     |                                                                                  |


# 1-3-1 Environmental conditions

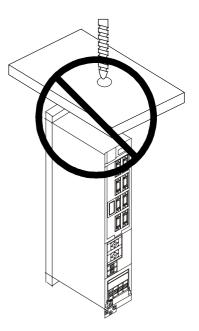
| Environment         | Conditions                                                                    |  |
|---------------------|-------------------------------------------------------------------------------|--|
| Ambient temperature | 0°C to +55°C (with no freezing)                                               |  |
| Ambient humidity    | 90%RH or less (with no dew condensation)                                      |  |
| Storage temperature | -15°C to +70°C (with no freezing)                                             |  |
| Storage humidity    | 90%RH or less (with no dew condensation)                                      |  |
| Atmosphere          | Indoors (no direct sunlight);                                                 |  |
|                     | no corrosive gases, inflammable gases, oil mist, dust or conductive particles |  |
| Altitude            | Operation/storage: 1000m or less above sea level                              |  |
|                     | Transportation: 10000m or less above sea level                                |  |
| Vibration           | Operation/storage: 4.9m/s <sup>2</sup> (0.5G) or less                         |  |
|                     | Transportation: 49m/s <sup>2</sup> (5G) or less                               |  |

(Note) When installing the machine at 1,000m or more above sea level, the heat dissipation characteristics will drop as the altitude increases. The upper limit of the ambient temperature drops 1°C with every 100m increase in altitude. (The ambient temperature at an altitude of 2,000m is between 0 and 45°C.)

# 1-3-2 Installation direction and clearance

Wire each unit in consideration of the maintainability and the heat dissipation, as well as secure sufficient space for ventilation.

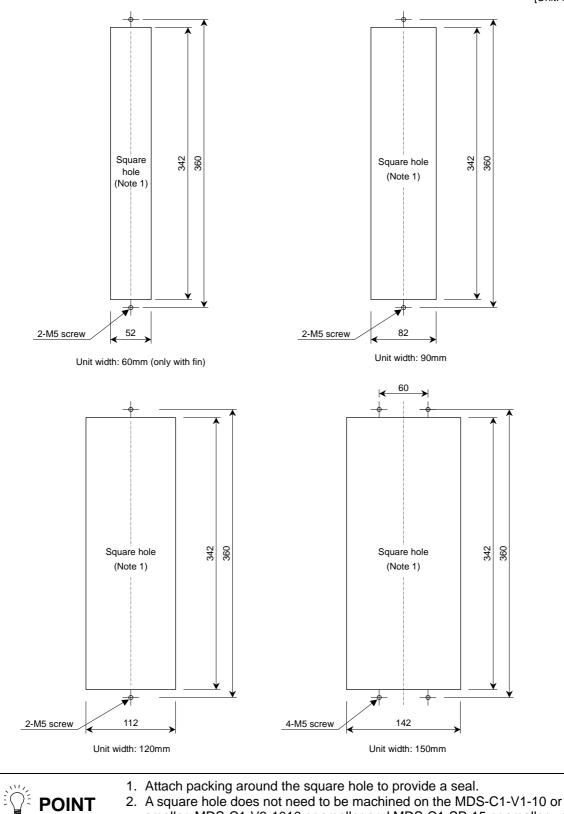



The ambient temperature condition for the power supply unit or the drive units is 55°C or less. Because heat can easily accumulate in the upper portion of the units, give sufficient consideration to heat dissipation when designing the panel. If required, install a fan in the panel to agitate the heat in the upper portion of the units.

# 1-3-3 Prevention of entering of foreign matter

Treat the cabinet with the following items.

- Make sure that the cable inlet is dust and oil proof by using packing, etc.
- Make sure that the external air does not enter inside by using head radiating holes, etc.
- Close all clearances.


- Securely install door packing.
- If there is a rear cover, always apply packing.
- Oil will tend to accumulate on the top. Take special measures such as oil-proofing to the top so that oil does not enter the cabinet from the screw holds.
- After installing each unit, avoid machining in the periphery. If cutting chips, etc., stick onto the electronic parts, trouble may occur.
- When using the unit in an area with toxic gases or high levels of dust, protect the unit with air purging (system to blow clean air so that the panel's inner pressure is higher than the outer pressure).



[Unit: mm]

# 1-3-4 Panel installation hole work drawings (Panel cut drawings)

Prepare a square hole to match the unit width.



smaller, MDS-C1-V2-1010 or smaller and MDS-C1-SP-15 or smaller units.

# 1-3-5 Heating value

Each heating value is calculated with the following values.

The values for the servo drive unit are for a stall output, and the values for the spindle drive unit are for a continuous rated output. The value for the power supply unit includes the AC reactor's heating value.

| Servo drive unit |                       |                  |          |                       | Spindle drive unit |         |                       | Power supply unit |         |                       |                  |
|------------------|-----------------------|------------------|----------|-----------------------|--------------------|---------|-----------------------|-------------------|---------|-----------------------|------------------|
| Туре             | Heating amount<br>[W] |                  | Туре     | Heating amount<br>[W] |                    | Туре    | Heating amount<br>[W] |                   | Туре    | Heating amount<br>[W] |                  |
| MDS-C1-          | Inside<br>panel       | Outside<br>panel | MDS-C1-  | Inside<br>panel       | Outside<br>panel   | MDS-C1- | Inside<br>panel       | Outside<br>panel  | MDS-C1- | Inside<br>panel       | Outside<br>panel |
| V1-01            | 21                    | 0                | V2-0101  | 38                    | 0                  | SP-04   | 30                    | 0                 | CV-37   | 21                    | 34               |
| V1-03            | 27                    | 0                | V2-0301  | 41                    | 0                  | SP-075  | 40                    | 0                 | CV- 55  | 23                    | 42               |
| V1-05            | 37                    | 0                | V2-0303  | 43                    | 0                  | SP-15   | 49                    | 0                 | CV-75   | 25                    | 55               |
| V1- 10           | 53                    | 0                | V2-0501  | 46                    | 0                  | SP-22   | 26                    | 42                | CV-110  | 26                    | 99               |
| V1-20            | 25                    | 66               | V2-0503  | 52                    | 0                  | SP- 37  | 28                    | 51                | CV-150  | 29                    | 126              |
| V1-35            | 30                    | 102              | V2-0505  | 62                    | 0                  | SP- 55  | 31                    | 76                | CV-185  | 33                    | 162              |
| V1-45S           | 34                    | 124              | V2-1005  | 78                    | 0                  | SP-75   | 35                    | 102               | CV-220  | 35                    | 175              |
| V1-45            | 37                    | 148              | V2-1010  | 96                    | 0                  | SP-110  | 41                    | 140               | CV-260  | 40                    | 220              |
| V1-70S           | 38                    | 151              | V2-2010  | 37                    | 117                | SP-150S | 48                    | 140               | CV-300  | 46                    | 274              |
| V1-70            | 50                    | 234              | V2-2020  | 41                    | 137                | SP-150  | 48                    | 187               | CV-370  | 54                    | 346              |
| V1-90            | 56                    | 275              | V2-3510S | 44                    | 146                | SP-185  | 62                    | 280               |         |                       |                  |
| V1-110           | 74                    | 392              | V2-3510  | 42                    | 148                | SP-220  | 65                    | 301               |         |                       |                  |
| V1-150           | 96                    | 545              | V2-3520S | 48                    | 165                | SP-260  | 80                    | 403               |         |                       |                  |
|                  |                       |                  | V2-3520  | 45                    | 168                | SP-300  | 98                    | 522               |         |                       |                  |
|                  |                       |                  | V2-3535  | 51                    | 209                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-4520  | 52                    | 214                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-4535  | 57                    | 249                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-4545S | 55                    | 225                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-4545  | 64                    | 295                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-7035  | 70                    | 336                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-7045  | 77                    | 382                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-7070S | 65                    | 300                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-7070  | 90                    | 468                |         |                       |                   |         |                       |                  |
|                  |                       |                  | V2-9090S | 65                    | 300                |         |                       |                   |         |                       |                  |

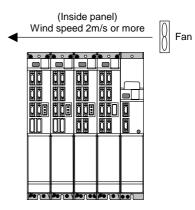
# 

Design the panel's heating value taking the actual axis operation (load rate) into consideration. With a general machine tool, the servo drive unit's load rate is approx. 50%, so the heating values inside the panel are half the values shown above. (Excluding the power supply and spindle drive unit.)

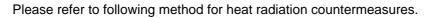
(Example 1) \_

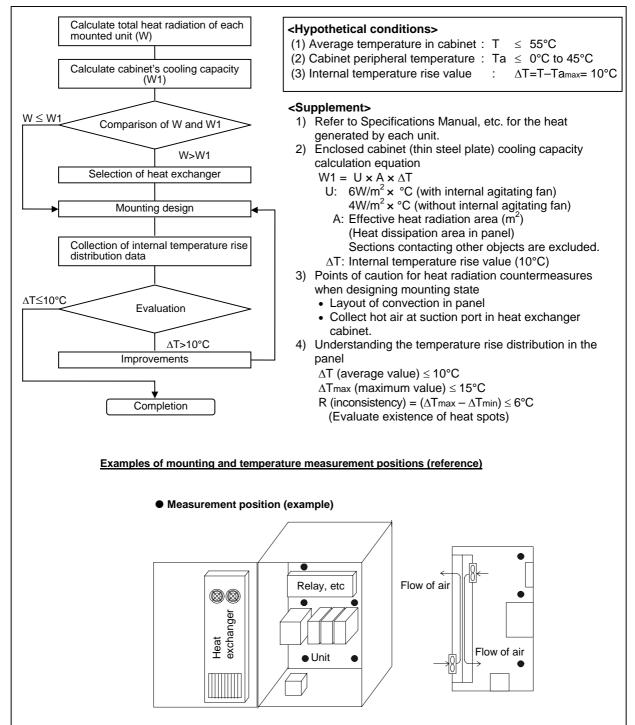
When using MDS-C1-CV-260, MDS-C1-SP[]-185 and MDS-C1-V2-3535

Total heating value = (40 + 220) + (62 + 280) + (51 + 209) = 862 [W]


Heating value in panel =  $(40) + (62) + (51 \times 0.5) = 127.5$  [W]

## 1-3-6 Heat radiation countermeasures

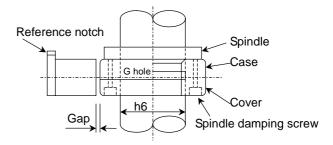

In order to secure reliability and life, design the temperature in the panel so that the ambient temperature of each unit is 55°C or less.


If heat accumulates at the top of the unit, etc., install a fan so that the temperature in the panel remains constant.

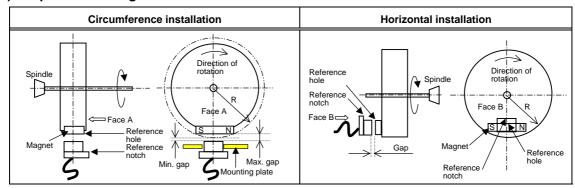
(Note) Due to the structure, heat easily accumulates at the top of the unit. Install a fan in the power distribution panel to circulate the heat at the top of the unit.



#### 1. Installation







# 1-4 Installing the spindle detector

# 1-4-1 Magnetic sensor

- (1) Installing the magnetic sensor
  - Tolerance to shaft dimension should be "h6" on the part for installing a magnet.
  - 2-øG hole can be used for positioning of spindle and magnet.
  - Magnet shall be installed as shown to the right.
  - Misalignment between sensor head and magnetic center line shall be within ±2mm.
  - There is an NS indication on the side of the cover. Install so that the reference notch on the sensor head comes to the case side.



Reference drawing for magnet installation

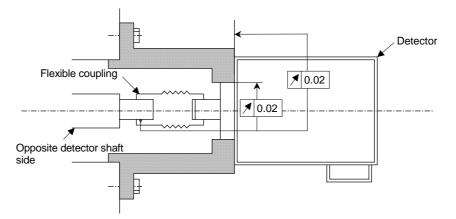


| Magnet<br>model        | BKO-C1810H03                  |            |                         | BKO-C1730H06                  |            |                         | BKO-C1730H09                  |            |
|------------------------|-------------------------------|------------|-------------------------|-------------------------------|------------|-------------------------|-------------------------------|------------|
| Installation direction | Circumference<br>installation |            | Horizontal installation | Circumference<br>installation |            | Horizontal installation | Circumference<br>installation |            |
| R (Radius)             | (Radius) Gap mm               |            | Gap mm                  |                               |            | Gap mm                  |                               |            |
| mm                     | Max. value                    | Min. value |                         | Max. value                    | Min. value |                         | Max. value                    | Min. value |
| 40                     | 11.5±0.5                      | 2.7±0.5    | 6.0±0.5                 | 10.0±0.5                      | 1.22±0.5   | 5.0±0.5                 | 6.25±0.5                      | 3.30±0.5   |
| 50                     | 9.5±0.5                       | 2.8±0.5    | 6.0±0.5                 | 8.0±0.5                       | 1.31±0.5   | 5.0±0.5                 | 6.00±0.5                      | 3.70±0.5   |
| 60                     | 8.5±0.5                       | 3.0±0.5    | 6.0±0.5                 | 7.0±0.5                       | 1.50±0.5   | 5.0±0.5                 | 5.75±0.5                      | 3.85±0.5   |
| 70                     | 8.0±0.5                       | 3.4±0.5    |                         | 7.0±0.5                       | 2.38±0.5   |                         | 5.50±0.5                      | 3.87±0.5   |

#### (2) Gap between magnet and sensor

## (3) Magnet and sensor installation directions

- Install so that the magnet's reference hole and sensor's reference notch are aligned. (Standard/high-speed standards)
- Install so that the magnet's N pole comes to the left side when the sensor's reference notch is faced downward. (High-speed compact/high-speed ring)




## (4) Cautions

- [1] Do not apply impacts on the magnet. Do not install strong magnets near the magnet.
- [2] Sufficiently clean the surrounding area so that iron chips and cutting chips do not adhere to the magnet. Demagnetize the round disk before installing.
- [3] Securely install the magnet onto the spindle with an M4 screw. Take measures to prevent screw loosening as required.
- [4] Balance the entire spindle rotation with the magnet installed.
- [5] Install a magnet that matches the spindle's rotation speed.
- [6] When installing the magnet onto a rotating body's plane, set the speed to 6,000r/min or less.
- [7] Install so that the center line at the end of the head matches the center of the magnet.
- [8] The BKO-C1730 is not an oil-proof product. Make sure that oil does not come in contact with BNO-C1730 or BKO-C1810.
- [9] When connecting to the spindle drive unit, wire so that the effect of noise is suppressed.

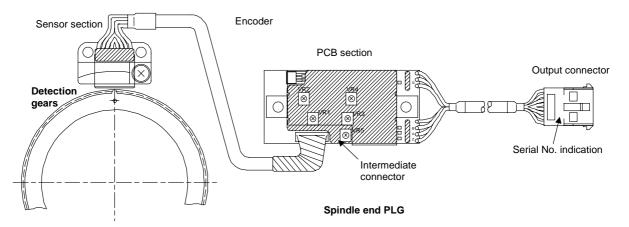
# 1-4-2 Spindle end detector

To maintain the detector life and performance, a flexible coupling should be used to couple the spindle end detector and C-axis detector with the spindle.



Detector and coupling installation accuracy

#### **Recommended coupling**


|                          |                    | Recommendation 1 | Recommendation 2 |  |
|--------------------------|--------------------|------------------|------------------|--|
| Manufacturer             |                    | Tokushu Seiko    | Eagle            |  |
| Model                    |                    | Model M1         | FCS38A           |  |
| Resonance frequency      |                    | 1374Hz           | 3515Hz           |  |
| Position detection error |                    | 0.8×10-3°        | 1.2×10-3°        |  |
| Tolerable speed          |                    | 20000r/min       | 10000r/min       |  |
| Mis-alignment            | Core deviation     | 0.7mm            | 0.16mm           |  |
| inis-angriment           | Angle displacement | 1.5°             | 1.5°             |  |
| Outline dimensions       | Max. length        | 74.5mm           | 33mm             |  |
|                          | Max. diameter      | ø57mm            | ø38mm            |  |

Refer to the coupling catalog, etc., for details on the coupling.

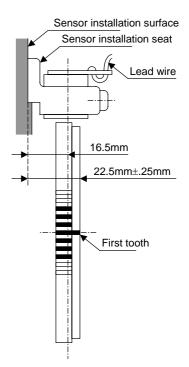
# 1-4-3 Spindle end PLG

#### (1) Part configuration

The detector is configured of an encoder (Sensor section and PCB section) and detection gears. The encoder section can be separated with an intermediate connector, but a type with the same serial No. must be used in combination. The serial No. is indicated on the intermediate connector of the sensor section and the output connector of the PCB section.



These are precision parts, and require care when handling. Do not apply an excessive force on the sensor's detection surface, as this could result in faults. Do not pull and apply a load on the lead wires. Make sure that foreign matters (iron chips, etc.) do not get on the sensor's detection surface or detection gears. If any foreign matter should get on these parts, carefully remove while taking care not to damage the parts. When handling the detection gears, take care not to damage or deform the teeth.


#### (2) Installing the detection gears and sensor section

- [1] Install the detection gears so that the first gear's teeth side (Z phase) face the sensor's lead side.
- [2] The detection gears and shaft or sleeve should be fixed with shrinkage fitting. Refer to the following table for the shrinkage fitting values. The detection gears should be heated evenly between 120 and 150°C using an electric furnace, etc.

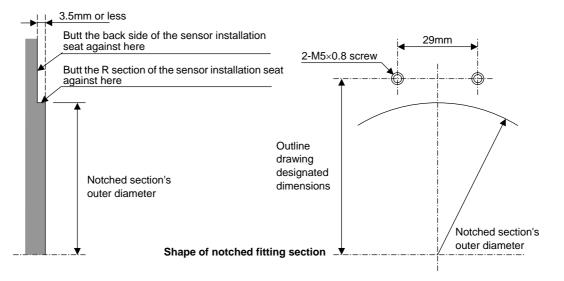
|                        | Shrinkage fitting |                        |                        |               |  |
|------------------------|-------------------|------------------------|------------------------|---------------|--|
| Part type No. of teeth |                   | Outer diameter<br>(mm) | Inner diameter<br>(mm) | (mm)          |  |
| MU1450N2137            | 128               | ø52                    | ø40                    | 0.02 to 0.04  |  |
| MU1450N2730            | 180               | ø72.8                  | ø55                    | 0.03 to 0.055 |  |
| MU1450N2236            | 256               | ø103.2                 | ø80                    | 0.03 to 0.055 |  |
| MU1450N2534            | 512               | ø205.6                 | ø140                   | 0.05 to 0.085 |  |

#### Detection gear shrinkage fitting values

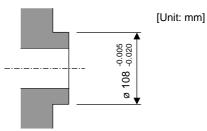
- [3] Keep the deviation of the sensor center and detection gear center to  $\pm 0.25$ mm or less. If the center deviation cannot be directly measured, set so that the dimension from the sensor installing surface to the edge of the detection gears is  $22.5\pm0.25$ mm.
- [4] Keep the deflection of the outer diameter, when the detection gears are installed on the shaft, to 0.02mm or less.
- [5] To remove a detection gear fixed with shrinkage fitting, use the screw holes opened in the axial direction for pulling (two M5 screw holes or two M8 screw holes), or push the end with a jig. Carry out this work carefully. Applying excessive force when pulling out the gears could cause the inner diameter of the detection gears to deform.
- [6] Before reusing detection gears which have been removed, always measure the inner diameter dimensions, and carefully check that the inner diameter is not deformed, and that the sufficient tightening amount can be secured. Do not reuse the detection gears if the inner diameter is deformed, or if any abnormality such as damage to the teeth is found.



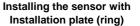
[7] A notched fitting section and mounting screw hole are provided on the machine as shown in the following drawing. Contact the R section of the sensor installation


Installing the detection gears

seat against this and, install the sensor. The outline dimensions of the notched fitting section are shown in the following table.


| Encoder part type | Sensor installation seat's<br>R dimensions (mm) | Notched fitting section's<br>outer diameter (mm) |  |  |
|-------------------|-------------------------------------------------|--------------------------------------------------|--|--|
| TS1860N2275       | R35.5                                           | ø71 <sup>+0.200</sup>                            |  |  |
| TS1860N2276       | K35.5                                           | +0.180                                           |  |  |
| TS1860N2777       | R45                                             | +0.200                                           |  |  |
| TS1860N2775       | R45                                             | ø90<br>+0.180                                    |  |  |
| TS1860N2171       | DC1                                             | +0.200                                           |  |  |
| TS1860N2174       | R61                                             | ø122<br>+0.175                                   |  |  |
| TS1860N2571       | R112.5                                          | ø225 +0.200                                      |  |  |
| TS1860N2572       | R112.5                                          | <sup>0225</sup> +0.170                           |  |  |

#### Installing the sensor section


[8] With the sensor installation seat's R section butted against the notched fitting section, fix the sensor installation seat with a mounting screw (M5 x 0.8 screws). A locking agent should be applied on the mounting screw before it is tightened.



[9] When using the specifications (TS1860N2770, TS1860N2776, TS1860N2183, TS1860N2187) with installation plate (ring) for the sensor section, provide a notched fitting section on the machine side as shown on the right, and fit the sensor installation plate's ø108H5 here. The gap does not need to be adjusted when using the installation plate.



[10] Make sure that force is not constantly applied on the sensor's lead wires.



#### (3) Installing the PCB section

- [1] Install the PCB where it will not be subject to water or oil, etc.
- [2] Drill two ø11mm or smaller installation seats, and fix the PCB with pan head screws (M5  $\times$  0.8 screws).
- [3] Provide a space of 25mm from the installation surface to treat the lead wires for the intermediate connector.
- [4] Select the minimum required length for the lead wires from the sensor to the intermediate connector, and wire them as far away from other power wires as possible.
- [5] Make sure that force is not constantly applied on the PCB lead wire connections.
- [6] The check pins on the PCB could break if excessive force is applied.

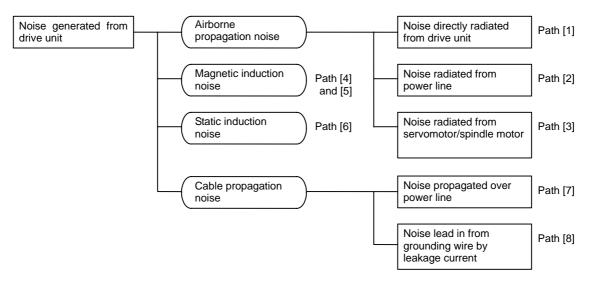
#### 1-5 Noise measures

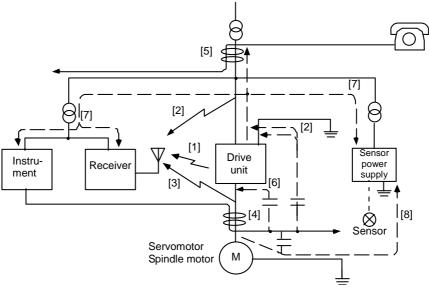
Noise includes "propagation noise" generated from the power supply or relay, etc., and propagated along a cable causing the power supply unit or drive unit to malfunction, and "radiated noise" propagated through air from a peripheral device, etc., and causing the power supply unit or drive unit to malfunction.

Always implement these noise measures to prevent the peripheral devices and unit from malfunctioning. The measures differ according to the noise propagation path, so refer to the following explanation and take appropriate measures.

#### (1) General noise measures

- Avoid laying the drive unit's power line and signal wire in a parallel or bundled state. Always separate these wires. Use a twisted pair shielded wire for the detector cable and signal wires such as the communication cable connected with the NC, and accurately ground the devices.
- Use one-point grounding for the drive unit and motor.
- Accurately ground the AC reactor.


#### (2) Propagation noise measures

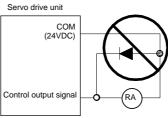

Take the following measures when noise generating devices are installed and the power supply unit or drive unit could malfunction.

- Install a surge killer on devices (magnetic contacts, relays, etc.) which generate high levels of noise.
- Install a power line filter in the stage before the power supply unit.
- Install a ferrite core on the signal wire.
- Ground the shield of the servo detector's cable with a cable clamp.
- Wire the spindle PLG detector cable away from other wires.

#### (3) Measures against radiated noise

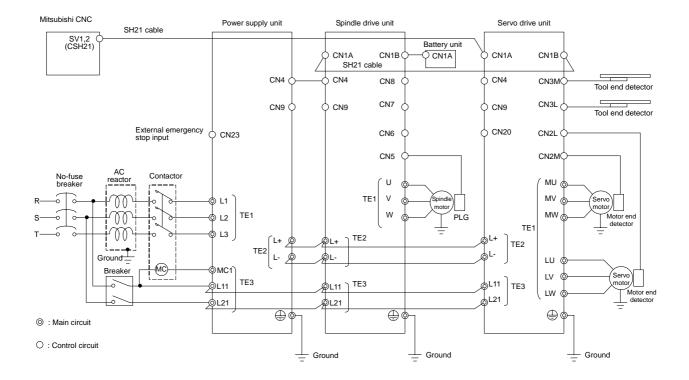
The types of propagation paths of the noise and the noise measures for each propagation path are shown below.






Generated noise of drive system

| Noise propagation path | Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1] [2] [3]            | <ul> <li>When devices such as instrument, receiver or sensor, which handle minute signals and are easily affected by noise, or the signal wire of these devices, are stored in the same panel as the drive units and the wiring is close, the device could malfunction due to airborne propagation of the noise.</li> <li>In this case, take the following measures.</li> <li>(a) Install devices easily affected as far away from the drive units as possible.</li> <li>(b) Lay devices easily affected as far away from the signal wire of the drive unit as possible.</li> <li>(c) Avoid laying the signal wire and power line in a parallel or bundled state.</li> <li>(d) Insert a line noise filter on the input/output wire or a radio filter on the input to suppress the noise radiated from the wires.</li> <li>(e) Use a shield wire for the signal wire and power line, or place in separate metal ducts.</li> </ul> |
| [4] [5] [6]            | <ul> <li>If the signal wire is laid in parallel to the power line, or if it is bundled with the power line, the noise could be propagated to the signal wire and cause malfunction because of the magnetic induction noise or static induction noise. In this case, take the following measures.</li> <li>(a) Install devices easily affected as far away from the drive unit as possible.</li> <li>(b) Lay devices easily affected as far away from the signal wire of the drive unit as possible.</li> <li>(c) Avoid laying the signal wire and power line in a parallel or bundled state.</li> <li>(d) Use a shield wire for the signal wire and power line, or place in separate metal ducts.</li> </ul>                                                                                                                                                                                                                     |
| [7]                    | If the power supply for the peripheral devices is connected to the power supply in the same system<br>as the drive units, the noise generated from the power supply unit could back flow over the power<br>line and cause the devices to malfunction. In this case, take the following measures.<br>(a) Install a radio filter on the power supply unit's power line.<br>(b) Install a power filter on the power supply unit's power line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [8]                    | If a closed loop is created by the peripheral device and drive unit's grounding wire, a leakage current could flow and cause the device to malfunction.<br>In this case, change the device grounding methods and the grounding place.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |


| 2-1 Part system connection diagram                                                                | 2-3     |
|---------------------------------------------------------------------------------------------------|---------|
| 2-2 Main circuit terminal block/control circuit connector                                         |         |
| 2-2-1 Names and applications of main circuit terminal block signals and control circuit connected | ors 2-4 |
| 2-2-2 Connector pin assignment                                                                    | 2-5     |
| 2-3 NC and drive unit connection                                                                  | 2-8     |
| 2-4 Motor and detector connection                                                                 | 2-11    |
| 2-4-1 Connecting the servomotor                                                                   | 2-11    |
| 2-4-2 Connecting the full-closed loop system                                                      | 2-18    |
| 2-4-3 Connecting the synchronous control system                                                   | 2-22    |
| 2-4-4 Connection of the spindle motor                                                             | 2-28    |
| 2-5 Connection of power supply                                                                    |         |
| 2-5-1 Power supply input connection                                                               |         |
| 2-5-2 Connecting the grounding cable                                                              | 2-37    |
| 2-5-3 Main circuit control                                                                        | 2-38    |
| 2-6 Wiring of the motor brake                                                                     | 2-39    |
| 2-6-1 Wiring of the motor magnetic brake                                                          | 2-39    |
| 2-6-2 Dynamic brake unit wiring                                                                   | 2-41    |
| 2-7 Peripheral control wiring                                                                     | 2-42    |
| 2-7-1 Input/output circuit wiring                                                                 | 2-42    |
| 2-7-2 Spindle coil changeover                                                                     | 2-43    |
| 2-7-3 Wiring of an external emergency stop                                                        | 2-46    |

1. Wiring work must be done by a gualified technician. 2. Wait at least 15 minutes after turning the power OFF and check the voltage with a tester, etc., before starting wiring. Failure to observe this could lead to electric shocks. 3. Securely ground the drive units and servo/spindle motor. 4. Wire the drive units and servo/spindle motor after installation. Failure to DANGER observe this could lead to electric shocks. 5. Do not damage, apply forcible stress, place heavy items on the cables or get them caught. Failure to observe this could lead to electric shocks. 6. Always insulate the power terminal connection section. Failure to observe this could lead to electric shocks. 1. Correctly and securely perform the wiring. Failure to do so could result in runaway of the servo/spindle motor or injury. 2. Do not mistake the terminal connections. Failure to observe this item could lead to ruptures or damage, etc. 3. Do not mistake the polarity (+, -). Failure to observe this item could lead to ruptures or damage, etc. 4. Do not mistake the direction of the diodes for the surge absorption installed on the DC relay for the motor brake and contactor (magnetic contactor) control. The signal might not be output when a failure occurs. Servo drive unit



- 5. Electronic devices used near the drive units may receive magnetic obstruction. Reduce the effect of magnetic obstacles by installing a noise filter, etc.
- 6. Do not install a phase advancing capacitor, surge absorber or radio noise filter on the power line (U, V, W) of the servo/spindle motor.
- 7. Do not modify this unit.

- 8. The half-pitch connector (CN1A, etc.) on the front of the drive units have the same shape. If the connectors are connected incorrectly, faults could occur. Make sure that the connection is correct.
- When grounding the motor, connect to the protective grounding terminal on the drive units, and ground from the other protective grounding terminal. (Use one-point grounding) Do not separately ground the connected motor and drive unit as noise could be generated.



# 2-1 Part system connection diagram

(Note 1) The total length of the SH21 cable must be within 30m.

(Note 2) The connection method will differ according to the used motor.

(Note 3) When not using a battery unit, connect the terminal connector (R-TM).

(Note 4) The main circuit ( $\bigcirc$ ) and control circuit ( $\bigcirc$ ) are safely separated.

# 2-2 Main circuit terminal block/control circuit connector

# 2-2-1 Names and applications of main circuit terminal block signals and control circuit connectors

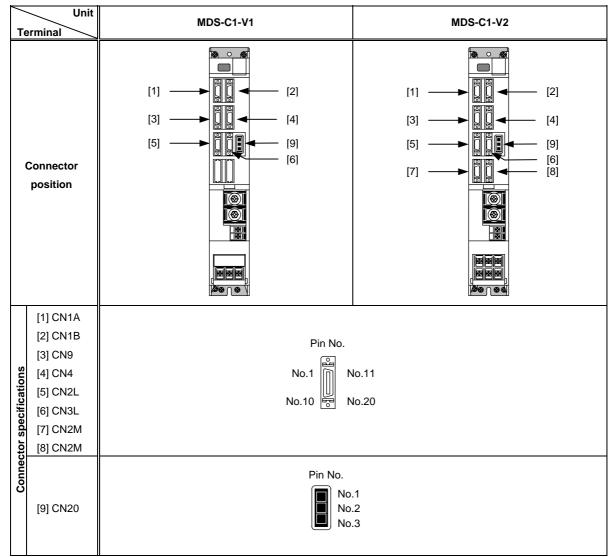
| Name                                                                                                                                                       | Signal name                                                                                                                                      | Description                                                                                                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| L1 · L2 · L3                                                                                                                                               | Main circuit power supply                                                                                                                        | Main circuit power supply input terminal<br>Connect a 3-phase 200VAC/200 to 230VAC, 50/60Hz power supply.                                  |  |
| L11 L21                                                                                                                                                    | Control circuit power supply                                                                                                                     | Control circuit power supply input terminal<br>Connect a single-phase 200VAC/200 to 230VAC, 50/60Hz power supply.                          |  |
| MC1                                                                                                                                                        | Contactor control                                                                                                                                | Contactor control terminal<br>The MC1 terminal has the same phase as L21. Connect to a different phase than the<br>phase connected to L21. |  |
| U·V·W                                                                                                                                                      | Motor output<br>(Single-axis unit)                                                                                                               | Servo/spindle motor power output terminal<br>The servo/spindle motor power terminal (U, V, W) is connected.                                |  |
| LU·LV·LWMotor outputServo motor power output terminal (L-axis/M-axis)MU·MV·MW(Dual-axis unit)The servo/spindle motor power terminal (U, V, W) is connected |                                                                                                                                                  | Servo motor power output terminal (L-axis/M-axis)<br>The servo/spindle motor power terminal (U, V, W) is connected.                        |  |
|                                                                                                                                                            | Protective grounding         Grounding terminal           (PE)         The servomotor/spindle motor grounding terminal is connected and grounded |                                                                                                                                            |  |

The following table shows the details for each terminal block signal.

| <ol> <li>Always use one AC reactor per power supply unit. Failure to observe this<br/>could lead to unit damage.</li> </ol>                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>When sharing a breaker for several power supply units, of a short-circuit fault occurs in a small capacity unit, the breaker could trip. This can be hazardous, so do not share the breaker.</li> <li>Be sure to use the breaker of proper capacity for each power supply unit.</li> </ol> |
|                                                                                                                                                                                                                                                                                                     |

#### 2-2-2 Connector pin assignment

**CAUTION** Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to rupture or damage, etc.


#### (1) Main circuit terminal block

#### Power supply unit

| Те                                | rminal        | Unit | MDS-C1-CV-37 to 75                                                                                                                               | MDS-C1-CV-110 to 370                                                                 |  |  |
|-----------------------------------|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
|                                   | Term<br>posit |      |                                                                                                                                                  |                                                                                      |  |  |
| gnment                            | [1]           | TE1  | UVW<br>Compatible unit CV-37 to 75<br>Screw size M4<br>Tightening torque 1.6Nm                                                                   | Compatible unitCV-110 to 185CV-220 to 370Screw sizeM5M8Tightening torque3.37Nm13.2Nm |  |  |
| inal specification/Pin assignment | [2]           | TE2  | L+ Compatible                                                                                                                                    | ze M6                                                                                |  |  |
| Terminal spe                      | [3]           | TE3  | Image: Number line     Compatible       Image: Number line     Compatible       Image: Number line     Screw si       Image: Number line     Mc1 | ze M4 M4                                                                             |  |  |
|                                   | [4]           |      | Compatible unitCV-37 to 75Screw sizeM4Tightening torque2.0Nm                                                                                     | Compatible unitCV-110 to 185CV-220 to 370Screw sizeM5M8Tightening torque3.37Nm13.2Nm |  |  |

|                                       | <u> </u> | Unit  | MDS-C1-V1-10 and<br>smaller<br>MDS-C1-SP-15 and | la       | -V1-20 and<br>rger<br>-SP-22 and | м   | IDS-C1-V2-1010 and smaller         |                          | d MDS-C1-V2-2010 and<br>larger |                                                                |
|---------------------------------------|----------|-------|-------------------------------------------------|----------|----------------------------------|-----|------------------------------------|--------------------------|--------------------------------|----------------------------------------------------------------|
| Те                                    | rmin     | ial   | smaller                                         | larger   |                                  |     |                                    |                          | J                              |                                                                |
|                                       | Term     | ninal |                                                 |          |                                  |     |                                    | [2]<br>[3]<br>[1]<br>[4] |                                | <ul> <li>[2]</li> <li>[3]</li> <li>[1]</li> <li>[4]</li> </ul> |
| t                                     | [1]      | TE1   |                                                 | C        |                                  |     |                                    |                          |                                |                                                                |
| men                                   |          |       |                                                 | V1-      | 01 to 35                         |     | 45S,45 to 9                        | 0                        | 110 to 150                     |                                                                |
| sign                                  |          |       | Compatible                                      | unit V2- | 0101 to 909                      | 0S  | ,                                  | -                        |                                |                                                                |
| ass                                   |          |       |                                                 | SP-      | 04 to 37                         |     |                                    |                          | 220 to 300                     |                                                                |
| /Pin                                  |          |       | Screw size                                      |          | M4                               |     | M5                                 |                          | M8                             |                                                                |
| tion                                  |          |       | Tightening                                      | torque   | 2.0Nm                            |     | 3.2Nm                              |                          | 13.2Nm                         |                                                                |
| Terminal specification/Pin assignment | [2]      | TE2   | 6 L+<br>6 L-                                    |          |                                  | rew | atible unit<br>size<br>ning torque |                          | V1/V2/SP<br>M6<br>5.0Nm        |                                                                |
| Terr                                  |          |       |                                                 |          |                                  |     |                                    |                          |                                |                                                                |
|                                       | [3]      | TE3   |                                                 |          | 1 1 1                            | -   | atible unit                        | All                      | V1/V2/SP                       |                                                                |
|                                       |          |       |                                                 |          | 121 30                           |     | size<br>ning torque                |                          | M4<br>2.0Nm                    |                                                                |
|                                       | [4]      |       |                                                 | The      |                                  |     | e same as TE1                      |                          | <u> </u>                       |                                                                |

Servo/spindle drive unit



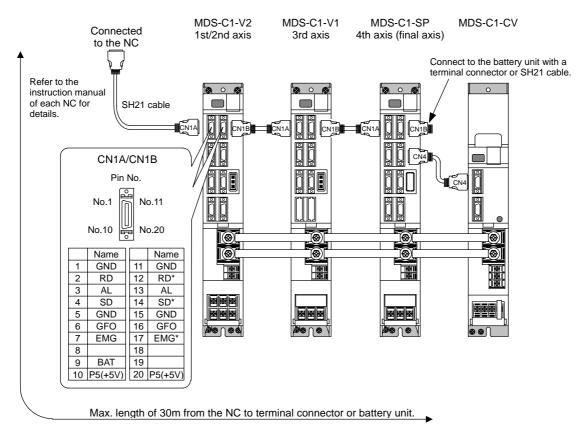
#### (2) Control circuit connector

(Note) The [5] and [6] connector names differ for the MDS-C1-V1 unit. (CN2L, CN3L  $\rightarrow$  CN2, CN3)

#### 2-3 NC and drive unit connection

The NC bus cables are connected from the NC to each drive unit so that they run in a straight line from the NC to the terminal connector (battery unit). And up to 7 axes can be connected per system. Note that the number of connected axes is limited by the NC.

| Wire the SH21 cable between the NC and drive unit so that the distance between the NC and terminal connector (battery unit) is within 30m. |
|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                            |

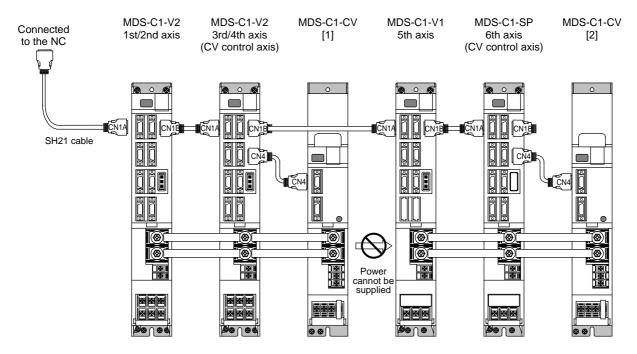

Axis Nos. are determined by the rotary switch for setting the axis No. (Refer to section "3-1-1 Setting the rotary switch".) The axis No. has no relation to the order for connecting to the NC.

#### (1) When using one power supply unit

Connect the largest-capacity spindle drive unit to the final axis of the NC communication bus in order to control the power supply unit. The spindle drive unit must be installed adjacent to the power supply unit. In the system with servo only, a servo drive unit for controlling unbalance axis must be installed in the same manner in the same way.

#### < Connection >

- CN1A : CN1B connector on NC or previous stage's drive unit
- CN1B : CN1A connector on next stage's drive unit or terminal connector (battery unit)
- CN4 : Connector for communication between power supply unit (master side) and drive unit




Connection when using one power supply unit

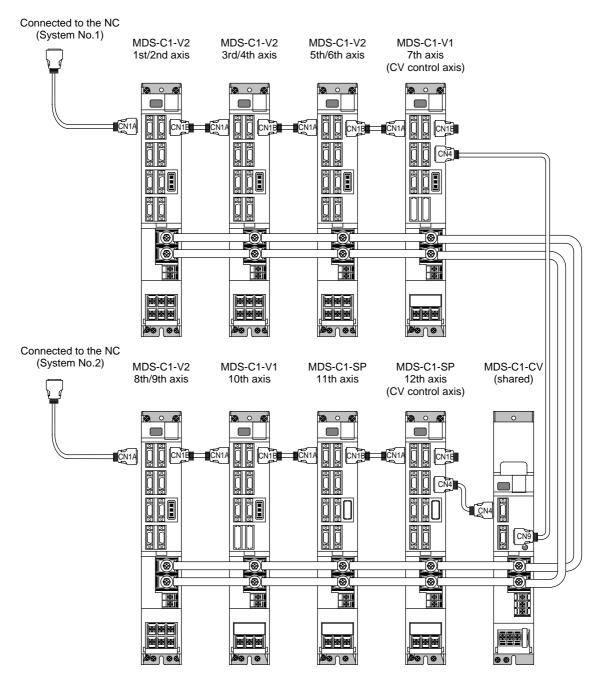
#### (2) When using two or more power supply units within a single NC communication bus system

Two or more power supply units may be required within a single NC communication bus system if the spindle drive unit capacity is large. The drive unit receiving power (L+, L-) from each power supply unit must always have NC communication bus connection at the NC side of each power supply unit. In the NC communication bus connection example below, power supply [1] cannot supply power (L+, L-) to the 5th axis servo drive unit.

For basic connection information, refer to "(1) When using one power supply unit".



Connections when using two power supply units within a single NC communication bus system



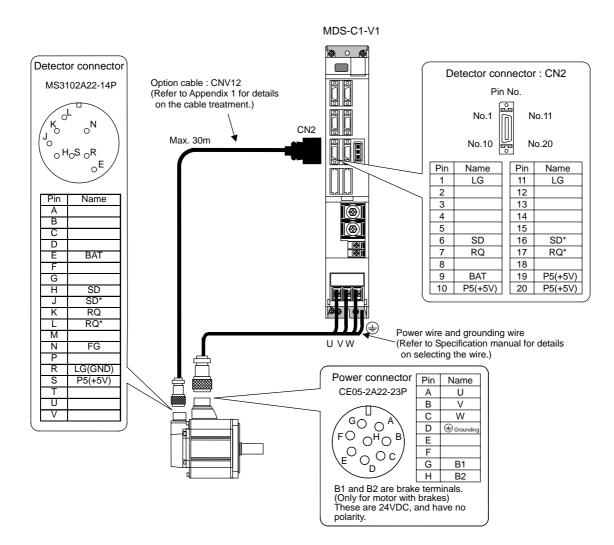

The drive unit receiving power (L+, L-) from each power supply unit must always have NC communication bus connection at the NC side of each power supply unit.

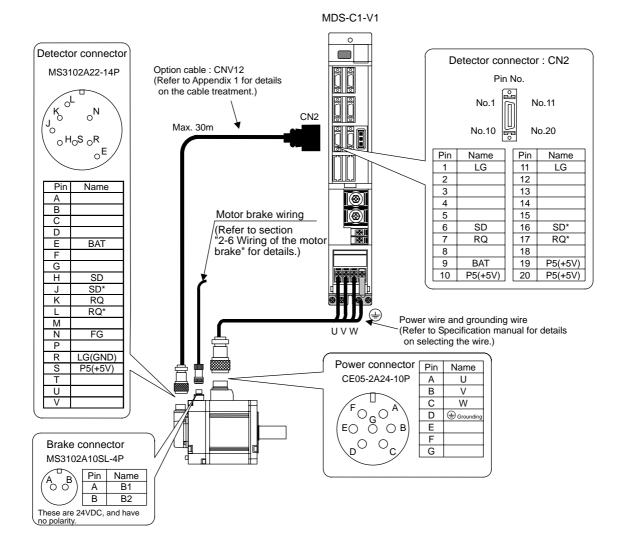
#### (3) When using one power supply shared unit by two NC communication bus systems

In systems employing a number of small-capacity drive units, a single power supply unit can be shared by two NC communication bus systems. In this case, a power supply control axis must be set for each axis of each NC communication bus.

For basic connection information, refer to "(1) When using one power supply unit".

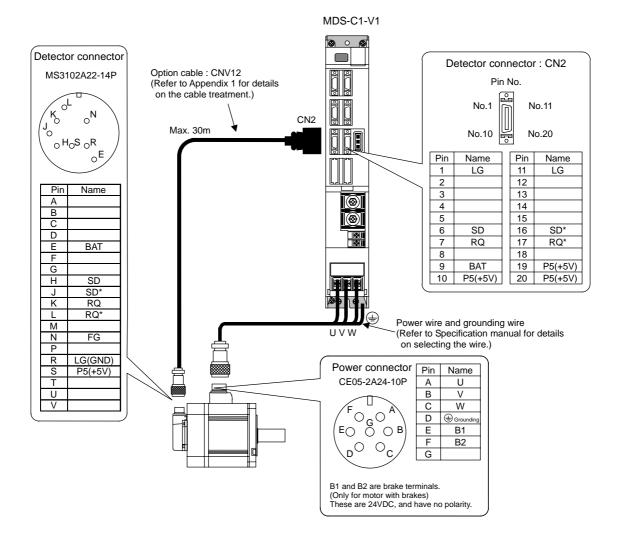


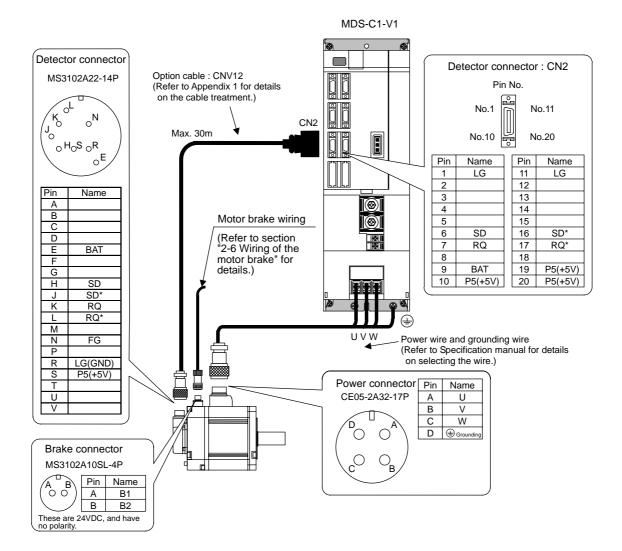

Connections when using one power supply shared by two NC communication bus systems


If the two NC communication bus systems include a spindle drive unit, connect the power supply unit's CN4 connector to the CN4 connector of the largestcapacity spindle drive unit. If there is no spindle drive unit, connect to the unbalance-axis servo drive unit.

#### 2-4 Motor and detector connection

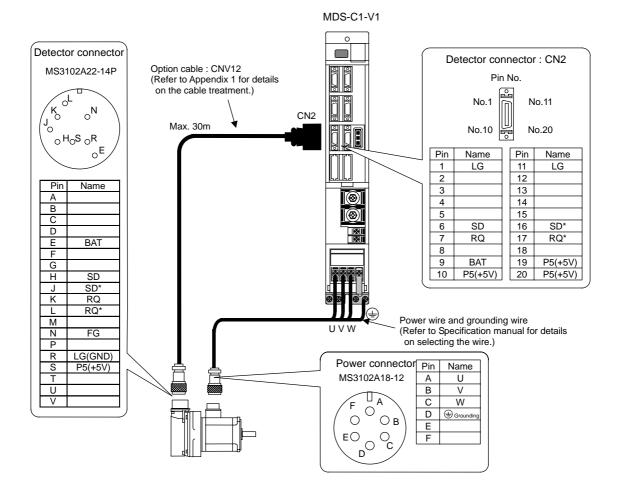
#### 2-4-1 Connecting the servomotor


(1) Connecting the HC52(B)/HC102(B)/HC152(B)/HC53(B)/HC103(B)/HC153(B)/HC103R(B) /HC153R(B)/HC203R(B)

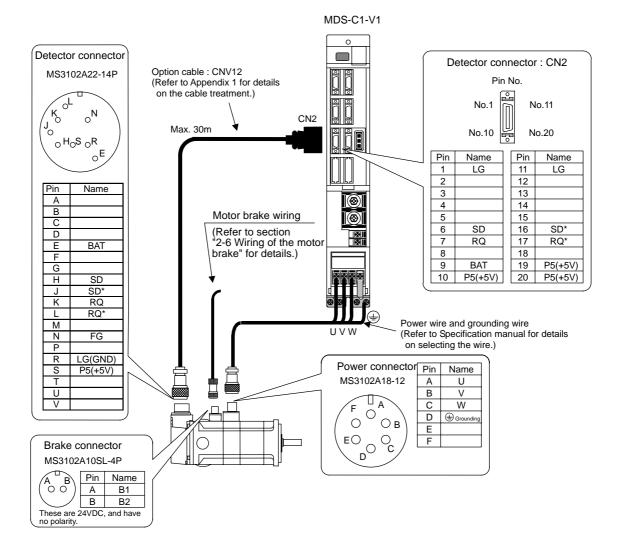


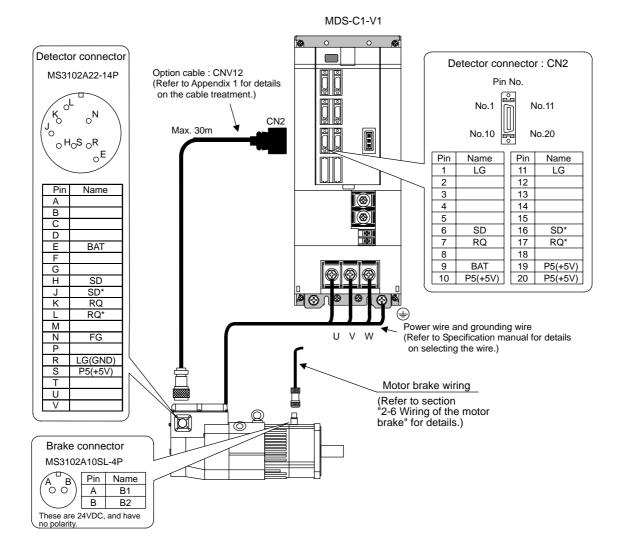



#### (2) Connecting the HC202(B)/HC352(B)/HC452(B)/HC203(B)/HC353(B)


## (3) Connecting the HC353R(B)/HC503R(B)





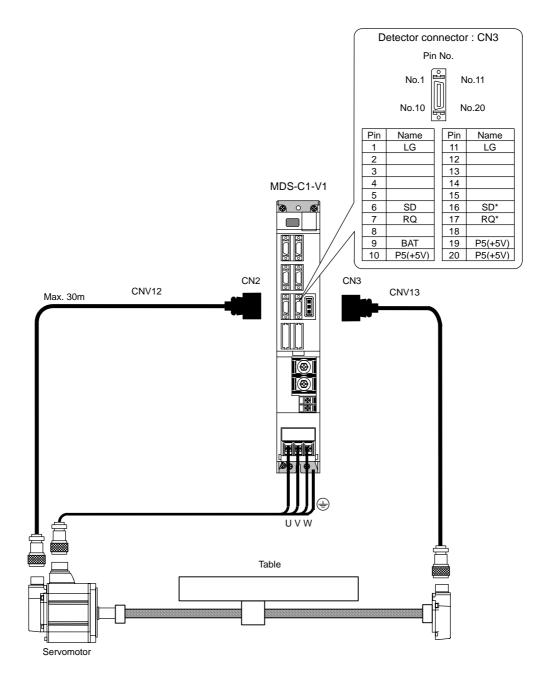


#### (4) Connecting the HC702(B)/HC902(B)/HC453(B)/HC703(B)

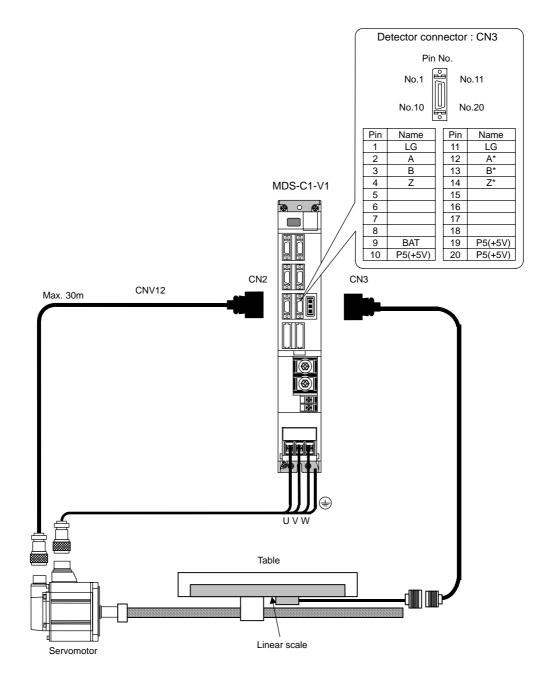
#### (5) Connecting the HA053N/HA13N



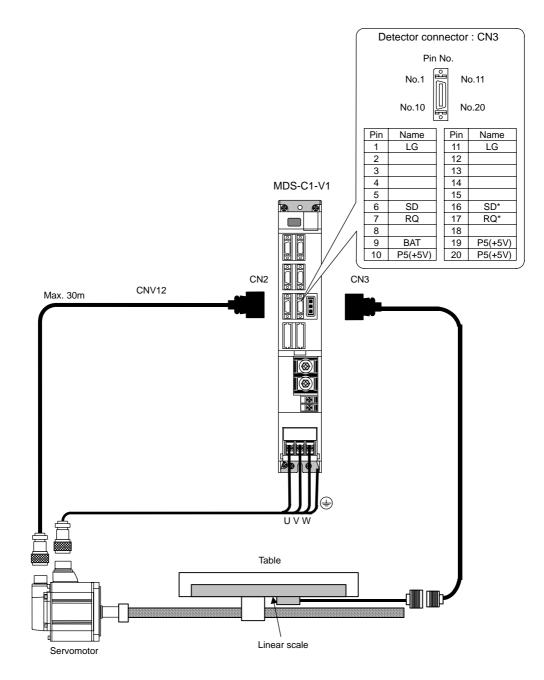
#### (6) Connecting the HA23N(B)/HA33N(B)



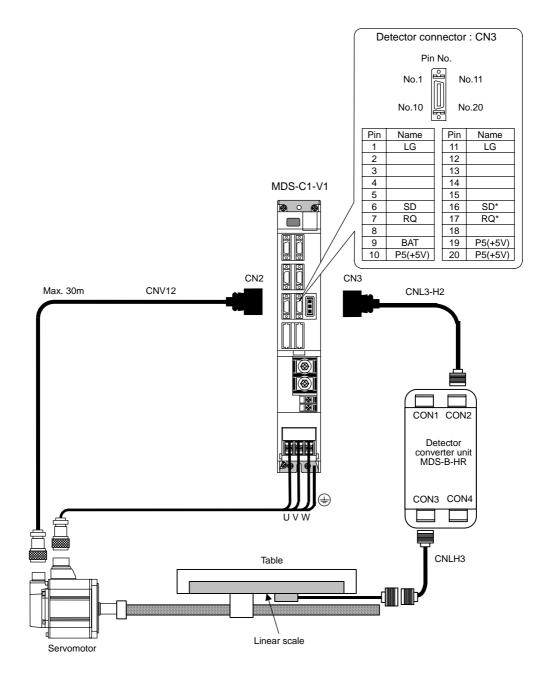




#### (7) Connecting the HA-LF11K2(B)-S8/HA-LF15K2(B)-S8

#### 2-4-2 Connecting the full-closed loop system


Refer to section "2-4-1 Connecting the servomotor" for details on connecting the each motor type.

#### (1) Connecting the ball screw end detector






#### (2) Connecting the linear scale (for oblong wave data output)



#### (3) Connecting the linear scale (for serial data output)



(4) Connecting the linear scale (for analog output)

#### 2-4-3 Connecting the synchronous control system

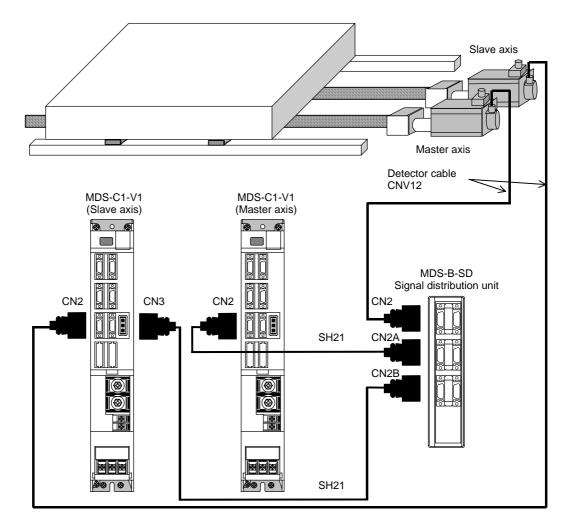
The connection method and motor/encoder type (SV025) setting combinations for each synchronous control system are shown in the table below. For power supply connections for each servomotor type, refer to "2-4-1 Connecting the servomotor".

|                                        | Semi-closed system<br>(Only for motor side detector)                                                                                                 | Full-closed system<br>(For machine side detector + motor side detector)                                            |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|
| Position command                       | The operation is controlled with position commands from the NC, so there are no special connections.<br>A normal value is set for the SV025 setting. |                                                                                                                    |  |  |  |
| Speed command synchronous control      | (1) When using MDS-C1-V1 drive<br>unit                                                                                                               | <ul><li>(3) When using MDS-C1-V1 drive unit</li><li>(Only compatible with serial output linear scale)</li></ul>    |  |  |  |
| Current command<br>synchronous control | (2) When using MDS-C1-V2 drive<br>unit                                                                                                               | MDS-C1-V2 drive unit<br>(4-1) When using serial output linear scale<br>(4-2) When using analog output linear scale |  |  |  |

Some control restrictions may apply when using speed and current command synchronous control, depending on the servo drive unit's control mode and control system configuration. Refer to the following table for details.

| Cont          | rol system type              | Controlled by MDS-C1-V2                                                        | Controlled by MDS-C1-V1 x 2 Units                                              |
|---------------|------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Semi-closed   | Incremental control          | Speed command<br>synchronous control<br>Current command<br>synchronous control | Not supported                                                                  |
| system        | Absolute position<br>control | Speed command<br>synchronous control<br>Current command<br>synchronous control | Speed command<br>synchronous control<br>Current command<br>synchronous control |
| Full-closed   | Incremental control          | Speed command<br>synchronous control<br>Current command<br>synchronous control | Not supported                                                                  |
| system (Note) | Absolute position control    | Speed command<br>synchronous control<br>Current command<br>synchronous control | Speed command synchronous control                                              |

List of control systems and supported synchronous control (high-gain specifications)

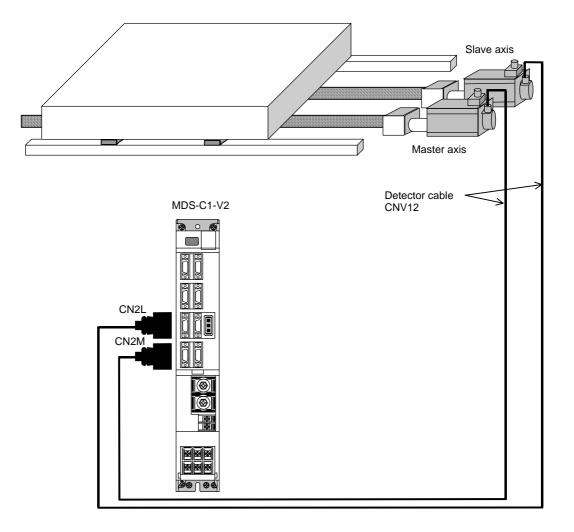

(Note) Pulse output linear scale is not supported.

#### List of control systems and supported synchronous control (standard specifications)

| Con                   | trol system type                | Controlled by MDS-C1-V2 | Controlled by MDS-C1-V1 x 2 Units                                              |  |
|-----------------------|---------------------------------|-------------------------|--------------------------------------------------------------------------------|--|
|                       | Incremental control             | Not supported           | Not supported                                                                  |  |
| Semi-closed<br>system | Absolute position control       | Not supported           | Speed command<br>synchronous control<br>Current command<br>synchronous control |  |
| Full-closed           | Incremental control             | Not supported           | Not supported                                                                  |  |
| system                | Absolute position Not supported |                         | Not supported                                                                  |  |



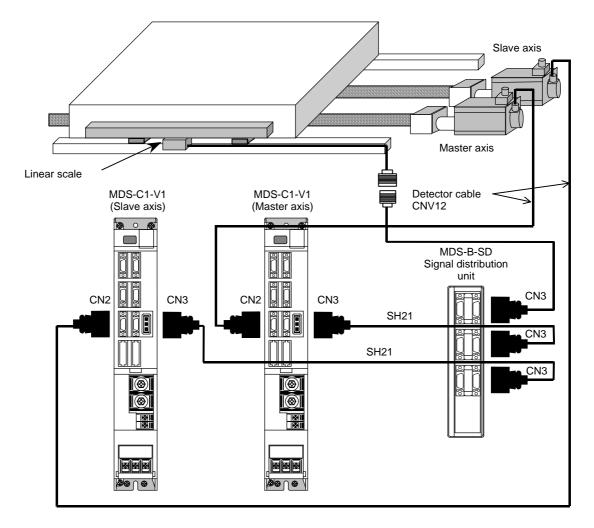
 Incremental control is only supported when using 2-axis servo drive unit. If two 1-axis units are used, be sure to carry out absolute position control.
 When synchronous control operation is carried out at 2-axis servo drive unit, the L-axis is the master axis, and the M-axis is the slave axis.




#### (1) Connection for semi-closed synchronous control (when using MDS-C1-V1 drive unit)

#### **Parameter settings**

| No.   | Abbrev. | Parameter name      | Description                                                                                              |                |                                       |                                       |  |  |
|-------|---------|---------------------|----------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|---------------------------------------|--|--|
| SV025 | MTYP    | Motor/detector type | Set the detector type. The value determined for each motor type is input to "xx" in the following table. |                |                                       |                                       |  |  |
|       |         |                     |                                                                                                          | N              | lotor end detector t                  | уре                                   |  |  |
|       |         |                     | OSE104/OSE105 OSA104 OSA105                                                                              |                |                                       |                                       |  |  |
|       |         |                     | Speed command<br>synchronous<br>control                                                                  | Not compatible | Master axis =11xx<br>Slave axis =C1xx |                                       |  |  |
|       |         |                     | Current<br>command<br>synchronous<br>control                                                             | Not compatible | Master axis =11xx<br>Slave axis =CCxx | Master axis =22xx<br>Slave axis =CCxx |  |  |
|       |         |                     |                                                                                                          | 1              | 1                                     | I                                     |  |  |


(Note) A system in which two MDS-C1-V1 unit are used is not compatible with incremental system.

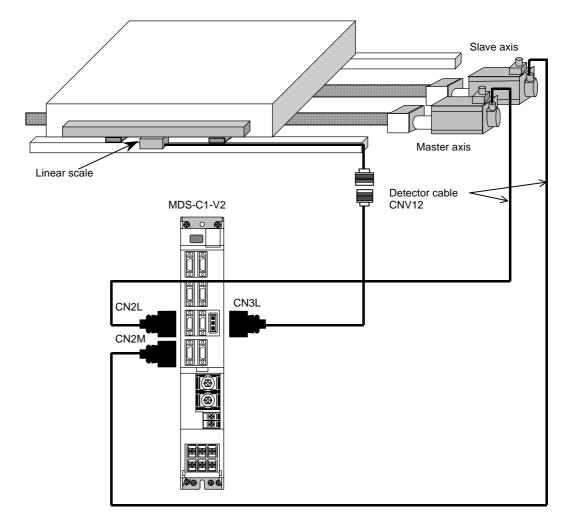


# (2) Connection for semi-closed synchronous control (when using MDS-C1-V2 drive unit)

## Parameter settings

| No.   | Abbrev. | Parameter name      | Description                                                                                              |   |                                       |    |  |  |
|-------|---------|---------------------|----------------------------------------------------------------------------------------------------------|---|---------------------------------------|----|--|--|
| SV025 | MTYP    | Motor/detector type | Set the detector type. The value determined for each motor type is input to "xx" in the following table. |   |                                       |    |  |  |
|       |         |                     |                                                                                                          | м | otor end detector ty                  | pe |  |  |
|       |         |                     | OSE104 OSA104 OSE105/OSA105                                                                              |   |                                       |    |  |  |
|       |         |                     | Speed<br>command<br>synchronous<br>control                                                               |   | Master axis =11xx<br>Slave axis =C1xx |    |  |  |
|       |         |                     | Current<br>command<br>synchronous<br>control                                                             |   | Master axis =11xx<br>Slave axis =CCxx |    |  |  |

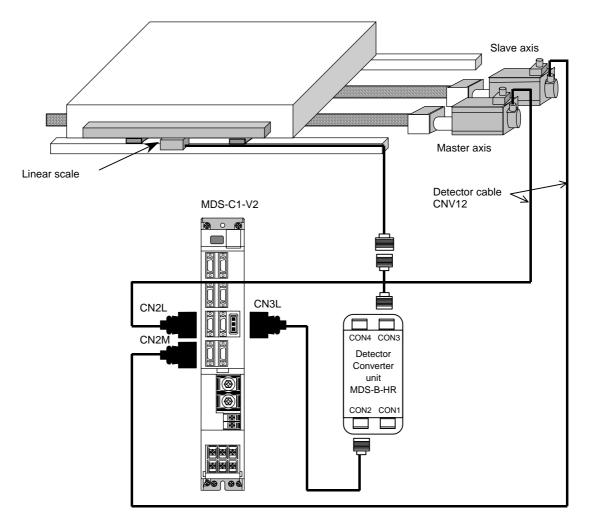



(3) Connection for full-closed synchronous control (when using MDS-C1-V1 drive unit and serial output linear scale)

#### **Parameter settings**

| Motor/detector type | Set the detector type.                                                                                                       | <b>T</b> I I I I I I                                        |                                                                                                      |                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Set the detector type. The value determined for each motor type is input to "xx" in following table. Motor end detector type |                                                             |                                                                                                      | pe is input to "xx" in the                                                                                                                              |
|                     |                                                                                                                              |                                                             |                                                                                                      | уре                                                                                                                                                     |
|                     |                                                                                                                              | OSE104/OSE105                                               | OSA104                                                                                               | OSA105                                                                                                                                                  |
|                     | Speed command<br>synchronous<br>control                                                                                      | Not compatible                                              |                                                                                                      |                                                                                                                                                         |
|                     | Current<br>command<br>synchronous<br>control                                                                                 |                                                             | Not compatible                                                                                       |                                                                                                                                                         |
|                     |                                                                                                                              | synchronous<br>control<br>Current<br>command<br>synchronous | Speed command<br>synchronous<br>controlNot compatibleCurrent<br>command<br>synchronousNot compatible | Speed command<br>synchronous<br>controlNot compatibleMaster axis =A1xx<br>Slave axis =D1xxCurrent<br>command<br>synchronousNot compatibleNot compatible |

(Note1) A system in which two MDS-C1-V1 unit are used is not compatible with incremental system.


(Note2) The full-closed system in which two MDS-C1-V1 units are used is not compatible with current command synchronous control.



(4-1) Connection for full-closed synchronous control (when using MDS-C1-V2 drive unit and serial output linear scale)

#### Parameter settings

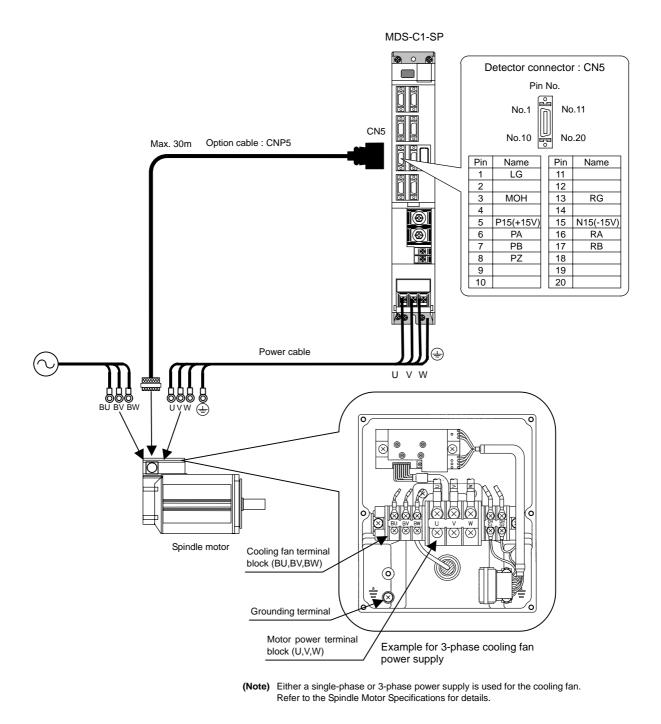
| Abbrev. | Parameter name      |                                                                                                          | Desc                                                                                                                           | ription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|---------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MTYP    | Motor/detector type | Set the detector type. The value determined for each motor type is input to "xx" in the following table. |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                     | Motor end detector type                                                                                  |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                     |                                                                                                          | OSE104                                                                                                                         | OSA104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OSE105/OSA105                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                     | Speed command<br>synchronous<br>control                                                                  |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                     | Current<br>command<br>synchronous<br>control                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                     |                                                                                                          | MTYP Motor/detector type Set the detector type following table.  Speed command synchronous control Current command synchronous | MTYP Motor/detector type Set the detector type. The value determine following table.  Master axis =A0xx Slave axis =D0xx Current command synchronous Slave axis =D0xx Slave axis | MTYP     Motor/detector type     Set the detector type. The value determined for each motor type following table.       Motor end detector type     Motor end detector type       Speed command synchronous control     Master axis =A0xx       Slave axis =D0xx     Master axis =A1xx       Slave axis =D0xx     Master axis =A1xx       Slave axis =D0xx     Master axis =A1xx       Slave axis =D1xx     Master axis =A1xx       Slave axis =D1xx     Slave axis =D1xx |



(4-2) Connection for full-closed synchronous control (when using MDS-C1-V2 drive unit and analog output linear scale)

#### **Parameter settings**

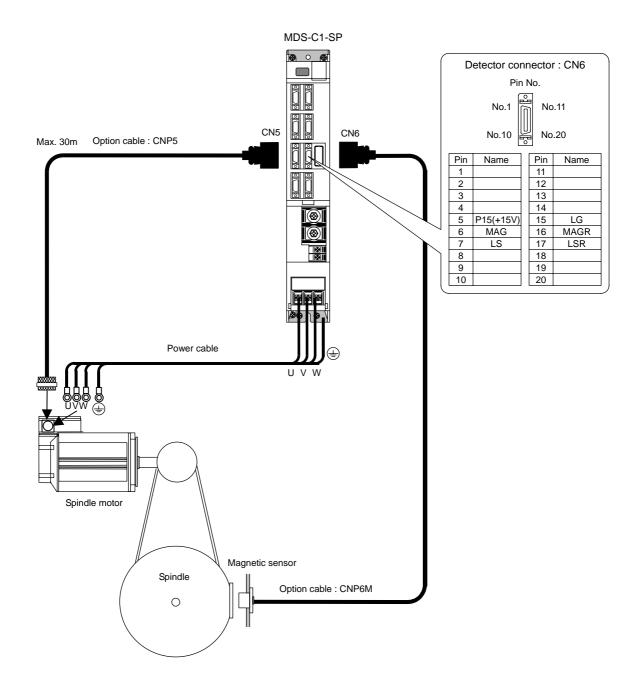
**POINT** 


| No.   | Abbrev. | Parameter name      |                                                                                                        | Desci                                 | ription        |                                       |
|-------|---------|---------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|---------------------------------------|
| SV025 | MTYP    | Motor/detector type | Set the detector type. The value determined for each motor type is input to "xx" in t following table. |                                       |                | be is input to "xx" in the            |
|       |         |                     | Motor end detector type                                                                                |                                       |                | /ре                                   |
|       |         |                     |                                                                                                        | OSE104                                | OSA104/OSA105  | OSE105                                |
|       |         |                     | Speed command<br>synchronous<br>control                                                                | Master axis =A0xx<br>Slave axis =D0xx | Not compatible | Master axis =A2xx<br>Slave axis =D2xx |
|       |         |                     | Current<br>command<br>synchronous<br>control                                                           | Master axis =A0xx<br>Slave axis =DExx | Not compatible | Master axis =A2xx<br>Slave axis =DExx |

In a system in which MDS-B-HR is used, this connection is compatible only with incremental control.

#### 2-4-4 Connection of the spindle motor

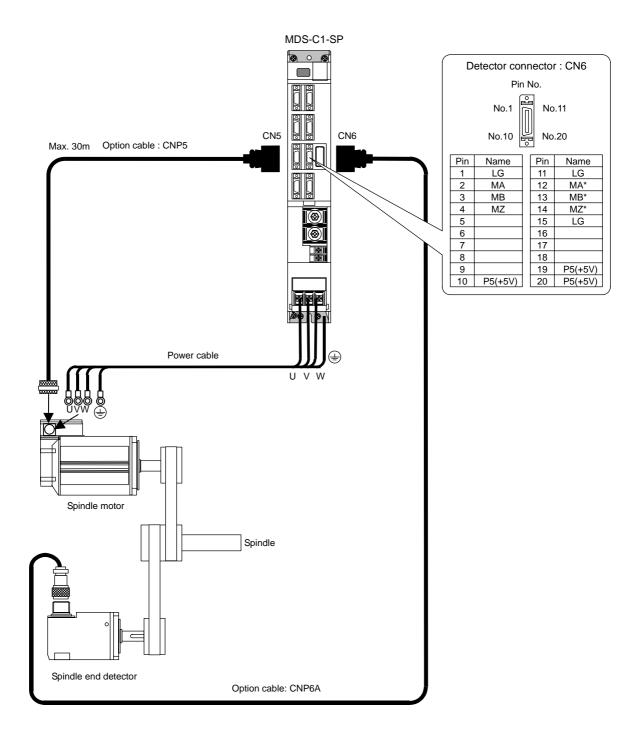
Refer to each motor specifications for details on the motor side connection destination, specifications and outline, and for the spindle PLG detector specifications.


#### (1) Connecting the motor built-in PLG



**CAUTION** The shield of spindle detector cable is not FG. Do not ground.

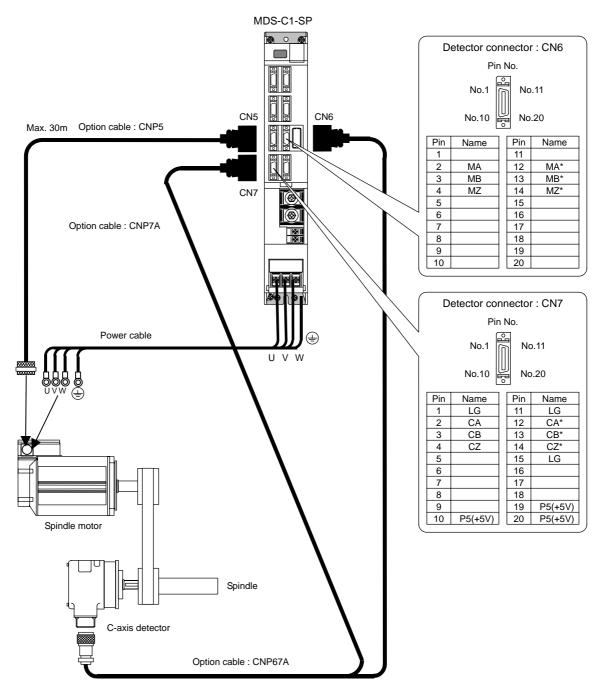
#### (2) Connecting the magnetic sensor


Refer to section (1) for connection with the spindle motor.



The shield of spindle detector cable is not FG. Do not ground.

#### (3) Connecting the spindle end detector


Refer to section (1) for connection with the spindle motor.

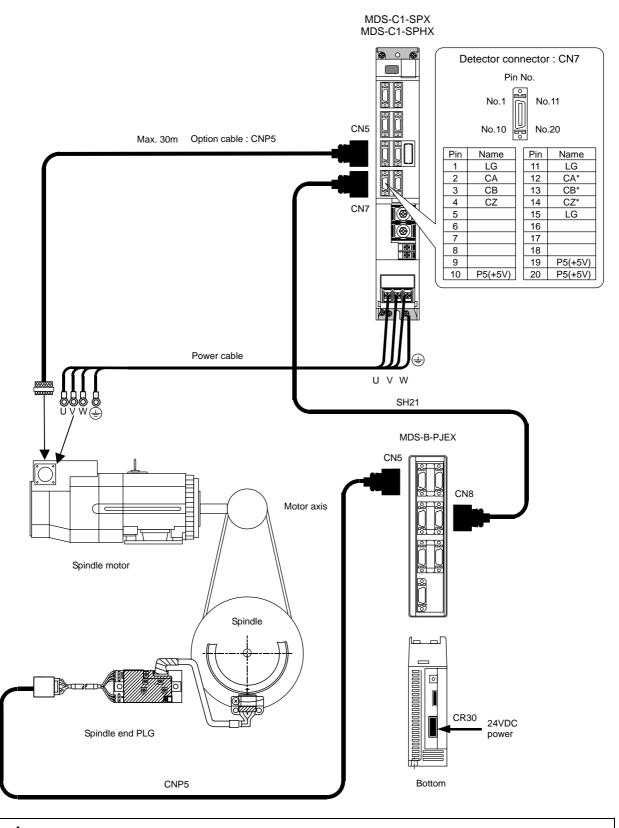


**CAUTION** The shield of spindle detector cable is not FG. Do not ground.

#### (4) Connecting the for C-axis detector

Refer to section (1) for connection with the spindle motor.




#### Supplement

- 1. The C-axis control function is connected to the CN7 connector.
- 2. When using both the C-axis control function and orientation function, two cables (two-wire cable) are connected from the detector.
- 3. The orientation signal connected to CN5 or CN6 can be connected to the NC with the differential output from the CN8 connector.

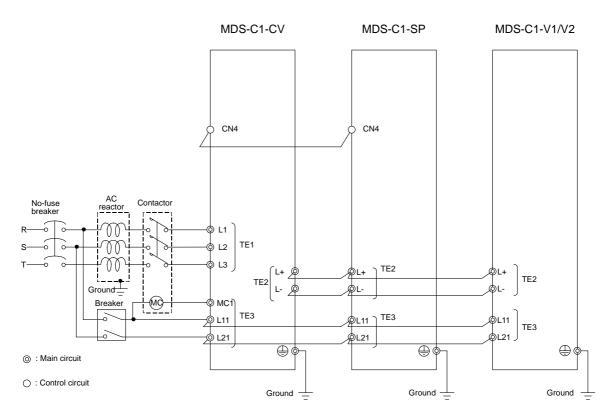
```
CAUTION The shield of spindle detector cable is not FG. Do not ground.
```

#### (5) Connecting the simple C-axis control

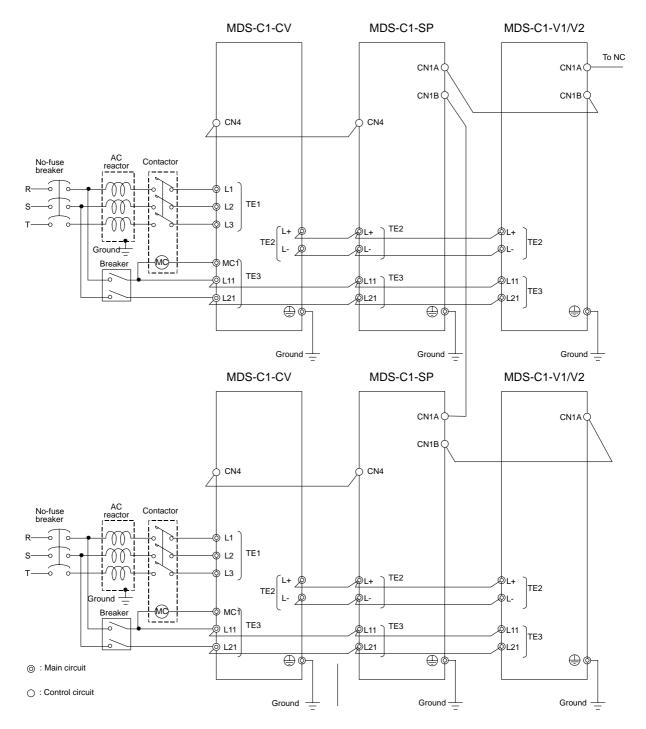
Refer to section (1) for connection with the spindle motor.



**CAUTION** The shield of spindle detector cable is not FG. Do not ground.

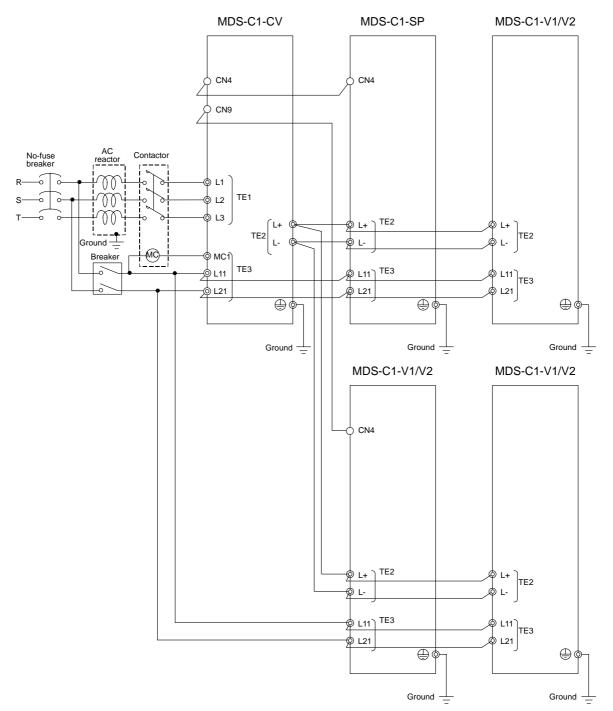

# 2-5 Connection of power supply

|  | <ol> <li>Make sure that the power supply voltage is within the specified range of each<br/>unit. Failure to observe this could lead to damage or faults.</li> <li>For safety purposes, always install a No-fuse breaker (NFB), and make sure<br/>that the circuit is cut off when an error occurs or during inspections.</li> <li>The wire size will differ according to each drive unit capacity.</li> <li>For safety purposes, always install a magnetic contactor (contactor) on the<br/>main circuit power supply input. Large rush currents will flow when the power<br/>is turned ON.</li> <li>A semiconductor element is used in the power supply unit's magnetic contact<br/>drive circuit, and a surge absorber is installed to protect the element.<br/>Therefore, a leakage current of approx. 15mA is passed. Confirm that the<br/>exciting coil in the magnetic contact will not function at 15mA or less.</li> </ol> |
|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


## 2-5-1 Power supply input connection

## (1) When using one power supply unit

Install the drive unit so that the DC power supply bus (L+, L-) is as near to the power supply unit as possible. Large-capacity spindle drive units, in particular, should be installed adjacent to the power supply unit which they control.




| 2. | The power supply unit is a power supply regenerative type converter; an AC reactor is surely installed in the power supply line.<br>When connecting to the TE3 terminal, connect to the power supply side (primary side) of the AC reactor.<br>Connect the power supply unit's CN4 connector with the spindle drive unit of                    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | the maximum capacity. If there is no spindle drive unit, connect to the servo<br>drive unit which is the unbalance axis.<br>When installing the units dispersed install the spindle drive unit adjacent to<br>the power supply unit, and connections for other drive units should be such<br>that the total TE2 wiring length is 50cm or less. |



(2) When using two or more power supply units within a single NC communication bus system Install a no-fuse breaker and a contactor for each of the power supply units.

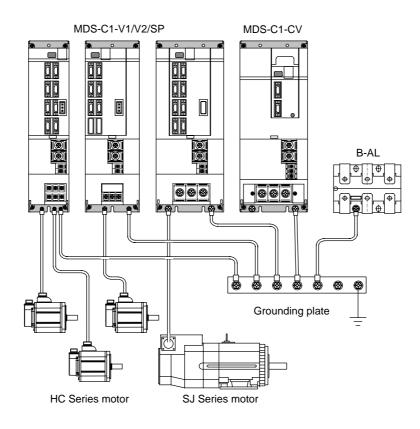
> An AC reactor and breaker are required for each power supply unit.
>  When installing the units dispersed install the spindle drive unit adjacent to the power supply unit, and connections for other drive units should be such that the total TE2 wiring length is 50cm or less.



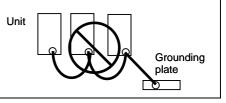
(3) When using one power supply shared by two NC communication bus systems

The axis connected to the power supply unit's CN4 connector becomes the power supply unit control axis.

If the two NC communication bus systems include a spindle drive unit, connect the power supply unit's CN4 connector to the CN4 connector of the largest-capacity spindle drive unit. If there is no spindle drive unit, connect to the unbalance-axis servo drive unit.
 Install the spindle drive unit adjacent to the power supply unit, and connections for other drive units should be such that the total TE2 wiring length is 50cm or less.


## 2-5-2 Connecting the grounding cable

## (1) Connecting the protective grounding (PE) and frame ground (FG)


Each unit has a terminal or mounting hole to connect PE ( G) or FG. Please connect an earth wire to the main ground of a cabinet or a machine frame at one point. Ground each device according to the grounding conditions set forth by each country. (Typically, a Y-connection neutral point ground is used in Europe.)

PE: Grounding to provide protection from electric shock, etc.

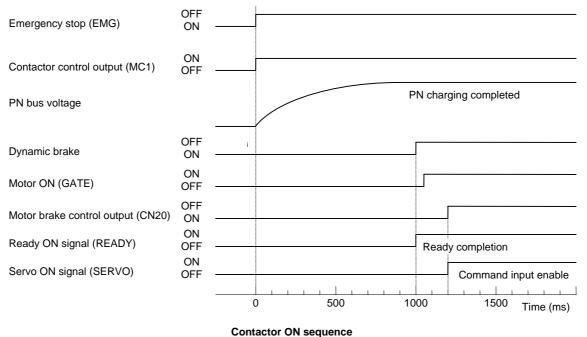
FG: Grounding to stabilize the operation of the devices, etc. (Suppress noise)



POINTDo not connect the grounding cable from<br/>each unit directly to the grounding plate.<br/>Noise from other units could result in<br/>malfunctions.

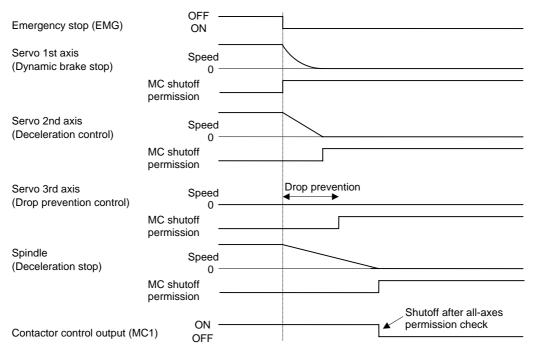


#### (2) Grounding cable size


Earth wire size should follow the following table.

| Туре                   | Grounding cable size (Required grounding)                       |
|------------------------|-----------------------------------------------------------------|
| MDS-C1-CV Unit         | Larger than thickness of wire connected to TE1 (L1/L2/L3). (PE) |
| MDS-C1-V1/V2/SP[] Unit | Larger than thickness of wire connected to TE1 (U/V/W). (PE)    |
| B-AL (AC Reactor)      | 5.5 mm <sup>2</sup> (AWG10) or more (FG)                        |

#### 2-5-3 Main circuit control


#### (1) Contactor ON sequence

Main circuit power is turned ON in the sequence shown below when an emergency stop status is canceled.

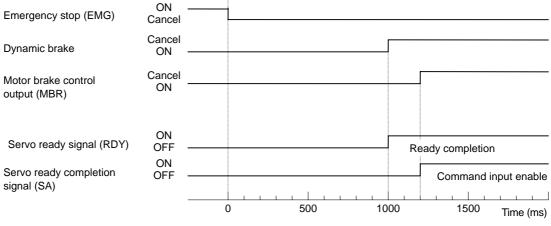


#### (2) Contactor shutoff sequence

When an emergency stop occurs, the NC checks the MC shutoff permission (motor stop or dynamic brake operation) status for all axes and then shuts off the contactors. If there is no MC shutoff permission output, the contactors are forced off 30 seconds later by their control units. Contactors are shut off immediately if an alarm occurs.



Contactor shutoff sequence


# 2-6 Wiring of the motor brake

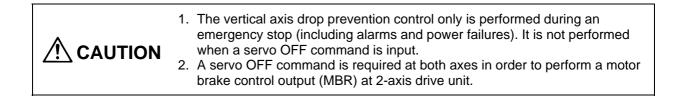
## 2-6-1 Wiring of the motor magnetic brake

The magnetic brake of servomotors with a magnetic brake is controlled by the motor brake control connector (CN20) on the servo drive unit. The servo drive unit releases the brake when the motor is ON. (Servo ON means when torque is generated in the motor.)

#### (1) Motor brake release sequence

The motor brake control output (CN20: MBR) releases the magnetic brake in the sequences in the following drawing when canceling the emergency stop. The brake is released after the start of the power ON to the servomotor.




Motor brake control sequences when an emergency stop is canceled

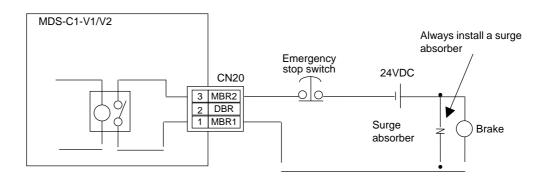
#### (2) Control during the servo OFF command

When a servo OFF command is input by an NC sequence input, the motor brake turns ON simultaneously when the motor ON is shut off. Note that the vertical axis drop prevention control is not validated, so a drop due to the brake operation lag occurs. When the servo OFF is canceled, a drop due to an uncontrolled state does not occur.

|                                                   |             | <br>200ms |   |
|---------------------------------------------------|-------------|-----------|---|
| Servo OFF command                                 | SERVO ON    | <br>      | - |
| Dynamic brake                                     | OFF         |           | - |
| Motor ON (GATE)                                   | ON —<br>OFF |           | - |
| Motor brake control outpu<br>CN20 connector (MBR) | ()[N]       |           | - |

Motor brake control sequences when a servo OFF command is output




## (3) Operation sequences when an emergency stop occurs

The motor brake control output operation when an emergency stop occurs differs according to the motor deceleration stop method. Refer to section "4-5 Setting for emergency stop" for details on the operation sequences for each stop method.

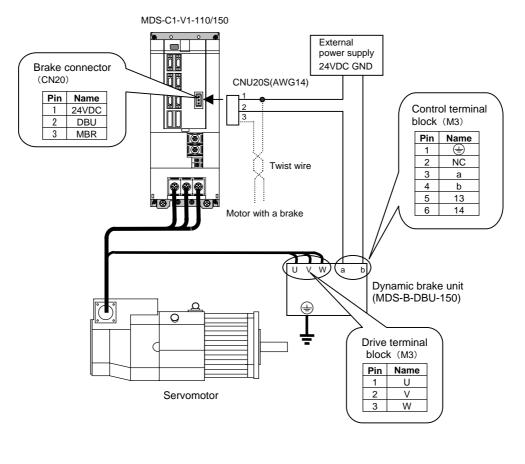
## (4) Motor brake control connector (CN20) output circuit

**POINT** 

As shown in the illustration below, an external power supply circuit is controlled by the CN20 connector output. Dynamic brake unit is controlled simultaneously for large-capacity drive unit (MDS-C1-V1-110/150). Refer to "2-6-2 Dynamic brake unit wiring" for details.



(Unit internal relay specification: 5A 30Vdc/8A 250Vac)


| <ol> <li>Always install a surge absorber near the motor's brake terminal to eliminate<br/>noise and protect the contacts.</li> <li>The brakes cannot be released just by connecting the CN20 and motor brake<br/>terminal. 24VDC must be supplied.</li> </ol> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                               |

To ensure safety in an emergency, make sure that the magnetic brakes are applied in sequence with the emergency stop switch.

## 2-6-2 Dynamic brake unit wiring

The 11kW and larger servo drive unit does not have built-in dynamic brakes. Always install a dynamic brake unit.

The 9kW and smaller servo drive unit has built-in dynamic brakes.

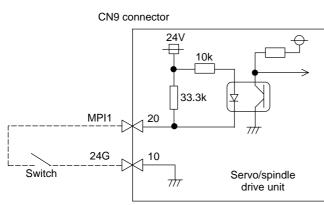


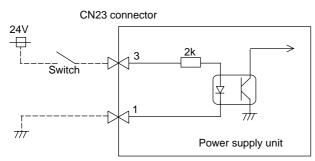
| Correct wire the dynamic brake unit to the servo drive unit.<br>Do not use for applications other than emergencies (normal braking, etc.). The<br>internal resistor could heat up, and lead to fires or faults. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                 |
| When you use a servomotor with a brake, please wire (between 1pin and 3pin) of CN20 connector.                                                                                                                  |

of CN20 connector.

When you use a servomotor with a brake, please wire (between 1pin and 3pin)

# 2-7 Peripheral control wiring


## 2-7-1 Input/output circuit wiring


The input/output circuit to control the external signal such as external emergency stop input and relay changeover signal output is wired.

Output circuit

The input/output circuit for each unit is as follows.

#### Input circuit





|            | Input condition                 |
|------------|---------------------------------|
| Switch ON  | 18VDC to 25.2VDC<br>9mA or more |
| Switch OFF | 4VDC or less<br>2mA or less     |

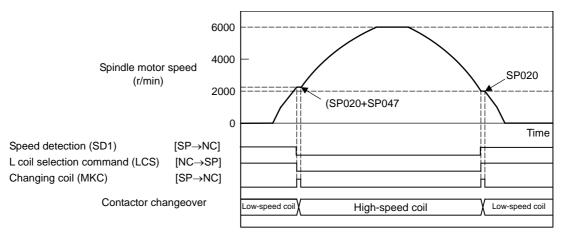
CN9 connector 24V Relay, etc. MPO1 18 MPO2 10 24G Servo/spindle drive unit

The part indicated by the "----" must be prepared by the user.

|                  | Output condition |
|------------------|------------------|
| Output voltage   | 24VDC ±5%        |
| Tolerable output | 50mA or less     |
| current lo       | JUINA OF IESS    |

For a switch or relay to be wired, use a switch or relay that satisfies the input/output (voltage, current) conditions.

| Interface name                      | Selection example                                                                                  |
|-------------------------------------|----------------------------------------------------------------------------------------------------|
| For digital input signal (CN23,CN9) | Use a minute signal switch which is stably contacted and operated even with low voltage or current |
|                                     | <example> OMRON: G2A, G6B type, MY type, LY type</example>                                         |
| For digital output signal (CN9)     | Use a compact relay operated with rating of 24VDC, 50mA or less.                                   |
| For digital output signal (CN9)     | <example> OMROM: G6B type, MY type</example>                                                       |


## 2-7-2 Spindle coil changeover

There are spindle motors capable of coil changeover control, which enables favorable characteristics to be attained from low speeds to high speeds by changing two types or three types (only for MDS-C1-SPM) of coils.

#### (1) Coil changeover control

The speed at which to change the coils is detected by the spindle drive according to the value set with spindle parameter SP020. This is conveyed to the NC with a speed detection (SD) signal. The NC judges the other conditions (coil fixed, etc.), and issue a coil changeover command to the spindle drive with the L coil selection command (LCS).

To prevent the contactor from varying, the hysteresis set with SP047 is applied on the speed when changing from the low-speed coil to the high-speed coil and the high-speed coil to the low-speed coil.



Spindle motor coil changeover control

| No.   | Abbrev. | Parameter name              | Description                                                                                                           | Setting range         | Standard value |
|-------|---------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|
| SP020 | SDTS*   | Speed detection set value   | Set the motor speed of which speed detection 1 output is performed. Usually, the setting value is 10% of SP017 (TSP). | 0 to 32767<br>(r/min) | 600            |
| SP047 | SDTR*   | Speed detection reset value | Set the reset hysteresis width for a speed detection set value defined in SP020 (SDTS).                               | 0 to 1000<br>(r/min)  | 30             |

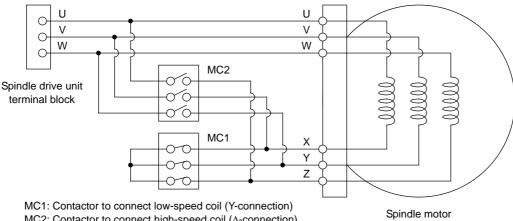
## (2) Protective functions

#### [1] Base shutoff after a winding changeover

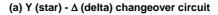
When the L-coil selection command (LCS) is used to perform low-speed winding  $\rightarrow$  high-speed winding switching, or vice-versa, the base is shut off during contactor operation time in order to protect the spindle drive unit's main circuit. The base shutoff time is determined by the "Winding changeover base shutoff timer" (SP059) setting. The standard time setting should be used, as a shorter time can cause contactor burn damage.

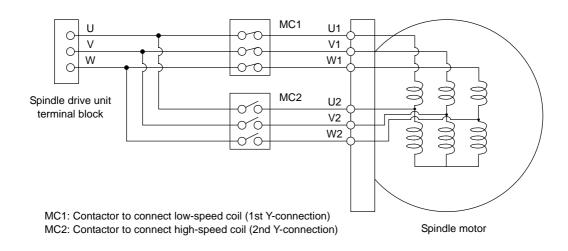
(Refer to 5-2-2 (4) "Spindle control output 4" Coil changing (bit 6) for details.)

| No.   | Abbrev. | Parameter name                    | Description                                                                                                                                                                      | Setting range       | Standard value |
|-------|---------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| SP059 |         | changeover base<br>shut-off timer | Set the base shut-off time for contactor switching at coil<br>changeover.<br>Note that the contactor may be damaged with burning if the<br>value of this parameter is too small. | 50 to 10000<br>(ms) | 150            |

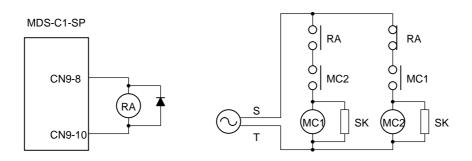

#### [2] Current limit after coil changeover

Following a coil changeover, the current is limited (SP061) for the period specified by the current limit timer (SV060) in order to stabilize control. Because position loop control (synchronous tap, C-axis control, etc.) that occurs immediately after a coil changeover will result in unstable control, be sure that position commands specified by the sequence is input after the current limit is cancelled.


| No.   | Abbrev. | Parameter name                                  | Description                                                                                                                     | Setting range      | Standard<br>value |
|-------|---------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| SP060 |         |                                                 | Set the current limit time to be taken after completion of contactor switching at coil changeover.                              | 0 to 10000<br>(ms) | 500               |
| SP061 |         | Current limit value<br>after coil<br>changeover | Set the current limit value during a period defined in SP060 (MKT2) after completion of contactor switching at coil changeover. | 0 to 120 (%)       | 75                |


## (3) Wiring

The illustration below shows the 2 types of changeover that occur after a coil changeover, (a) Y (star) –  $\Delta$  (delta) changeover, and (b) Y (star) – Y (star) changeover. As shown in (c), one of the contactors (MC1 or MC2) is turned ON and the other is turned OFF at all of the coil changeover control circuits.




MC2: Contactor to connect high-speed coil (Δ-connection)

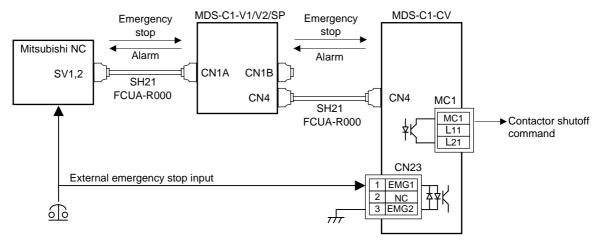




(b) Y (star) - Y (star) changeover circuit



(c) Coil changeover control circuit (common)


Coil changeover relay control circuit

## 2-7-3 Wiring of an external emergency stop

#### (1) External emergency stop setting

Besides the emergency stop input from the NC communication cable (CN1A, CN1B), double-protection when an emergency stop occurs can be provided by directly inputting an external emergency stop to the CN23 connector on the power supply unit. Even if the emergency stop is not input from CNC for some reason, the contactors will be shut off by the external emergency stop input from CN23 connector on the power supply unit.

#### [1] Connection



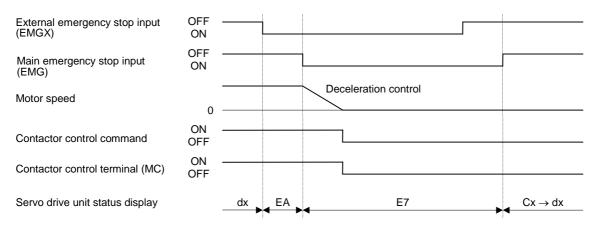
#### [2] Setting

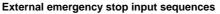
When using the external emergency stop, the rotary switch on the front of the power supply unit and the parameter (PTYP) of drive unit that controls the power supply must be set.

- Rotary switch setting: 4
- Parameter setting: Add "0040" to the setting of PTYP (Servo=SV036, Spindle=SP041).

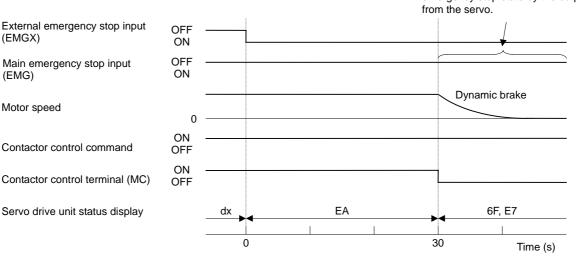
#### Parameter settings

| No.            | Abbrevia-<br>tion | Parameter name    | Descriptions                                                                                                                  |
|----------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
| SV036<br>SP041 | PTYP              | Power supply type | When external emergency stop is validated, 0040 [hex] is added to PTYP for the drive unit connected to the power supply unit. |


| The emergency stop signal input to the CNC side cannot be used as a substitute for the external emergency stop function (CN23). |
|---------------------------------------------------------------------------------------------------------------------------------|
| for the external emergency stop function (CN23).                                                                                |


#### (2) Operation sequences of CN23 external emergency stop function

If only external emergency stop is input when external emergency stop valid is set in the parameters (the emergency stop is not input in NC), an "In external emergency stop" (warning EA) will be detected. At this time, the system itself does not enter an emergency stop status. (There will be no deceleration control or dynamic brake stop.)


If a contactor shutoff command is not issued from the NC within 30 seconds after the external emergency stop is input, the power supply unit outputs contactor shutoff signal (MC1), and then it shuts off the contactors, and a power supply error (alarm 6F) is detected simultaneously. If the emergency stop is input from NC within 30 seconds, the warning EA replaces the "In NC emergency stop" (warning E7). A normal emergency stop status will result if the contactor shutoff command from the NC are further input.

Ready ON is possible even if CN23, an external emergency stop has been input when the emergency stop is canceled, but an power supply error (alarm 6F) will occur after 30 seconds.





The communication line enters an emergency stop state by the output from the servo

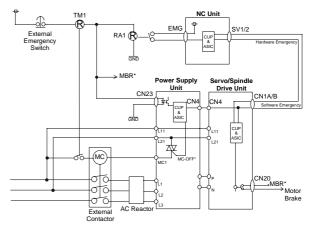


When neither a main emergency stop nor contactor shutoff command is input

## (3) Example of emergency stop circuit

#### [1] Outline of function

The power supply unit's external emergency stop can be validated by wiring to the CN23 connector, and setting the parameters and rotary switch. If the emergency stop cannot be processed and the external contractor cannot be shut off (due to a fault) by the NC unit, the external contactor can be shut off by the power supply unit instead of the NC. At this time, the spindle motor will coast and the servomotor will stop with the dynamic brakes.


EN60204-1 Category 1 can be basically complied with by inputting the external emergency stop and installing contactor.

- 1. The power supply unit external emergency stop function is a function that assists the NC emergency stop.
- 2. It will take 30 seconds for the external contactor to function after the emergency stop is input to CN23. (This time is fixed.)

#### [2] Outline of function

/!\ CAUTION

The emergency stop is a signal used to stop the machine in an emergency. This is connected to the NC unit. Wire to the power supply unit when necessary. The servo/spindle unit will be decelerated and controlled by the software according to the emergency stop command issued from the NC unit. (The deceleration control depends on a parameter setting.) The diagram on the right shows an example of the emergency stop circuit (EN60204-1 Category 0 stop) in which an off delay timer (TM1) is installed as a power shutoff method independent from the NC emergency stop input. The



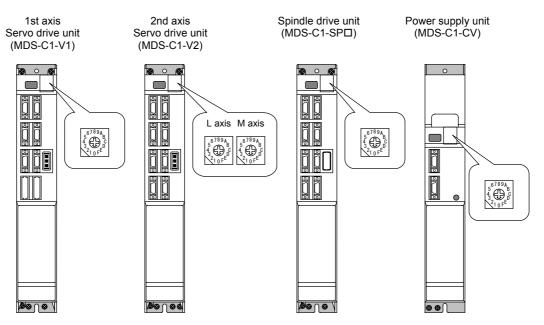
required safety category may be high depending on the machine and the Safety Standards may not be met. Thus, always pay special attention when selecting the parts and designing the circuit.

#### [3] Setting the off delay timer (TM1) time

Set the TM1 operation time so that it functions after it has been confirmed that all axes have stopped. If the set time is too short, the spindle motor will coast to a stop.

#### $tm \ge AII$ axes stop time

Provide a mechanism that shuts off the power even if the NC system fails.


 Stop Categories in EN60204-1
 Category 0: The power is instantly shut off using machine parts.
 Category 1: The drive section is stopped with the control (hardware/software or communication network), and then the power is instantly shut off using machine parts.
 (Caution) Refer to the Standards for details. Refer to Section 9.2.5.4.2 in EN60204-1: Safety of Machinery Electrical Equipment of Machines – Part 1.

| 3-1 Init | ial setup                                                                       |       |
|----------|---------------------------------------------------------------------------------|-------|
| 3-1-1    | Setting the rotary switch                                                       |       |
| 3-1-2    | Transition of LED display after power is turned ON                              | 3-3   |
| 3-1-3    | Servo standard specifications and high-gain specifications                      |       |
| 3-2 Set  | ting the initial parameters for the servo drive unit (High-gain specifications) |       |
| 3-2-1    | Setting the standard parameters                                                 |       |
| 3-2-2    | List of standard parameters for each servomotor                                 |       |
| 3-2-3    | Servo parameter list                                                            | 3-23  |
| 3-3 Set  | ting the initial parameters for the servo drive unit (Standard specifications)  | 3-39  |
|          | Setting the standard parameters                                                 |       |
| 3-3-2    | List of standard parameters for each servomotor                                 |       |
| 3-3-3    | Servo parameter list                                                            |       |
| 3-4 Re   | strictions on servo control                                                     | 3-63  |
| 3-4-1    | Restrictions of electronic gear setting value                                   | 3-63  |
| 3-4-2    | Restrictions on absolute position control                                       |       |
| 3-5 Set  | ting the initial parameters for the spindle drive unit                          | 3-65  |
| 3-5-1    | Spindle specification parameters                                                |       |
| 3-5-2    | List of spindle parameters                                                      |       |
| 3-6 Init | ial adjustment of the spindle PLG                                               | 3-104 |
| 3-6-1    | Adjusting the PLG installation                                                  | 3-104 |
| 3-6-2    | Z phase automatic adjustment                                                    | 3-110 |
|          | Motor end PLG automatic adjustment                                              |       |
| 3-6-4    | Spindle end PLG automatic adjustment                                            |       |

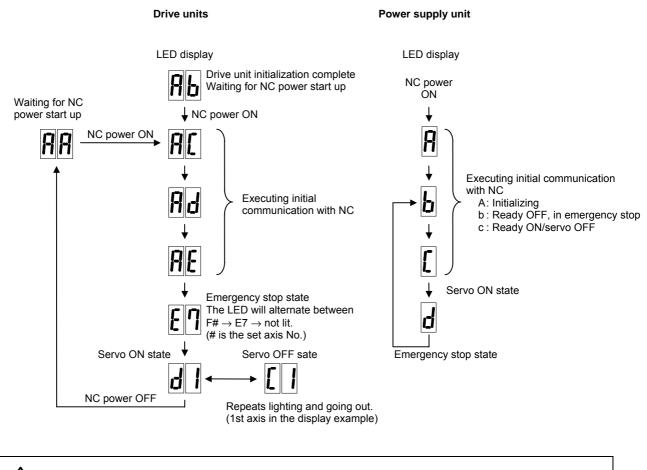
# 3-1 Initial setup

## 3-1-1 Setting the rotary switch

Before turning on the power, the axis No. must be set with the rotary switch. The rotary switch settings will be validated when the units are turned ON.



| Setting the   | Deta                         | ails                                         |
|---------------|------------------------------|----------------------------------------------|
| rotary switch | Setting the MDS-C1-V1/V2/SPD | Setting the MDS-C1-CV                        |
| 0             | 1st axis                     | External emergency stop invalid              |
| 1             | 2nd axis                     |                                              |
| 2             | 3rd axis                     | Setting prohibited                           |
| 3             | 4th axis                     |                                              |
| 4             | 5th axis                     | External emergency stop valid<br>(Used CN23) |
| 5             | 6th axis                     |                                              |
| 6             | 7th axis                     |                                              |
| 7             |                              |                                              |
| 8             |                              |                                              |
| 9             |                              |                                              |
| Α             | Setting prohibited           | Setting prohibited                           |
| В             | Setting promoted             |                                              |
| С             |                              |                                              |
| D             |                              |                                              |
| E             |                              |                                              |
| F             | Axis not used                |                                              |




When an axis that is not used is selected, that axis will not be controlled when the power is turned ON, and "Ab" will remain displayed on the LED. If the power of the axis not in use is disconnected, the NC system's emergency stop cannot be released.

## 3-1-2 Transition of LED display after power is turned ON

When CNC, each drive unit and the power supply unit power have been turned ON, each unit will automatically execute self-diagnosis and initial settings for operation, etc. The LEDs on the front of the units will change as shown below according to the progression of these processes.

If an alarm occurs, the alarm No. will appear on the LEDs. Refer to "6-1 LED display when alarm or warning occurs" for details on the alarm displays.



**CAUTION** Always input emergency stop when starting the servo system.

## 3-1-3 Servo standard specifications and high-gain specifications

## (1) Two-part system compliance

With the MDS-C1-V1/V2 Series, control is possible with the standard servo (MDS-B-V1/V2) control mode and high-gain servo (MDS-B-V14/V24) control mode. When replacing an older model (MDS-B Series) with this series, the servo parameter settings are automatically recognized and the control mode is determined. Thus, the model can be changed from either a standard servo or high-gain servo without changing the servo parameters.

When using the MDS-C1-V1/V2 unit and newly adjusting the machine, select the high-gain specifications. The high-gain specifications are set as the default.

#### (2) Judging the control mode

Whether the servo drive unit starts up with the standard servo specifications or high-gain servo specifications depends on the servo parameter SV009 to SV012 and SV033/bit8, 9 settings.

| Parameter  | High-gain                                              | Standard                                                 | Standard           | High-gain          | High-gain          |
|------------|--------------------------------------------------------|----------------------------------------------------------|--------------------|--------------------|--------------------|
| SV009      | SV009 = 4096 or more, and<br>SV010 = 4096 or more, and | Setting that does not satisfy even                       |                    |                    |                    |
| 50010      |                                                        | one of the following conditions:<br>SV009 = 4096 or more | SV009=*<br>SV010=* | SV009=*<br>SV010=* | SV009=*<br>SV010=* |
|            |                                                        |                                                          | SV011=*            | SV011=*            | SV010<br>SV011=*   |
| SV012      | SV012 = 768 or more                                    | SV011 = 768 or more                                      | SV012=*            | SV012=*            | SV012=*            |
|            |                                                        | SV012 = 768 or more                                      |                    |                    |                    |
| SV033/bit8 | 0                                                      | 0                                                        | 1                  | 0                  | 1                  |
| SV033/bit9 | 0                                                      | 0                                                        | 0                  | 1                  | 1                  |

(Note) \* indicates that there are no limits.

#### (3) Servo monitor unit type display

Whether the system is running with the high-gain servo or standard servo control mode can be confirmed with the unit type displayed on the NC SERVO MONITOR screen.

| Unit type       | For standard servo specifications | For high-gain servo specifications |
|-----------------|-----------------------------------|------------------------------------|
| MDS-C1-V1-DDD   | C1V1sDDD                          | C1V1-DDD                           |
| MDS-C1-V2-000   | C1V2s□□00                         | C1V2-000                           |
| MDS-C1-V1-45S   | C1V1s4S                           | C1V1-4S                            |
| MDS-C1-V1-70S   | C1V1s7S                           | C1V1-7S                            |
| MDS-C1-V2-3510S | C1V2s3510                         | C1V2-3510                          |
| MDS-C1-V2-3520S | C1V2s3520                         | C1V2-3520                          |
| MDS-C1-V2-4545S | C1V2s4S4S                         | C1V2-4S4S                          |
| MDS-C1-V2-7070S | C1V2s7S7S                         | C1V2-7S7S                          |
| MDS-C1-V2-9090S | C1V2s9S9S                         | C1V2-9S9S                          |

| <ol> <li>To change the control mode to the high-gain servo specifications after<br/>replacing the unit from a standard servo (MDS-B-V1/V2), the parameters<br/>must be changed and adjusted for high-gain servo use.</li> <li>If alarm 7F occurs after setting the servo parameters, turn the servo drive<br/>unit power ON again.</li> </ol> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                               |

# 3-2 Setting the initial parameters for the servo drive unit (High-gain specifications)

The servo parameters must be set before the servo system can be started up. The servo parameters are input from the NC. The input method differs according to the NC being used, so refer to each NC Instruction Manual.

## 3-2-1 Setting the standard parameters

When starting up the system, first set the standard parameters listed in "3-2-2 List of standard parameters for each servomotor". For the parameters shown below, check the machine and servo system specifications and determine the setting value.

## (1) Basic specification parameters

High-gain specifications

- [1] When performing absolute position control, set SV017/bit7=1. This may be automatically set by NC system parameter setting, depending on NC model. (Setting on the servo parameter screen is not valid.)
- [2] When performing absolute position control with speed and current synchronous control, set SV081/bit4=1 for master and slave axes. Also set SV017/bit7=1.
- [3] For HA053N, HA13N, HA23N, HA33N motors, if the connector direction of the motor end detector with motor power connector is 90°, set SV017/bit5=1. If the angle is 180°, use a standard setting (SV017/bit5=0).

| No.          | Abbrev. | Parameter<br>name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Explanation                                                                                                                                                                                                                                                                                                     |  |  |  |
|--------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SV017 SPEC*  | SPEC*   | Servo<br>specification<br>selection 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         spm       mpt       mp       mp       abs       vdir       fdir       vfb       seqh dfbx       fdir2         bit       Meaning when "0" is set       Meaning when "1" is set |  |  |  |
|              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5     vdir     Standard setting     HA motor (4 pole motor)       5     vdir     Detector installation position 90 degrees (B, D)       7     abs     Incremental control                                                                                                                                       |  |  |  |
| SV081 SPEC2* |         | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I |                                                                                                                                                                                                                                                                                                                 |  |  |  |
|              | SPEC2*  | Servo<br>specification<br>selction 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bit         Meaning when "0" is set         Meaning when "1" is set           4         pabs         Normal setting         Speed/current synchronous control absolute position control                                                                                                                         |  |  |  |

#### Setting basic specification parameters

Parameters with an asterisk \* in the abbreviation, such as PC1\*, are validated with the NC power turned ON again.



Setting of absolute position control (SV017/bit7) may be set automatically by NC system parameter setting, depending on NC model. In this case, setting on the servo parameter screen is not valid.

#### (2) Electronic gear related parameters

The setting range of the following parameters, which configure the electronic gears, may be limited according to the combination. Refer to section "3-4 Restrictions on servo control" for details.

#### High-gain specifications

| No.   | Abbrev. | Parameter name          |                                                                       | Explanation                                                                                              |                        | Setting<br>range (Unit                   |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|-------|---------|-------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|-------------------------------------------|------------------------|-----------------------|--------------------------------|----------------------------------------|------------------------|-----------------------------------|----------------------------------------|------------------------|--|
| SV001 | PC1*    | Motor side gear ratio   | Set the motor side and mach<br>For the rotary axis, set the to        | otal deceleration (acceleration                                                                          |                        | 1 to 32767                               |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
| SV002 | PC2*    | Machine side gear ratio | overflow and cause an alarm                                           | en if the gear ratio is within the setting range, the electronic gears may<br>erflow and cause an alarm. |                        |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
| SV018 | PIT*    | Ball screw pitch        | Set the ball screw pitch. Set to "360" for the rotary axis.           |                                                                                                          |                        | 1 to 32767<br>(mm/rev)                   |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | In the case of the semi-close<br>Set the same value as SV0<br>SV020.) | 20 (RNG2). (Refer to th                                                                                  | e explanation of       | 1 to 9999<br>(kp/rev)                    |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | In the case of the full-closed                                        | loop control                                                                                             |                        |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | Set the number of pulses p                                            | er ball screw pitch.                                                                                     |                        |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | Detector model name                                                   | Resolution                                                                                               | SV019 setting          |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | OHE25K-ET, OHA25K-ET                                                  | 100,000 (p/rev)                                                                                          | 100                    |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | OSE104-ET,OSA104-ET                                                   | 100,000 (p/rev)                                                                                          | 100                    |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | OSE105-ET,OSA105-ET                                                   | 1,000,000 (p/rev)                                                                                        | 1000                   |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       | DNI(21* |                         | RNG1* Position detector resolution                                    |                                                                                                          |                        |                                          |                                           |                        |                       |                                |                                        |                        | Relative position detection scale | Refer to detector specification manual | PIT/Resolution<br>(μm) |  |
|       |         |                         |                                                                       |                                                                                                          | AT41 (Mitsutoyo)       | 1 (μm/p)                                 | The same as<br>SV018 (PIT)                |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
| SV019 |         | RNG1*                   |                                                                       |                                                                                                          |                        |                                          |                                           |                        | 11*                   | FME type, FLE type<br>(Futaba) | Refer to detector specification manual | PIT/Resolution<br>(μm) |                                   |                                        |                        |  |
|       |         |                         |                                                                       |                                                                                                          |                        | MP type (Mitsubishi Heavy<br>Industries) | Refer to detector<br>specification manual | PIT/Resolution<br>(μm) | 1 to 3000<br>(kp/pit) |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         |                                                                       |                                                                                                          | AT342 (Mitsutoyo)      | 0.5 (μm/p)                               | Twice as big as<br>SV018 (PIT)            | (Kp/pit)               |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         |                                                                       | AT343 (Mitsutoyo)                                                                                        | 0.05 (μm/p)            | 20 times as big as<br>SV018 (PIT)        |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         |                                                                       | AT543 (Mitsutoyo)                                                                                        | 0.05 (μm/p)            | 20 times as big as<br>SV018 (PIT)        |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | LC191M (Heidenhain)                                                   | 0.1, 0.05 (μm/p)                                                                                         | PIT/Resolution<br>(μm) |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | LC491M (Heidenhain)                                                   | 0.05 (μm/p)                                                                                              | PIT/Resolution<br>(μm) |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | RCN223(Heidenhain)                                                    | 8,000,000(p/rev)                                                                                         | 8000                   |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | RCN723(Heidenhain)                                                    | 8,000,000(p/rev)                                                                                         | 8000                   |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | MDS-B-HR                                                              | -                                                                                                        | PIT/scale( $\mu$ m)    |                                          |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | Set the number of pulses pe                                           | r one revolution of the mo                                                                               |                        | +                                        |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         | Speed detector          | Detector model name SV020 setting                                     |                                                                                                          | SV020 setting          | 1 to 9999                                |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
| SV020 | RNG2*   | resolution              | OSE104, OSA104                                                        |                                                                                                          | 100                    | (kp/rev)                                 |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |
|       |         |                         | OSE105, OSA105                                                        |                                                                                                          | 1000                   | (((p))(CV)                               |                                           |                        |                       |                                |                                        |                        |                                   |                                        |                        |  |

Parameters with an asterisk \* in the abbreviation, such as PC1\*, are validated with the NC power turned ON again.

#### (3) Detector related parameters

High-gain specifications

#### (a) For semi-closed loop control

For control using only the motor end detector, specify the settings shown in the table below. For speed and current synchronous control, refer to section "2-4-3 Connecting the synchronous control system".

#### Setting for semi-closed loop control

| No. Abbrev. | Parameter name      | Explanation                                               |                                                                                                                                                                                                                       |  |  |
|-------------|---------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SV025 MTYP* | Motor/Detector type | bit<br>8<br>9<br>A<br>ent<br>B<br>C<br>C<br>E<br>Pen<br>F | Details<br>Set the detector type.<br>Set the position detector type for "pen"<br>for "ent". In the case of the semi-closed<br>value for "pen" and "ent".<br>Detector model name<br>OSE104<br>OSE104<br>OSE105, OSA105 |  |  |

#### (b) For full-closed loop control

Some parameter settings must be specified in order to use the machine end detector. These settings are determined by type or the installation conditions of the linear scale and the ball screw end detector.

- [1] The SV025/bit8 to B (ent) setting must be specified according to the motor end detector specifications, in the same manner as for semi-closed loop control. For current synchronous control, however, refer to section "2-4-3 Connecting the synchronous control system".
- [2] If the polarities of the motor end detector and the machine end detector do not match, specify SV017/bit4=1 setting.
- [3] To use AT342, AT343, AT543, LC191M, LC491M, specify SV027/bit6=1 setting.
- [4] To use the MP scale, specify SV017/bit8 setting in accordance with the scale specifications. For absolute position control, specify SV017/bit9=1 setting.
- [5] For ABZ phase pulse output type relative position detection scale with constant Z-phase detection position without regard to the travel direction, specify SV027/bit6=1 setting. Z-phase detection occurs as follows: Plus-direction travel: Rising edge detection, Minus-direction travel: Falling edge detection
- [6] For machine end absolute position control at the rotation axis, specify SV081/bit1=1 setting.
- [7] For speed and current synchronous control, refer to "2-4-3 Connecting the synchronous control system".

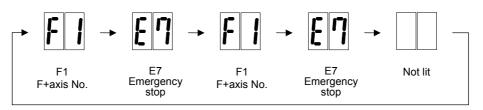
| Setting | for | full-closed | loop | control |
|---------|-----|-------------|------|---------|
|---------|-----|-------------|------|---------|

| ingn ge |         | fications                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------|---------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No.     | Abbrev. | Parameter name                | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| SV017   | SPEC*   | Servo specification selection | F     E     D     C     B     A     9     8     7       spm     mpt     mpt     mp     abs       bit     Meaning when "0" is set       4     fdir     Position feedback forward polarity       8     mp     MP scale 360P (2mm pitch)       9     mpt     MP scale ABS detection NC control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Meaning                                                                                                                                                                                                                                            | detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| SV025   | MTYP*   | Motor/Detector type           | bit       Expl.         8       Set the detector type.         9       Set the position detector type for 'for 'ent'. In the case of the semi-orvalue for 'pen' and 'ent'.         B       Detector model name         C       OSE104         D       OSE104         OSE105, OSA105       OHE25K-ET,OSE104-ET         OHE25K-ET,OSA104-ET       OHA25K-ET,OSA104-ET         OSE105-ET, OSA105-ET, RCN22       RCN723 (Heidenhain)         Relative position detection scale, type (Mitsubishi Heavy Industries)       AT41 (Mitsutoyo), FME type, FLE (Futaba)         AT342, AT343, AT543 (Mitsutoyo)       LC191M/491M (Heidenhain), MD         The setting of the slave axis in the speed/current synchronization control.       The setting of the slave axis in the current synchronization control.         When the master axis is the semicontrol.       Current synchronization control is for MDS-C1-V2.) | pen<br>setting       0 (Not       1 (Not       2 (Not       3 (Not       4       5       23,       6       7       MP       8       type       9       b,       S-B-HR       B       entrol.       -closed       C       speed/       osed       D | ol, set the same<br>ent setting<br>e) 0<br>e) 1<br>e) 2<br>e) 3<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>impossible<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Setting<br>Se |  |
|         |         |                               | (Note) Setting for semi-closed I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E<br>F<br>oop control                                                                                                                                                                                                                              | Setting<br>impossible<br>Setting<br>impossible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

Parameters with an asterisk \* in the abbreviation, such as PC1\*, are validated with the NC power turned ON again.

| No.   | Abbr<br>ev. | Parameter name             | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|-------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SV027 | SSF1        | Servo function selection 1 | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         afit       zrn2       afse       ovs       Imc       omr       zrn3       vfct       upc       vcnt         bit       Meaning when "0" is set       Meaning when "1" is set       Meaning when "1" is set       ABZ phase scale: Set to "1" to fix Z-phase detection edge.         6       zrn3       Absolute position scale: Set to "1" in using AT342/343, LC191M/491M.       LC191M/491M. |
| SV081 | SPEC2*      | Servo function selection 2 | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         bit       Meaning when "0" is set       Meaning when "1" is set       Meaning when "1" is set       Rotary axis machine end absolute position control                                                                                                                                                                                                                                         |

Parameters with an asterisk \* in the abbreviation, such as PC1\*, are validated with the NC power turned ON again.


#### (4) Setting the power supply type

Set the drive unit connected to the power supply unit with the CN4 connector. This does not need to be set if the power supply for the axis is not connected with the CN4 connector. (Set "0000".) If the power supply unit is connected with the spindle drive unit, the parameters do not need to be set on the servo side. When connected to a 2-axis servo drive unit (MDS-C1-V2), set the power supply type for one of the two target axes.

#### High-gain specifications

Parameters with an asterisk \* in the abbreviation, such as PC1\*, are validated with the NC power turned ON again.

If alarm 7F occurs after setting the initial parameters, turn the drive unit power ON again. If the unit's LEDs indicate the following emergency stop state, the unit has started up normally.



Normal LED display when NC power is turned ON (1st axis)

# 3-2-2 List of standard parameters for each servomotor

## (1) HC Series (Standard 2000r/min rating)

High-gain specifications

| ingi-g         |            | Motor                                                                  |           |           |           | Stan      | dard HC   | motor     | 2000 r/n  | nin rating | 7          |           | 1         |
|----------------|------------|------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|
| Paran          | neter      |                                                                        | 11050     | HC        | HC        |           | HC        |           |           |            |            | HC902     |           |
| L              |            |                                                                        | HC52      | 102       | 152       | HC202     | 352       |           | 452       |            | 702        |           |           |
| No.            | Abbrev.    | Details Unit capacity                                                  | 05        | 10        | 20        | 20        | 35        | 45S       | 45        | 70S        | 70         | 90S       | 90        |
| SV001          |            | Motor side gear ratio                                                  |           |           |           |           |           |           |           |            |            |           |           |
| SV002          | PC2        | Machine side gear ratio                                                |           |           |           |           |           |           |           |            |            |           |           |
| SV003          | PGN1       | Position loop gain 1                                                   | 47        | 47        | 47        | 47        | 47        | 47        | 47        | 47         | 47         | 47        | 47        |
| SV004          | PGN2       | Position loop gain 2                                                   | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV005          | VGN1       | Speed loop gain 1                                                      | 200       | 200       | 200       | 200       | 200       | 200       | 200       | 200        | 200        | 200       | 200       |
| SV006          | VGN2       | Speed loop gain 2                                                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV007<br>SV008 | VIL<br>VIA | Speed loop delay compensation                                          | 0<br>1364  | 0<br>1364  | 0<br>1364 | 0<br>1364 |
| SV008          | IQA        | Speed loop lead compensation<br>Current loop q axis lead compensation  | 4096      | 4096      | 4096      | 4096      | 4096      | 4096      | 4096      | 4096       | 4096       | 4096      | 4096      |
| SV009          | IDA        | Current loop d axis lead compensation                                  | 4090      | 4090      | 4090      | 4090      | 4090      | 4090      | 4090      | 4090       | 4090       | 4090      | 4090      |
| SV010          | IQG        | Current loop q axis gain                                               | 768       | 768       | 768       | 768       | 768       | 768       | 768       | 768        | 768        | 768       | 768       |
| SV012          | IDG        | Current loop d axis gain                                               | 768       | 768       | 768       | 768       | 768       | 768       | 768       | 768        | 768        | 768       | 768       |
| SV013          | ILMT       | Current limit value                                                    | 500       | 500       | 500       | 500       | 500       | 500       | 500       | 500        | 500        | 500       | 500       |
| SV014          |            | Current limit value in special control                                 | 500       | 500       | 500       | 500       | 500       | 500       | 500       | 500        | 500        | 500       | 500       |
| SV015          | FFC        | Acceleration rate feed forward gain                                    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV016          | LMC1       | Lost motion compensation 1                                             | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV017          | SPEC       | Servo specification selection                                          | 0000      | 0000      | 0000      | 0000      | 0000      | 1000      | 0000      | 1000       | 0000       | 1000      | 0000      |
| SV018          | PIT        | Ball screw pitch                                                       |           |           |           |           |           |           |           |            |            |           |           |
| SV019          | RNG1       | Position detector resolution                                           |           |           |           |           |           |           |           |            |            |           |           |
| SV020          | RNG2       | Speed detector resolution                                              |           |           |           |           |           |           |           |            |            |           |           |
| SV021          | OLT        | Overload detection time constant                                       | 60        | 60        | 60        | 60        | 60        | 60        | 60        | 60         | 60         | 60        | 60        |
| SV022          | OLL<br>OD1 | Overload detection level                                               | 150       | 150       | 150       | 150       | 150       | 150       | 150       | 150        | 150        | 150       | 150       |
| SV023          | OD1        | Excessive error detection width during servo ON                        | 6         | 6         | 6         | 6         | 6         | 6         | 6         | 6          | 6          | 6         | 6         |
| SV024          |            | In-position detection width                                            | 50        | 50        | 50        | 50        | 50        | 50        | 50        | 50         | 50<br>xxB6 | 50        | 50        |
| SV025          | MTYP       | Motor/detector type<br>Excessive error detection width during servo    | xxB0      | xxB1      | xxB2      | xxB3      | xxB4      | xx95      | xxB5      | xx96       | XXD0       | xx97      | xxB7      |
| SV026          | OD2        | OFF                                                                    | 6         | 6         | 6         | 6         | 6         | 6         | 6         | 6          | 6          | 6         | 6         |
| SV027          | SSF1       | Servo function selection 1                                             | 4000      | 4000      | 4000      | 4000      | 4000      | 4000      | 4000      | 4000       | 4000       | 4000      | 4000      |
| SV028          | 0011       |                                                                        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV029          | VCS        | Speed at the change of speed loop gain                                 | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
|                | IVC        | Voltage dead time compensation /                                       | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV030          | IVC        | current bias 1                                                         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV031          | OVS1       | Overshooting compensation 1                                            | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV032          | TOF        | Torque offset                                                          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV033          | SSF2       | Servo function selection 2                                             | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000       | 0000       | 0000      | 0000      |
| SV034          | SSF3       | Servo function selection 3                                             | 0003      | 0003      | 0003      | 0003      | 0003      | 0003      | 0003      | 0003       | 0003       | 0003      | 0003      |
| SV035          | SSF4       | Servo function selection 4                                             | 0000      | 0000      | 0040      | 0040      | 0040      | 0040      | 0040      | 0040       | 0040       | 0000      | 0000      |
| SV036          | PTYP       | Power supply type                                                      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000       | 0000       | 0000      | 0000      |
| SV037<br>SV038 | JL<br>FHz1 | Load inertia scale<br>Notch filter frequency 1                         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV038<br>SV039 | LMCD       | Lost motion compensation timing                                        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
|                |            | Lost motion compensation non-sensitive band                            |           |           |           |           |           |           | _         |            |            |           |           |
| SV040          | LMCT       | /current bias 2                                                        | 0         | 0         | 0         | 10240     | 10240     | 10240     | 10240     | 10240      | 10240      | 10240     | 10240     |
| SV041          | LMC2       | Lost motion compensation 2                                             | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV042          | OVS2       | Overshooting compensation 2                                            | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV043          | OBS1       | Disturbance observer filter frequency                                  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV044          | OBS2       | Disturbance observer gain                                              | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV045          | TRUB       | Frictional torque/current bias 3                                       | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV046          | FHz2       | Notch filter frequency 2                                               | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV047          | EC         | Inductive voltage compensation gain                                    | 100       | 100       | 100       | 100       | 100       | 100       | 100       | 100        | 100        | 100       | 100       |
| SV048          | EMGrt      | Vertical axis drop prevention time                                     | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV049          | PGN1sp     | Position loop gain 1 in spindle synchronous                            | 15        | 15        | 15        | 15        | 15        | 15        | 15        | 15         | 15         | 15        | 15        |
|                |            | control<br>Position loop gain 2 in spindle synchronous                 |           |           |           |           |           |           |           |            | <u> </u>   |           |           |
| SV050          | PGN2sp     | control                                                                | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV051          | DFBT       | Dual feedback control time constant                                    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV052          | DFBN       | Dual feedback control non-sensitive band                               | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
|                |            | Excessive error detection width in special                             |           |           |           |           |           |           |           |            |            |           |           |
| SV053          | OD3        | control                                                                | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV054          | ORE        | Overrun detection width in closed loop control                         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV055          |            | Max. gate off delay time after emergency stop                          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV056          |            | Deceleration time constant at emergency stop                           | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV057          |            | SHG control gain                                                       | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
|                |            | SHG control gain in spindle synchronous control                        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV059          | TCNV       | Collision detection torque estimating gain                             | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV060          |            | Collision detection level                                              | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV061          |            | D/A output channel 1 data No.                                          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| SV062          |            | D/A output channel 2 data No.                                          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         |
| 37003          |            | D/A output channel 1 output scale<br>D/A output channel 2 output scale | 0         | 0         | 0         | 0         | 0         |           |           | 0          | 0          | 0         | 0         |
|                | DVJVDV     |                                                                        |           |           | . U       | . U       | . U       | . U       | i U       | U U        | , U        | i U       | U         |

## 3. Setup

|            |         |                               | Motor             | 1    |           |           | Stan  | dard HC   | motor | 2000 r/m | nin rating |      |      |      |
|------------|---------|-------------------------------|-------------------|------|-----------|-----------|-------|-----------|-------|----------|------------|------|------|------|
| Paran      | neter   |                               |                   | HC52 | HC10<br>2 | HC1<br>52 | HC202 | HC35<br>2 | HC    | 452      | HC         | 702  | HC   | 902  |
| No.        | Abbrev. | Details                       | Unit capacity     | 05   | 10        | 20        | 20    | 35        | 45S   | 45       | 70S        | 70   | 90S  | 90   |
| SV065      | TLC     | Tool end compensation spring  | g constant        | 0    | 0         | 0         | 0     | 0         | 0     | 0        | 0          | 0    | 0    | 0    |
|            |         | (System parameter area)       |                   |      |           |           |       |           |       |          |            |      |      |      |
| SV081      | SPEC2   | Servo specification selection | 2                 | 0000 | 0000      | 0000      | 0000  | 0000      | 0000  | 0000     | 0000       | 0000 | 0000 | 0000 |
| SV082      | SSF5    | Servo function selection 5    |                   | 0000 | 0000      | 0000      | 0000  | 0000      | 0000  | 0000     | 0000       | 0000 | 0000 | 0000 |
| SV083      | SSF6    | Servo function selection 6    |                   | 0000 | 0000      | 0000      | 0000  | 0000      | 0000  | 0000     | 0000       | 0000 | 0000 | 0000 |
| SV084      | SSF7    | Servo function selection 7    |                   | 0000 | 0000      | 0000      | 0000  | 0000      | 0000  | 0000     | 0000       | 0000 | 0000 | 0000 |
| SV085      | LMCk    | Lost motion compensation sp   | ring constant     | 0    | 0         | 0         | 0     | 0         | 0     | 0        | 0          | 0    | 0    | 0    |
| SV086      | LMCc    | Lost motion compensation vis  | scous coefficient | 0    | 0         | 0         | 0     | 0         | 0     | 0        | 0          | 0    | 0    | 0    |
| SV087      | FHz4    | Notch filter frequency 4      |                   | 0    | 0         | 0         | 0     | 0         | 0     | 0        | 0          | 0    | 0    | 0    |
| SV088      | FHz5    | Notch filter frequency 5      |                   | 0    | 0         | 0         | 0     | 0         | 0     | 0        | 0          | 0    | 0    | 0    |
| SV089      |         |                               |                   |      |           |           |       |           |       |          |            |      |      |      |
| :<br>SV100 |         |                               |                   | 0    | 0         | 0         | 0     | 0         | 0     | 0        | 0          | 0    | 0    | 0    |

# (2) HC Series (Standard 3000r/min rating)

# High-gain specifications

| Parameter         Mono                                                                                                                                                                                                                                                                  |         |         | Motor                                           | Motor Standard HC motor 3000 r/min rating |          |      |          |       |       |          |       |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------------------------------------------------|-------------------------------------------|----------|------|----------|-------|-------|----------|-------|-------|-------|
| Too.         Abbrev.         Details         Unit agencity         00         10         20         35         445         450         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000.         1000                                                                                                                                                                                                                           | Dener   |         | MOLOI                                           |                                           |          |      |          |       |       |          |       |       |       |
| SY000         PC1         Motor aste gen ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV002         PC2         Machine ade gaar ratio                                                                                                0000         0000         0000        000000        0000000        00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No.     | Abbrev. | Details Unit capacity                           | 05                                        | 10       | 20   | 35       | 45S   | 45    | 70S      | 70    | 90S   | 90    |
| SV002         PC2         Machine ade gaar ratio                                                                                                0000         0000         0000        000000        0000000        00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SV/001  | PC1     | Motor side gear ratio                           |                                           |          |      |          |       |       |          |       |       |       |
| SV003         PICM1         Peation loop gain 1         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47                                                                                                                                                                                                                                                                                                                                                |         |         |                                                 | -                                         |          |      |          |       |       |          |       |       |       |
| SY006         PCN2         Pesten long gain 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td>                                                                                                                                                                                                                                                     |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| Sivois         Vickit         Speed toop gain 1         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200                                                                                                                                                                                                                                                                                               | SV003   | PGN1    | Position loop gain 1                            | 47                                        | 47       | 47   | 47       | 47    | 47    | 47       | 47    | 47    | 47    |
| SV005         VCN1         Speed toop gain 1         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200                                                                                                                                                                                                                                                                                                  | SV004   | PGN2    | Position loop gain 2                            | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SY006         VCN2         Speed too gain 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                         | SV/005  |         |                                                 | -                                         | -        | -    | -        | -     | -     | -        | -     | -     | -     |
| SV007         VIL         Speed top back compensation         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        <                                                                                                                                                                                                                                                                                                                                                                                |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SY005         V/A         Speed foropiesd compensation         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         <                                                                                                                                                                                                                                                  |         |         |                                                 |                                           |          |      |          |       |       |          |       | -     |       |
| SY000         IDA         Current toop q axis lead compensation         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096                                                                                                                                                                                                                                                   | SV007   | VIL     | Speed loop delay compensation                   | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SY000         IDA         Current toop q axis lead compensation         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096                                                                                                                                                                                                                                                   | SV008   | VIA     | Speed loop lead compensation                    | 1364                                      | 1364     | 1364 | 1364     | 1364  | 1364  | 1364     | 1364  | 1364  | 1364  |
| SY010         IDA         Current loop dask gain         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768 <td></td>                                                                                                                                                            |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV011         IQG         Current loop a asis gain         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768 </td <td></td>                                                                                                                                                     |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV012         IDG         Current limit value         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768                                                                                                                                                                                                                                                                                                 |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV012         IDG         Current limit value         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768                                                                                                                                                                                                                                                                                                 | SV011   | IQG     | Current loop q axis gain                        | 768                                       | 768      | 768  | 768      | 768   | 768   | 768      | 768   | 768   | 768   |
| SV013         ILMT         Current limit value in special corrent         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                         | SV012   | IDG     |                                                 | 768                                       | 768      | 768  | 768      | 768   | 768   | 768      | 768   | 768   | 768   |
| SV015         LUMTSp         Current limit value in special control         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                       |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV015         FFC         Acceleration rate feed forward gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                 |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV016         LMC1         Lost motion compensation 1         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O        O <t< td=""><td>SV014</td><td>ILMIsp</td><td>Current limit value in special control</td><td>500</td><td>500</td><td>500</td><td>500</td><td>500</td><td>500</td><td>500</td><td>500</td><td>500</td><td>500</td></t<>                                                                                                                                                                      | SV014   | ILMIsp  | Current limit value in special control          | 500                                       | 500      | 500  | 500      | 500   | 500   | 500      | 500   | 500   | 500   |
| SV016         LMC1         Lost motion compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         <                                                                                                                                                                                                                                                                                                                                                                                | SV015   | FFC     | Acceleration rate feed forward gain             | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SY017         SPEC         Serve specification selection         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                                                                                                                                                          |         |         | •                                               |                                           |          |      |          |       |       |          | 0     | 0     | 0     |
| SV016         PNT         Ball serve pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                                                 | -                                         | -        | -    | -        | -     | -     | -        | -     | -     |       |
| SV016         PNG1         Position delector resolution                                                                              VO200         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |                                                 | 0000                                      | 0000     | 0000 | 0000     |       |       |          | 0000  | 1000  | 0000  |
| SV02D         INF2         Speed detector resolution                                                                              V020         DAVE         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SV018   | PIT     | Ball screw pitch                                |                                           |          |      |          |       |       |          |       |       |       |
| SV02D         INF2         Speed detector resolution                                                                              V020         DAVE         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SV019   | RNG1    | Position detector resolution                    |                                           |          |      |          |       |       |          |       |       |       |
| SV021         OLT         Överbad detection isvel         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                         |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV022         OLL         Overload detection width during servo         No         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         7 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                           |         |         |                                                 | -                                         |          |      |          |       |       |          |       |       |       |
| SV022         OD1         Excessive error detection width during servo NN         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6        6         6        7         <                                                                                                                                                                                                                                                                                                                                                                       |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV02E         INP         In-position detection width         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50                                                                                                                                                                                                                                                                                                                                          | SV022   | OLL     | Overload detection level                        | 150                                       | 150      | 150  | 150      | 150   | 150   | 150      | 150   | 150   | 150   |
| SV02E         INP         In-position detection width         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50                                                                                                                                                                                                                                                                                                                                          | SV023   | OD1     | Excessive error detection width during serve ON | 6                                         | 6        | 6    | 6        | 6     | 6     | 6        | 6     | 6     | 6     |
| SV025         MTYP         Notin/detector type         xxC0         xxC1         xxC2         xxC3         xxA4         xxA5         xxC6         xxA6           SV026         OPF         Excessive error detection with during servo         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                              |         |         |                                                 | -                                         |          | -    |          |       |       | -        |       |       |       |
| Sv026         OD2         Excessive error detection with during servo<br>OFF         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         0         0                                                                                                                                                                                                                                                                                                                                                                            |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SVU20         OFF         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O </td <td>SV025</td> <td>MTYP</td> <td></td> <td>xxC0</td> <td>xxC1</td> <td>xxC2</td> <td>xxC3</td> <td>xxA4</td> <td>xxC4</td> <td>xxA5</td> <td>xxC5</td> <td>xxA6</td> <td>xxC6</td>                                                                                                                                                                                                       | SV025   | MTYP    |                                                 | xxC0                                      | xxC1     | xxC2 | xxC3     | xxA4  | xxC4  | xxA5     | xxC5  | xxA6  | xxC6  |
| SVU20         OFF         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O </td <td>SV/000</td> <td>000</td> <td>Excessive error detection width during servo</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td></td>                                                                                                                                                                                          | SV/000  | 000     | Excessive error detection width during servo    | ~                                         | ~        | ~    | ~        | ~     | ~     | ~        | ~     | ~     |       |
| SY027         SSF1         Servo function selection 1         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000 <t< td=""><td>SV026</td><td>OD2</td><td></td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td></t<>                                                                                                      | SV026   | OD2     |                                                 | 6                                         | 6        | 6    | 6        | 6     | 6     | 6        | 6     | 6     | 6     |
| SV028         VCS         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>SV/027</td> <td>SSE1</td> <td></td> <td>4000</td>                                                                                                                                                                                          | SV/027  | SSE1    |                                                 | 4000                                      | 4000     | 4000 | 4000     | 4000  | 4000  | 4000     | 4000  | 4000  | 4000  |
| SV029         VCS         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>33F I</td> <td></td>                                                                                                                                                                                                                                       |         | 33F I   |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV030         V/C         Voltage dead time compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                    |         |         |                                                 | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        |       | 0     | 0     |
| SV030         V/C         Voltage dead time compensation /<br>current bias 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                            | SV029   | VCS     | Speed at the change of speed loop gain          | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV030         IVC         current bias 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                            |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV031         Overshooting compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>SV030</td><td>IVC</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>                                                                                                                                                                                                                                    | SV030   | IVC     |                                                 | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV032         TOF         Torque offset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             |         |         |                                                 |                                           |          |      | -        |       |       |          |       |       |       |
| SV033         SF2         Servo function selection 2         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <td< td=""><td>SV031</td><td>OVS1</td><td>Overshooting compensation 1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>                                                                         | SV031   | OVS1    | Overshooting compensation 1                     | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV033         SF2         Servo function selection 2         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <td< td=""><td>SV032</td><td>TOF</td><td>Torque offset</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>                                                                                        | SV032   | TOF     | Torque offset                                   | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV034         SSF3         Servo function selection 3         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <t< td=""><td>SV033</td><td>SSF2</td><td></td><td>0000</td><td>0000</td><td>0000</td><td>0000</td><td>0000</td><td>0000</td><td>0000</td><td>0000</td><td>0000</td><td>0000</td></t<>                                                                       | SV033   | SSF2    |                                                 | 0000                                      | 0000     | 0000 | 0000     | 0000  | 0000  | 0000     | 0000  | 0000  | 0000  |
| SV035         SSF4         Servo function selection 4         0000         0000         0040         0040         0040         0040         0040         0040         0040         0040         0040         0040         0040         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                        |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV036         PTYP         Power supply type         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <td></td>                                                                                                                       |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV037         JL         Load inertia scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                         | SV035   | SSF4    | Servo function selection 4                      | 0000                                      | 0000     | 0040 | 0040     | 0040  | 0040  | 0040     | 0040  | 0000  | 0000  |
| SV037         JL         Load inertia scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                         | SV036   | PTYP    | Power supply type                               | 0000                                      | 0000     | 0000 | 0000     | 0000  | 0000  | 0000     | 0000  | 0000  | 0000  |
| SV038         FHz1         Notch filter frequency 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                      |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV039         LMCD         Lost motion compensation timing         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                    |         |         |                                                 | -                                         |          | -    |          |       |       |          | -     | -     |       |
| SV040         LMCT         Lost motion compensation non-sensitive band<br>(urrent bias 2         0         0         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         1                                                                                                                                                                                                      |         |         |                                                 | -                                         |          | -    |          |       | -     | -        |       | -     | -     |
| SV040         Lift(1)         /current bias 2         0         0         0         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240 <th< td=""><td>SV039</td><td>LMCD</td><td>Lost motion compensation timing</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>                                          | SV039   | LMCD    | Lost motion compensation timing                 | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV040         Lift(1)         /current bias 2         0         0         0         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240 <th< td=""><td>0.10.10</td><td>LNOT</td><td>Lost motion compensation non-sensitive band</td><td>•</td><td></td><td>•</td><td>10010</td><td>10010</td><td>10010</td><td>10010</td><td>40040</td><td>40040</td><td>40040</td></th<> | 0.10.10 | LNOT    | Lost motion compensation non-sensitive band     | •                                         |          | •    | 10010    | 10010 | 10010 | 10010    | 40040 | 40040 | 40040 |
| SV041         LMC2         Lost motion compensation 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                         | SV040   | LMCT    |                                                 | 0                                         | 0        | 0    | 10240    | 10240 | 10240 | 10240    | 10240 | 10240 | 10240 |
| SV042         OVS2         Overshooting compensation 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                        | 01/044  | 1.1400  |                                                 | 0                                         | <u> </u> | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV043         OBS1         Disturbance observer gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                |         |         |                                                 | -                                         |          |      |          |       | -     | -        |       | -     |       |
| SV044         OBS2         Disturbance observer gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                | SV042   | OVS2    | Overshooting compensation 2                     | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV044         OBS2         Disturbance observer gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                | SV043   | OBS1    | Disturbance observer filter frequency           | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV045         TRUB         Frictional torque/current bias 3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                   |         |         |                                                 | -                                         | -        | -    | -        | -     | -     | -        | -     | -     | -     |
| SV046         FH22         Notch filter frequency 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td>0</td> <td></td>                                                                                                                                                                                                                                                   |         |         | 0                                               |                                           |          |      |          |       |       |          |       |       |       |
| SV047         EC         Inductive voltage compensation gain         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                              |         |         |                                                 | -                                         |          | -    |          |       |       |          |       |       |       |
| SV048         EMGrt         Vertical axis drop prevention time         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                |         |         | Notch filter frequency 2                        | -                                         |          |      |          |       |       |          |       | 0     |       |
| SV048         EMGrt         Vertical axis drop prevention time         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                | SV047   | EC      | Inductive voltage compensation gain             | 100                                       | 100      | 100  | 100      | 100   | 100   | 100      | 100   | 100   | 100   |
| SV049         PGN1sp         Position loop gain 1 in spindle synchronous<br>control         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15                                                                                                                                                                                                                                                                                                                       |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV049         PGN1sp<br>control         control         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15<                                                                                                                                                                                                                                                                                                                                    | 01040   |         |                                                 | 0                                         | 0        | 0    | 0        | U     | U     | U        | 0     | 0     | U     |
| SV050         PGN2sp<br>control         Position loop gain 2 in spindle synchronous<br>control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td>SV049</td><td>PGN1sn</td><td></td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td></th<>                                                                                                                                                                                              | SV049   | PGN1sn  |                                                 | 15                                        | 15       | 15   | 15       | 15    | 15    | 15       | 15    | 15    | 15    |
| SV050         PGN2sp<br>control         control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>0.010</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                            | 0.010   |         |                                                 |                                           |          |      |          |       | 10    |          |       |       |       |
| SV050         PGN2sp<br>control         control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>01/0-0</td> <td>DONG</td> <td>Position loop gain 2 in spindle synchronous</td> <td>~</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>-</td> <td>_</td> <td>~</td> <td>~</td> <td>_</td>                                                                                                                                                                                     | 01/0-0  | DONG    | Position loop gain 2 in spindle synchronous     | ~                                         |          | _    | _        | _     | -     | _        | ~     | ~     | _     |
| SV051         DFBT         Dual feedback control time constant         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                | SV050   | PGN2sp  |                                                 | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV052         DFBN         Dual feedback control non-sensitive band         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                           | 01/054  | DEDT    |                                                 | <u> </u>                                  | <u> </u> | ~    | <u> </u> | _     | ^     | ^        | ^     |       |       |
| SV053         OD3         Excessive error detection width in special<br>control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                         |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV053         CDJ3         control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                  | SV052   | DFBN    | Dual feedback control non-sensitive band        | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV053         CDJ3         control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                  | 01/070  | 050     | Excessive error detection width in special      | ~                                         | _        | ^    | _        | _     |       | <u>^</u> | ^     | ^     | _     |
| SV054         ORE         Overrun detection width in closed loop control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                | SV053   | OD3     |                                                 | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV055         EMGx         Max. gate off delay time after emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                | 01/05/  |         |                                                 | ^                                         | _        | ^    | ~        | _     | ^     | ^        | ^     |       |       |
| SV056         EMGt         Deceleration time constant at emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                       |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV056         EMGt         Deceleration time constant at emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                       | SV055   | EMGx    | Max. gate off delay time after emergency stop   | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV057         SHGC         SHG control gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                         | SV056   |         |                                                 | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV058         SHGCsp         SHG control gain in spindle synchronous control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                            |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV059         TCNV         Collision detection torque estimating gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                            |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV060         TLMT         Collision detection level         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV060         TLMT         Collision detection level         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                | SV059   | TCNV    | Collision detection torque estimating gain      | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
| SV061         DA1NO         D/A output channel 1 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                     |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV062         DA2NO         D/A output channel 2 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                     |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV063         DA1MPY         D/A output channel 1 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV064         DA2MPY         D/A output channel 2 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
| SV064         DA2MPY         D/A output channel 2 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                | SV063   | DA1MPY  | D/A output channel 1 output scale               | 0                                         | 0        | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |                                                 |                                           |          | 0    |          |       |       |          |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |                                                 |                                           |          |      |          |       |       |          |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20002   | 1LC     | roor end compensation spring constant           | U                                         | U        | U    | U        | U     | U     | U        | U     | U     | U     |

## 3. Setup

|            |           |                               | Motor             |      |       | S     | tandard | HC moto | r 3000 | r/min ra | ting |      |      |
|------------|-----------|-------------------------------|-------------------|------|-------|-------|---------|---------|--------|----------|------|------|------|
| Paran      | neter     |                               |                   | HC53 | HC103 | HC153 | HC203   | HC      | 353    | HC       | 453  | HC   | 703  |
| No.        | Abbrev.   | Details                       | Unit capacity     | 05   | 10    | 20    | 35      | 45S     | 45     | 70S      | 70   | 90S  | 90   |
|            |           | (System parameter area)       |                   |      |       |       |         |         |        |          |      |      |      |
| SV081      | SPEC2     | Servo specification selection | 2                 | 0000 | 0000  | 0000  | 0000    | 0000    | 0000   | 0000     | 0000 | 0000 | 0000 |
| SV082      | SSF5      | Servo function selection 5    |                   | 0000 | 0000  | 0000  | 0000    | 0000    | 0000   | 0000     | 0000 | 0000 | 0000 |
| SV083      | SSF6      | Servo function selection 6    | 0000              | 0000 | 0000  | 0000  | 0000    | 0000    | 0000   | 0000     | 0000 | 0000 |      |
| SV084      | SSF7      | Servo function selection 7    |                   | 0000 | 0000  | 0000  | 0000    | 0000    | 0000   | 0000     | 0000 | 0000 | 0000 |
| SV085      | LMCk      | Lost motion compensation sp   | ring constant     | 0    | 0     | 0     | 0       | 0       | 0      | 0        | 0    | 0    | 0    |
| SV086      | LMCc      | Lost motion compensation vis  | scous coefficient | 0    | 0     | 0     | 0       | 0       | 0      | 0        | 0    | 0    | 0    |
| SV087      | FHz4      | Notch filter frequency 4      |                   | 0    | 0     | 0     | 0       | 0       | 0      | 0        | 0    | 0    | 0    |
| SV088      | FHz5      | Notch filter frequency 5      |                   | 0    | 0     | 0     | 0       | 0       | 0      | 0        | 0    | 0    | 0    |
| SV089      |           |                               |                   |      |       |       |         |         |        |          |      |      |      |
| :<br>SV100 | :<br>V100 |                               |                   |      | 0     | 0     | 0       | 0       | 0      | 0        | 0    | 0    | 0    |

# (3) HC Series (Low-inertia)

# High-gain specifications

|                |              | Motor                                                                       |           |           |                |           |           |  |  |
|----------------|--------------|-----------------------------------------------------------------------------|-----------|-----------|----------------|-----------|-----------|--|--|
| Parar          |              |                                                                             | HC103R    | HC153R    | HC203R         | HC353R    | HC503R    |  |  |
| No.            | Abbrev.      | Details Unit capacity                                                       | 10        | 10        | 20             | 35        | 45        |  |  |
| SV001          |              | Motor side gear ratio                                                       |           |           |                |           |           |  |  |
| SV002          | PC2          | Machine side gear ratio                                                     |           |           |                |           |           |  |  |
| SV003<br>SV004 | PGN1<br>PGN2 | Position loop gain 1                                                        | 33<br>0   | 33<br>0   | <u>33</u><br>0 | 33<br>0   | <u>33</u> |  |  |
| SV004<br>SV005 | VGN1         | Position loop gain 2<br>Speed loop gain 1                                   | 15        | 15        | 20             | 40        | 40        |  |  |
| SV005          | VGN1<br>VGN2 | Speed loop gain 2                                                           | 0         | 0         | 0              |           |           |  |  |
| SV007          | VIL          | Speed loop delay compensation                                               | 0         | 0         | 0              | 0         | 0         |  |  |
| SV008          | VIA          | Speed loop lead compensation                                                | 1364      | 1364      | 1364           | 1364      | 1364      |  |  |
| SV009          | IQA          | Current loop q axis lead compensation                                       | 4096      | 4096      | 4096           | 4096      | 4096      |  |  |
| SV010          | IDA          | Current loop d axis lead compensation                                       | 4096      | 4096      | 4096           | 4096      | 4096      |  |  |
| SV011          | IQG          | Current loop q axis gain                                                    | 256       | 256       | 256            | 256       | 512       |  |  |
| SV012          | IDG          | Current loop d axis gain                                                    | 512       | 512       | 512            | 512       | 512       |  |  |
| SV013          |              | Current limit value                                                         | 500       | 500       | 500            | 500       | 500       |  |  |
| SV014          |              | Current limit value in special control                                      | 500       | 500       | 500            | 500       | 500       |  |  |
| SV015          |              | Acceleration rate feed forward gain                                         | 0         | 0         | 0              | 0         | 0         |  |  |
| SV016          |              | Lost motion compensation 1                                                  | 0         | 0         | 0              | 0         | 0         |  |  |
| SV017          | SPEC         | Servo specification selection                                               | 0000      | 0000      | 0000           | 0000      | 0000      |  |  |
| SV018          |              | Ball screw pitch                                                            |           |           |                |           |           |  |  |
| SV019          |              | Position detector resolution                                                |           |           |                |           |           |  |  |
| SV020          |              | Speed detector resolution                                                   |           |           |                |           |           |  |  |
| SV021          | OLT          | Overload detection time constant                                            | 60<br>150 | 60<br>150 | 60<br>150      | 60<br>150 | 60<br>150 |  |  |
| SV022<br>SV023 | OLL<br>OD1   | Overload detection level<br>Excessive error detection width during servo ON | 150       | 150       | 150            | 150<br>6  | 150<br>6  |  |  |
| SV023<br>SV024 | INP          | In-position detection width                                                 | 50        | 50        | 50             | 50        | 50        |  |  |
| SV024          | MTYP         | Motor/detector type                                                         | xxE1      | xxE2      | xxE3           | xxE4      | xxE5      |  |  |
|                |              | Excessive error detection width during servo                                |           |           |                |           |           |  |  |
| SV026          |              | OFF                                                                         | 6         | 6         | 6              | 6         | 6         |  |  |
| SV027          | SSF1         | Servo function selection 1                                                  | 4000      | 4000      | 4000           | 4000      | 4000      |  |  |
| SV028          |              |                                                                             | 0         | 0         | 0              | 0         | 0         |  |  |
| SV029          | VCS          | Speed at the change of speed loop gain                                      | 0         | 0         | 0              | 0         | 0         |  |  |
| SV030          | IVC          | Voltage dead time compensation /                                            | 0         | 0         | 0              | 0         | 0         |  |  |
| SV031          | OVS1         | current bias 1                                                              | 0         | 0         | 0              | 0         | 0         |  |  |
| SV031<br>SV032 | TOF          | Overshooting compensation 1 Torque offset                                   | 0         | 0         | 0              | 0         | 0         |  |  |
| SV032          | SSF2         | Servo function selection 2                                                  | 0200      | 0200      | 0200           | 0200      | 0200      |  |  |
| SV033          | SSF3         | Servo function selection 3                                                  | 0000      | 0000      | 0000           | 0000      | 0200      |  |  |
| SV035          | SSF4         | Servo function selection 3                                                  | 0000      | 0000      | 0000           | 0000      | 0000      |  |  |
| SV036          | PTYP         | Power supply type                                                           | 0000      | 0000      | 0000           | 0000      | 0000      |  |  |
| SV037          | JL           | Load inertia scale                                                          | 0         | 0         | 0              | 0         | 0         |  |  |
| SV038          | FHz1         | Notch filter frequency 1                                                    | 0         | 0         | 0              | 0         | 0         |  |  |
| SV039          | LMCD         | Lost motion compensation timing                                             | 0         | 0         | 0              | 0         | 0         |  |  |
| SV040          | LMCT         | Lost motion compensation non-sensitive band                                 | 0         | 0         | 0              | 0         | 0         |  |  |
|                |              | /current bias 2                                                             | -         | -         | -              | -         | -         |  |  |
| SV041          | LMC2         | Lost motion compensation 2                                                  | 0         | 0         | 0              | 0         | 0         |  |  |
| SV042          | OVS2         | Overshooting compensation 2                                                 | 0         | 0         | 0              | 0         | 0         |  |  |
| SV043          |              | Disturbance observer filter frequency                                       | 0         | 0         | 0              | 0         | 0         |  |  |
| SV044<br>SV045 |              | Disturbance observer gain                                                   | 0         | 0         | 0              | 0         | 0         |  |  |
| SV045<br>SV046 |              | Frictional torque/current bias 3<br>Notch filter frequency 2                | 0         | 0         | 0              | 0         | 0         |  |  |
| SV046<br>SV047 | EC EC        | Inductive voltage compensation gain                                         | 100       | 100       | 100            | 100       | 100       |  |  |
| SV047<br>SV048 |              | Vertical axis drop prevention time                                          | 0         | 0         | 0              | 0         | 0         |  |  |
| SV048          |              | Position loop gain 1 in spindle synchronous                                 | -         |           | -              | -         | -         |  |  |
| 3v049          | FGINISP      | control                                                                     | 15        | 15        | 15             | 15        | 15        |  |  |
| SV050          | PGN2sp       | Position loop gain 2 in spindle synchronous<br>control                      | 0         | 0         | 0              | 0         | 0         |  |  |
| SV051          | DFBT         | Dual feedback control time constant                                         | 0         | 0         | 0              | 0         | 0         |  |  |
| SV052          | DFBN         | Dual feedback control non-sensitive band                                    | 0         | 0         | 0              | 0         | 0         |  |  |
| SV053          | OD3          | Excessive error detection width in special                                  | 0         | 0         | 0              | 0         | 0         |  |  |
| SV054          | ORE          | control Overrun detection width in closed loop control                      | 0         | 0         | 0              | 0         | 0         |  |  |
| SV055          |              | Max. gate off delay time after emergency stop                               | 0         | 0         | 0              | 0         | 0         |  |  |
| SV056          |              | Deceleration time constant at emergency stop                                | 0         | 0         | 0              | 0         | 0         |  |  |
| SV057          | SHGC         | SHG control gain                                                            | 0         | 0         | 0              | 0         | 0         |  |  |
|                |              | SHG control gain in spindle synchronous control                             | 0         | 0         | 0              | 0         | 0         |  |  |
| SV059          |              | Collision detection torque estimating gain                                  | 0         | 0         | 0              | 0         | 0         |  |  |
| SV060          |              | Collision detection level                                                   | 0         | 0         | 0              | 0         | 0         |  |  |
| SV061          |              | D/A output channel 1 data No.                                               | 0         | 0         | 0              | 0         | 0         |  |  |
| SV062          | DA2NO        | D/A output channel 2 data No.                                               | 0         | 0         | 0              | 0         | 0         |  |  |
|                | DA1MPY       | D/A output channel 1 output scale                                           | 0         | 0         | 0              | 0         | 0         |  |  |
|                |              |                                                                             | -         | -         | 0              |           | 0         |  |  |
|                |              | D/A output channel 2 output scale<br>Tool end compensation spring constant  | 0         | 0         | 0              | 0         | 0         |  |  |

## 3. Setup

|            |         |                               | Motor             |        | Lo     | w-inertia HC mo | tor    |        |
|------------|---------|-------------------------------|-------------------|--------|--------|-----------------|--------|--------|
| Parar      | neter   |                               |                   | HC103R | HC153R | HC203R          | HC353R | HC503R |
| No.        | Abbrev. | Details                       | Unit capacity     | 10     | 10     | 20              | 35     | 45     |
|            |         | (System parameter area)       |                   |        |        |                 |        |        |
| SV081      | SPEC2   | Servo specification selection | 2                 | 0000   | 0000   | 0000            | 0000   | 0000   |
| SV082      | SSF5    | Servo function selection 5    |                   | 0000   | 0000   | 0000            | 0000   | 0000   |
| SV083      | SSF6    | Servo function selection 6    |                   | 0000   | 0000   | 0000            | 0000   | 0000   |
| SV084      | SSF7    | Servo function selection 7    |                   | 0000   | 0000   | 0000            | 0000   | 0000   |
| SV085      | LMCk    | Lost motion compensation sp   | oring constant    | 0      | 0      | 0               | 0      | 0      |
| SV086      | LMCc    | Lost motion compensation vi   | scous coefficient | 0      | 0      | 0               | 0      | 0      |
| SV087      | FHz4    | Notch filter frequency 4      |                   | 0      | 0      | 0               | 0      | 0      |
| SV088      | FHz5    | Notch filter frequency 5      |                   | 0      | 0      | 0               | 0      | 0      |
| SV089      |         |                               |                   | 0      | 0      | 0               | 0      | 0      |
| :<br>SV100 |         |                               |                   | 0      | 0      | 0               | 0      | 0      |

## (4) HA series

## High-gain specifications

| Parameter         HADS3N         HAZ3N                                                                                                    |        |         | Motor                                       | Notor Small capacity HA motor Large capacity HA mo |      |      |       |      |      |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------------------------------------------|----------------------------------------------------|------|------|-------|------|------|--|--|--|
| To.         Abbrev.         Details         Unit capacity         01         03         03         110         150           SV001         PC1         Machine ado guar ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Parar  | neter   |                                             | HA053N                                             |      |      | HA33N |      |      |  |  |  |
| SY002         PC2L         Machine side gear ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.    | Abbrev. | Details Unit capacity                       |                                                    |      |      |       |      |      |  |  |  |
| SY002         PC2L         Machine side gear ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV003         PCN1         Position loop gain 1         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33                                                                                                                                                                                                                      |        |         | 0                                           |                                                    |      |      |       |      |      |  |  |  |
| SV005         PGN2         Posten loop gain 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td>                                                                                                                                                       |        |         |                                             | 33                                                 | 33   | 33   | 33    | 33   | 33   |  |  |  |
| SV005         VCN1         Speed toop gain 1         TO         TO<                                                                                                                                                                                                             |        |         |                                             |                                                    | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV060         VIX.2         Speed too plan2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                               | SV005  | VGN1    |                                             | 70                                                 | 70   | 100  | 100   | 150  | 150  |  |  |  |
| SV008         V/A         Speed toop lead compensation         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         <                                                                                                                        | SV006  | VGN2    | Speed loop gain 2                           | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SY005         IQA         Current loop 1 axis lead compensation         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4006                                                                                                                         | SV007  | VIL     | Speed loop delay compensation               | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV010         IDA         Current loop axis gain         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         758         750         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500 <td>SV008</td> <td>VIA</td> <td>Speed loop lead compensation</td> <td>1364</td> <td>1364</td> <td>1364</td> <td>1364</td> <td>1364</td> <td>1364</td>              | SV008  | VIA     | Speed loop lead compensation                | 1364                                               | 1364 | 1364 | 1364  | 1364 | 1364 |  |  |  |
| SV011         IQC         Current loop axis gain         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768 <td>SV009</td> <td>IQA</td> <td>Current loop q axis lead compensation</td> <td>4096</td> <td>4096</td> <td>4096</td> <td>4096</td> <td>4096</td> <td>4096</td>     | SV009  | IQA     | Current loop q axis lead compensation       | 4096                                               | 4096 | 4096 | 4096  | 4096 | 4096 |  |  |  |
| SV012         IDG         Current limit value         768         768         768         768         512         512           SV013         ILMT         Current limit value in special control         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                   | SV010  | IDA     |                                             | 4096                                               | 4096 | 4096 | 4096  | 4096 | 4096 |  |  |  |
| SV015         LMT         Current limit value in special control         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                | SV011  | IQG     | Current loop q axis gain                    | 768                                                | 768  | 768  | 768   | 512  | 512  |  |  |  |
| SV016         ILMTSp         Current limit value in special control         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                             | SV012  | IDG     | Current loop d axis gain                    | 768                                                | 768  | 768  | 768   | 512  | 512  |  |  |  |
| SV015         FFC         Acceleration rate feed forward gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                       | SV013  |         |                                             | 500                                                | 500  | 500  | 500   | 500  | 500  |  |  |  |
| SY016         LMC1         Lost motion compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                               |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SY017         SPEC         Serve specification selection         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                                |        |         | ×                                           | -                                                  |      |      | -     | -    | -    |  |  |  |
| SV018         PIT         Ball screw pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |                                             |                                                    | -    | -    | -     | -    |      |  |  |  |
| SV016         RNG1         Position detector resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |         |                                             | 0000                                               | 0000 | 0000 | 0000  | 0000 | 0000 |  |  |  |
| SV02D         ING2         Speed detector resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV021         OLT         Overlaad detection live constant         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60                                                                                                                                                                                                           |        |         |                                             |                                                    |      |      |       | -    |      |  |  |  |
| SV022         OLL         Overload detection width during servo ON         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7<                                                                                                                                                                                                                                                 |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV023         OD1         Excessive error detection width during servo ON         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         6         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                     |        | -       |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV02E         INP         In-position detection width         50         50         50         50         50           SV02E         INTYP         Motor/detector type         xx8C         xx8C         xx8E         xx2E         xx2E           SV02E         OVC2         Excessive error detection width during servo<br>OFF         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                          |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV025         MTYP         Modor/detector type         xx8C         xx8C         xx8E         xx8E<                                                                                                                            |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV026         OD2         Excessive error detection width during servo<br>OFF         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                 |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV027         SSF1         Serve function selection 1         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000 <t< td=""><td>SV025</td><td>MTYP</td><td></td><td>xx8C</td><td>xx8D</td><td>xx8E</td><td>xx8F</td><td>xx2E</td><td>xx2F</td></t<> | SV025  | MTYP    |                                             | xx8C                                               | xx8D | xx8E | xx8F  | xx2E | xx2F |  |  |  |
| SPT         SPT         Servo function selection 1         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                           | SV026  | OD2     |                                             | 6                                                  | 6    | 6    | 6     | 6    | 6    |  |  |  |
| SV028         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                      |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV029         VCS         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>SSF1</td> <td>Servo function selection 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                            |        | SSF1    | Servo function selection 1                  |                                                    |      |      |       |      |      |  |  |  |
| Sv030         V/C         Voltage dead time compensation /<br>ourrent bias 1         0         0         0         0         0         0           SV031         OVS1         Overshooting compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                             |        | 1/00    | Opened at the shares of speed lase sain     | -                                                  | -    |      | -     | -    | -    |  |  |  |
| SV031         VVC         current bias 1         0         0         0         0         0         0         0           SV031         OVE         forque offset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                  | 50029  | VCS     |                                             | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV031         OVS1         Overshooting compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                              | SV030  | IVC     |                                             | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV032         TOF         Torque offset         0         0         0         0         0         0         0           SV033         SSF2         Servo function selection 2         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                                             | SV/031 | 01/91   |                                             | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV033         SSF2         Servo function selection 2         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <t< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td></t<>                             |        |         |                                             | -                                                  | -    |      | -     | -    | -    |  |  |  |
| SV034         SSF3         Servo function selection 4         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td></t<>                              |        |         |                                             | -                                                  |      |      | -     | -    | -    |  |  |  |
| SV335         SSF4         Servo function selection 4         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000                                                                                                                        |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV036         PTYP         Power supply type         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                     |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV037         JL         Load inertia scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                               |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV038         FHz1         Notch filter frequency 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV039         LMCD         Lost motion compensation timing         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                          |        |         |                                             | -                                                  | -    | -    | -     | -    |      |  |  |  |
| SV040         LMCT         Lost motion compensation non-sensitive band         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                     |        |         |                                             |                                                    | -    |      | -     | -    | -    |  |  |  |
| SV040         Link1         /current bias 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                               |        |         |                                             |                                                    | -    |      | -     |      | -    |  |  |  |
| SV041         LMC2         Lost motion compensation 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                               | SV040  | LMCI    |                                             | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV042         OVS2         Overshooting compensation 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                              | SV041  | LMC2    |                                             | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV043         OBS1         Disturbance observer gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                      |        |         |                                             | 0                                                  | 0    |      | 0     | 0    | 0    |  |  |  |
| SV045         TRUB         Frictional torque/current bias 3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                         | SV043  |         |                                             | 0                                                  | 0    |      | 0     | 0    | 0    |  |  |  |
| SV046         FH22         Notch filter frequency 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>SV044</td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td>                                                                                                                                                         | SV044  |         |                                             | 0                                                  |      | 0    |       | 0    | 0    |  |  |  |
| SV047         EC         Inductive voltage compensation gain         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                    |        | TRUB    | Frictional torque/current bias 3            | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV048EMGrtVertical axis drop prevention time000000SV049PGN1spPosition loop gain 1 in spindle synchronous<br>control1515151515151515SV050PGN2spPosition loop gain 2 in spindle synchronous<br>control00000000SV051DFBTDual feedback control time constant0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SV046  | FHz2    | Notch filter frequency 2                    | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV049         PGN1sp         Position loop gain 1 in spindle synchronous<br>control         15         15         15         15         15         15           SV050         PGN2sp         Position loop gain 2 in spindle synchronous<br>control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>SV047</td><td>EC</td><td>Inductive voltage compensation gain</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td></td<>                                                        | SV047  | EC      | Inductive voltage compensation gain         | 100                                                | 100  | 100  | 100   | 100  | 100  |  |  |  |
| SV049PGN1sp<br>controlcontrol15151515151515SV050PGN2sp<br>controlPosition loop gain 2 in spindle synchronous<br>control0000000SV051DFBTDual feedback control time constant00000000SV052DFBNDual feedback control non-sensitive band000000000SV053OD3Excessive error detection width in special control000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 </td <td>SV048</td> <td>EMGrt</td> <td>Vertical axis drop prevention time</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SV048  | EMGrt   | Vertical axis drop prevention time          | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV050PGN2spPosition loop gain 2 in spindle synchronous<br>control000000SV051DFBTDual feedback control time constant0000000SV052DFBNDual feedback control non-sensitive band00000000SV053OD3Excessive error detection width in special control000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <t< td=""><td>SV049</td><td>PGN1sp</td><td></td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SV049  | PGN1sp  |                                             | 15                                                 | 15   | 15   | 15    | 15   | 15   |  |  |  |
| SV051         DFBT         Dual feedback control time constant         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                      | SV050  | PGN2sp  | Position loop gain 2 in spindle synchronous | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |
| SV052         DFBN         Dual feedback control non-sensitive band         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                 | SV051  | DFRT    |                                             | 0                                                  | 0    | n    | ٥     | 0    | ٥    |  |  |  |
| SV053         OD3         Excessive error detection width in special control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                  |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV054         ORE         Overrun detection width in closed loop control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                      |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV055         EMGx         Max. gate off delay time after emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                      |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV056         EMGt         Deceleration time constant at emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                             |        |         |                                             |                                                    |      |      |       | -    |      |  |  |  |
| SV057         SHGC         SHG control gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                               |        |         | · · · · · · · · · · · · · · · · · · ·       |                                                    |      |      |       |      |      |  |  |  |
| SV058         SHG control gain in spindle synchronous control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                             |        |         |                                             |                                                    |      |      |       | -    |      |  |  |  |
| SV059         TCNV         Collision detection torque estimating gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td></td><td><u> </u></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td></th<>                                                                                                                                            |        |         | <u> </u>                                    |                                                    | -    |      |       | -    |      |  |  |  |
| SV060         TLMT         Collision detection level         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                      |        |         |                                             |                                                    |      |      |       | -    |      |  |  |  |
| SV061         DA1NO         D/A output channel 1 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                           |        |         |                                             | -                                                  |      |      |       |      |      |  |  |  |
| SV062         DA2NO         D/A output channel 2 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                           |        |         |                                             |                                                    |      |      |       |      |      |  |  |  |
| SV063         DA1MPY         D/A output channel 1 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                      |        |         |                                             | -                                                  |      |      | -     | -    |      |  |  |  |
| SV064         DA2MPY         D/A output channel 2 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                      |        |         | •                                           |                                                    |      |      |       |      |      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |                                             |                                                    |      |      |       | -    |      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SV065  | TLC     | Tool end compensation spring constant       | 0                                                  | 0    | 0    | 0     | 0    | 0    |  |  |  |

## 3. Setup

|            |         |                               | Motor            |        | Small capac | ity HA motor |       | Large capac | ity HA motor |
|------------|---------|-------------------------------|------------------|--------|-------------|--------------|-------|-------------|--------------|
| Parar      | neter   |                               |                  | HA053N | HA13N       | HA23N        | HA33N | HA-LF11K2   | HA-LF15K2    |
| No.        | Abbrev. | Details                       | Unit capacity    | 01     | 01          | 03           | 03    | 110         | 150          |
|            |         | (System parameter area)       |                  |        |             |              |       |             |              |
| SV081      | SPEC2   | Servo specification selection | 2                | 0000   | 0000        | 0000         | 0000  | 0000        | 0000         |
| SV082      | SSF5    | Servo function selection 5    |                  | 0000   | 0000        | 0000         | 0000  | 0000        | 0000         |
| SV083      | SSF6    | Servo function selection 6    |                  | 0000   | 0000        | 0000         | 0000  | 0000        | 0000         |
| SV084      | SSF7    | Servo function selection 7    |                  | 0000   | 0000        | 0000         | 0000  | 0000        | 0000         |
| SV085      | LMCk    | Lost motion compensation sp   | ring constant    | 0      | 0           | 0            | 0     | 0           | 0            |
| SV086      | LMCc    | Lost motion compensation vis  | cous coefficient | 0      | 0           | 0            | 0     | 0           | 0            |
| SV087      | FHz4    | Notch filter frequency 4      |                  | 0      | 0           | 0            | 0     | 0           | 0            |
| SV088      | FHz5    | Notch filter frequency 5      |                  | 0      | 0           | 0            | 0     | 0           | 0            |
| SV089      |         |                               |                  |        |             |              |       |             |              |
| :<br>SV100 |         |                               |                  | 0      | 0           | 0            | 0     | 0           | 0            |

## (5) HA series (MDS-B-Vx4)

## High-gain specifications

| Paran<br>No.<br>SV001<br>SV002<br>SV003<br>SV005<br>SV005<br>SV006<br>SV005<br>SV006<br>SV007<br>SV008<br>SV009<br>SV010<br>SV011                                                   | neter<br>Abbrev.<br>PC1<br>PC2<br>PGN1<br>PGN2<br>VGN1<br>VGN2 | Details         Unit capacity           Motor side gear ratio         Machine side gear ratio           Position loop gain 1         1 | HA40N<br>05<br> | HA80N<br>10 | HA moto<br>HA100N<br>20 | HA200N<br>35 | nin rating<br>HA300N<br>45 | HA700N<br>70 | HA900N<br>90 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------------------|--------------|----------------------------|--------------|--------------|
| No.           SV001           SV002           SV003           SV004           SV005           SV006           SV007           SV008           SV009           SV010           SV010 | Abbrev.<br>PC1<br>PC2<br>PGN1<br>PGN2<br>VGN1                  | Motor side gear ratio<br>Machine side gear ratio                                                                                       | 05              | 10          |                         |              |                            |              |              |
| SV001<br>SV002<br>SV003<br>SV004<br>SV005<br>SV006<br>SV007<br>SV008<br>SV009<br>SV009<br>SV010<br>SV011                                                                            | PC1<br>PC2<br>PGN1<br>PGN2<br>VGN1                             | Motor side gear ratio<br>Machine side gear ratio                                                                                       |                 | -           |                         |              |                            |              |              |
| SV002<br>SV003<br>SV004<br>SV005<br>SV006<br>SV007<br>SV008<br>SV009<br>SV010<br>SV011                                                                                              | PC2<br>PGN1<br>PGN2<br>VGN1                                    | Machine side gear ratio                                                                                                                |                 |             |                         |              |                            |              |              |
| SV003<br>SV004<br>SV005<br>SV006<br>SV007<br>SV008<br>SV009<br>SV009<br>SV010<br>SV011                                                                                              | PGN1<br>PGN2<br>VGN1                                           |                                                                                                                                        |                 |             |                         |              |                            |              |              |
| SV005<br>SV006<br>SV007<br>SV008<br>SV009<br>SV010<br>SV011                                                                                                                         | VGN1                                                           | F USILIUTI IUUD YAITI I                                                                                                                | 33              | 33          | 33                      | 33           | 33                         | 25           | 25           |
| SV006<br>SV007<br>SV008<br>SV009<br>SV010<br>SV011                                                                                                                                  |                                                                | Position loop gain 2                                                                                                                   | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV007<br>SV008<br>SV009<br>SV010<br>SV011                                                                                                                                           | VGN2                                                           | Speed loop gain 1                                                                                                                      | 150             | 150         | 150                     | 150          | 150                        | 250          | 250          |
| SV008<br>SV009<br>SV010<br>SV011                                                                                                                                                    |                                                                | Speed loop gain 2                                                                                                                      | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV009<br>SV010<br>SV011                                                                                                                                                             | VIL                                                            | Speed loop delay compensation                                                                                                          | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV010<br>SV011                                                                                                                                                                      | VIA                                                            | Speed loop lead compensation                                                                                                           | 1364            | 1364        | 1364                    | 1364         | 1364                       | 1364         | 1364         |
| SV011                                                                                                                                                                               | IQA                                                            | Current loop q axis lead compensation                                                                                                  | 4096            | 4096        | 4096                    | 4096         | 4096                       | 4096         | 4096         |
|                                                                                                                                                                                     | IDA<br>IQG                                                     | Current loop d axis lead compensation<br>Current loop q axis gain                                                                      | 4096<br>768     | 4096<br>768 | 4096<br>768             | 4096<br>768  | 4096<br>768                | 4096<br>768  | 4096<br>768  |
| SV012                                                                                                                                                                               | IDG                                                            | Current loop d axis gain                                                                                                               | 768             | 768         | 768                     | 768          | 768                        | 768          | 768          |
| SV012<br>SV013                                                                                                                                                                      | ILMT                                                           | Current limit value                                                                                                                    | 500             | 500         | 500                     | 500          | 500                        | 500          | 500          |
| SV014                                                                                                                                                                               |                                                                | Current limit value in special control                                                                                                 | 500             | 500         | 500                     | 500          | 500                        | 500          | 500          |
| SV015                                                                                                                                                                               | FFC                                                            | Acceleration rate feed forward gain                                                                                                    | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV016                                                                                                                                                                               | LMC1                                                           | Lost motion compensation 1                                                                                                             | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV017                                                                                                                                                                               | SPEC                                                           | Servo specification selection                                                                                                          | 0000            | 0000        | 0000                    | 0000         | 0000                       | 0000         | 0000         |
| SV018                                                                                                                                                                               | PIT                                                            | Ball screw pitch                                                                                                                       |                 |             |                         |              |                            |              |              |
| SV019                                                                                                                                                                               | RNG1                                                           | Position detector resolution                                                                                                           |                 |             |                         |              |                            |              |              |
| SV020                                                                                                                                                                               | RNG2                                                           | Speed detector resolution                                                                                                              |                 |             |                         |              |                            |              |              |
| SV021                                                                                                                                                                               | OLT                                                            | Overload detection time constant                                                                                                       | 60              | 60          | 60                      | 60           | 60                         | 60           | 60           |
| SV022                                                                                                                                                                               | OLL<br>OD1                                                     | Overload detection level                                                                                                               | 150             | 150         | 150                     | 150          | 150                        | 150          | 150          |
| SV023<br>SV024                                                                                                                                                                      | OD1<br>INP                                                     | Excessive error detection width during servo ON<br>In-position detection width                                                         | 6<br>50         | 6<br>50     | 6<br>50                 | 6<br>50      | 6<br>50                    | 6<br>50      | 6<br>50      |
| SV024<br>SV025                                                                                                                                                                      | MTYP                                                           | Motor/detector type                                                                                                                    | 50<br>xx00      | 50<br>xx01  | xx02                    | 50<br>xx03   | 50<br>xx04                 | 50<br>xx05   | 50<br>xx85   |
|                                                                                                                                                                                     |                                                                | Excessive error detection width during servo                                                                                           |                 |             |                         |              |                            |              |              |
| SV026                                                                                                                                                                               | OD2                                                            | OFF                                                                                                                                    | 6               | 6           | 6                       | 6            | 6                          | 6            | 6            |
| SV027                                                                                                                                                                               | SSF1                                                           | Servo function selection 1                                                                                                             | 4000            | 4000        | 4000                    | 4000         | 4000                       | 4000         | 4000         |
| SV028                                                                                                                                                                               |                                                                |                                                                                                                                        | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV029                                                                                                                                                                               | VCS                                                            | Speed at the change of speed loop gain                                                                                                 | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV030                                                                                                                                                                               | IVC                                                            | Voltage dead time compensation /                                                                                                       | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
|                                                                                                                                                                                     | 0)/04                                                          | current bias 1                                                                                                                         | 0               | 0           | 0                       | 0            | 0                          |              | 0            |
| SV031<br>SV032                                                                                                                                                                      | OVS1<br>TOF                                                    | Overshooting compensation 1 Torque offset                                                                                              | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV032<br>SV033                                                                                                                                                                      | SSF2                                                           | Servo function selection 2                                                                                                             | 0000            | 0000        | 0000                    | 0000         | 0000                       | 0000         | 0000         |
| SV033                                                                                                                                                                               | SSF3                                                           | Servo function selection 2                                                                                                             | 0000            | 0000        | 0000                    | 0000         | 0000                       | 0000         | 0000         |
| SV035                                                                                                                                                                               | SSF4                                                           | Servo function selection 4                                                                                                             | 0000            | 0000        | 0000                    | 0000         | 0000                       | 0000         | 0000         |
| SV036                                                                                                                                                                               | PTYP                                                           | Power supply type                                                                                                                      | 0000            | 0000        | 0000                    | 0000         | 0000                       | 0000         | 0000         |
| SV037                                                                                                                                                                               | JL                                                             | Load inertia scale                                                                                                                     | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV038                                                                                                                                                                               | FHz1                                                           | Notch filter frequency 1                                                                                                               | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV039                                                                                                                                                                               | LMCD                                                           | Lost motion compensation timing                                                                                                        | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV040                                                                                                                                                                               | LMCT                                                           | Lost motion compensation non-sensitive band<br>/current bias 2                                                                         | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV041                                                                                                                                                                               | LMC2                                                           | Lost motion compensation 2                                                                                                             | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV042                                                                                                                                                                               | OVS2                                                           | Overshooting compensation 2                                                                                                            | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV043                                                                                                                                                                               | OBS1                                                           | Disturbance observer filter frequency                                                                                                  | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV044                                                                                                                                                                               | OBS2                                                           | Disturbance observer gain                                                                                                              | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV045                                                                                                                                                                               |                                                                | Frictional torque/current bias 3                                                                                                       | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV046<br>SV047                                                                                                                                                                      | FHz2<br>EC                                                     | Notch filter frequency 2<br>Inductive voltage compensation gain                                                                        | 0<br>100        | 0<br>100    | 0                       | 0            | 0<br>100                   | 0<br>100     | 0            |
| SV047<br>SV048                                                                                                                                                                      | EMGrt                                                          | Vertical axis drop prevention time                                                                                                     | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV048                                                                                                                                                                               | PGN1sp                                                         | Position loop gain 1 in spindle synchronous control                                                                                    | 15              | 15          | 15                      | 15           | 15                         | 15           | 15           |
| SV050                                                                                                                                                                               | PGN2sp                                                         | Position loop gain 2 in spindle synchronous<br>control                                                                                 | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV051                                                                                                                                                                               | DFBT                                                           | Dual feedback control time constant                                                                                                    | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV052                                                                                                                                                                               | DFBN                                                           | Dual feedback control non-sensitive band                                                                                               | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV053                                                                                                                                                                               | OD3                                                            | Excessive error detection width in special control                                                                                     | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV054                                                                                                                                                                               | ORE                                                            | Overrun detection width in closed loop control                                                                                         | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV055                                                                                                                                                                               | EMGx                                                           | Max. gate off delay time after emergency stop                                                                                          | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV056                                                                                                                                                                               | EMGt                                                           | Deceleration time constant at emergency stop                                                                                           | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV057                                                                                                                                                                               |                                                                | SHG control gain                                                                                                                       | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
|                                                                                                                                                                                     |                                                                | SHG control gain in spindle synchronous control                                                                                        | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV059                                                                                                                                                                               | TCNV                                                           | Collision detection torque estimating gain                                                                                             | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV060                                                                                                                                                                               | TLMT                                                           | Collision detection level                                                                                                              | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV061                                                                                                                                                                               |                                                                | D/A output channel 1 data No.                                                                                                          | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| SV062                                                                                                                                                                               |                                                                | D/A output channel 2 data No.                                                                                                          | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
| <b>a</b> ) <i>ii</i>                                                                                                                                                                |                                                                | D/A output channel 1 output scale                                                                                                      | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
|                                                                                                                                                                                     |                                                                | D/A output channel 2 output scale                                                                                                      | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |
|                                                                                                                                                                                     | TLC                                                            | Tool end compensation spring constant                                                                                                  | 0               | 0           | 0                       | 0            | 0                          | 0            | 0            |

## 3. Setup

|       |         |                               | Motor            |       |       | HA moto | or 2000 r/n | nin rating |        |        |
|-------|---------|-------------------------------|------------------|-------|-------|---------|-------------|------------|--------|--------|
| Parar | neter   |                               |                  | HA40N | HA80N | HA100N  | HA200N      | HA300N     | HA700N | HA900N |
| No.   | Abbrev. | Details                       | Unit capacity    | 05    | 10    | 20      | 35          | 45         | 70     | 90     |
|       |         | (System parameter area)       |                  |       |       |         |             |            |        |        |
| SV081 | SPEC2   | Servo specification selection | 2                | 0000  | 0000  | 0000    | 0000        | 0000       | 0000   | 0000   |
| SV082 | SSF5    | Servo function selection 5    |                  | 0000  | 0000  | 0000    | 0000        | 0000       | 0000   | 0000   |
| SV083 | SSF6    | Servo function selection 6    |                  | 0000  | 0000  | 0000    | 0000        | 0000       | 0000   | 0000   |
| SV084 | SSF7    | Servo function selection 7    |                  | 0000  | 0000  | 0000    | 0000        | 0000       | 0000   | 0000   |
| SV085 | LMCk    | Lost motion compensation sp   | ring constant    | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV086 | LMCc    | Lost motion compensation vis  | cous coefficient | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV087 | FHz4    | Notch filter frequency 4      |                  | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV088 | FHz5    | Notch filter frequency 5      |                  | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV089 |         |                               |                  |       |       |         |             |            |        |        |
| :     |         |                               |                  | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV100 |         |                               |                  |       |       |         |             |            |        |        |

## (6) HA series (MDS-B-Vx4)

High-gain specifications

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Motor  |         |                                        | HA motor 3000 r/min rating |       |      |      |      |        |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------------------------------------|----------------------------|-------|------|------|------|--------|--------|
| SY001         PC1         Medion safe generatio                                                                              5000         POR1         POR1 <t< td=""><td colspan="3"></td><td>HA43N</td><td>HA83N</td><td></td><td></td><td></td><td>HA303N</td><td>HA703N</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |         |                                        | HA43N                      | HA83N |      |      |      | HA303N | HA703N |
| SY002         PC2         Machine ade gaar ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.    | Abbrev. | Details Unit capacity                  | 05                         | 10    | 20   | 35   | 45   | 70     | 90     |
| SY002         PC2         Machine ade gaar ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SV001  | PC1     | Motor side gear ratio                  |                            |       |      |      |      |        |        |
| SY002         PONI:         Position loop gain 1         133         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         35         35           SV000         VON1         Speed loop gain 2 compensation         150         150         150         150         160         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136         136                                                                                                                                                                                                                                                                                     | SV002  |         |                                        |                            |       |      |      |      |        |        |
| SY004         PCN2         Postent loop gain 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>SV003</td> <td></td> <td></td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>25</td>                                                                                                                                                                                                                                    | SV003  |         |                                        | 33                         | 33    | 33   | 33   | 33   | 33     | 25     |
| SV005         VCN1         Speed toop gain 1         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150                                                                                                                                                                                                                                                                            | SV004  | PGN2    |                                        | 0                          | 0     | 0    |      | 0    | 0      | 0      |
| SY000         VCN2         Speed top dely compensation         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                  |        |         |                                        | 150                        |       |      | 150  |      |        | 250    |
| SY007         VIL:         Speed top lade compensation         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                  | SV006  | VGN2    |                                        | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV008         VIA.         Speed toop lead compensation         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364                                                                                                                                                                                                                                     | SV007  | VIL     |                                        | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SY006         IAA         Current loop axis lead compensation         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096         4096                                                                                                                                                                                                                               | SV008  | VIA     |                                        | 1364                       | 1364  | 1364 | 1364 | 1364 | 1364   | 1364   |
| SV010         IDA         Current loop assis gain         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768 <td></td>                                                                                                                                                                   |        |         |                                        |                            |       |      |      |      |        |        |
| SV011         IQC         Current loop axis gain         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768 <td>SV010</td> <td>IDA</td> <td></td> <td>4096</td> <td>4096</td> <td>4096</td> <td>4096</td> <td>4096</td> <td>4096</td> <td>4096</td>                                                                                                                                | SV010  | IDA     |                                        | 4096                       | 4096  | 4096 | 4096 | 4096 | 4096   | 4096   |
| SV012         DC         Current limit value         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768         768                                                                                                                                                                                                                                                                            | SV011  | IQG     |                                        | 768                        |       |      | 768  | 768  | 768    |        |
| SV015         LLMT         Current limit value in special control         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                   | SV012  | IDG     |                                        | 768                        | 768   | 768  | 768  | 768  | 768    | 768    |
| SV015         FFC         Acceleration rate feat forward gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                           | SV013  | ILMT    | Current limit value                    | 500                        | 500   | 500  | 500  | 500  | 500    | 500    |
| SV016         LMC1         Lost motion compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        <                                                                                                                                                                                                                                                                                                                                                          | SV014  | ILMTsp  | Current limit value in special control | 500                        | 500   | 500  | 500  | 500  | 500    | 500    |
| SY017         SPEC         Serve specification selection         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                                                                                                                                    | SV015  | FFC     | Acceleration rate feed forward gain    | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV016         PT         Ball screw pitch                                                                                                    V021          V022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SV016  | LMC1    | Lost motion compensation 1             | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV019         FNG1         Position detector resolution                                                                                                    V0202         TOST <td>SV017</td> <td>SPEC</td> <td>Servo specification selection</td> <td>0000</td> <td>0000</td> <td>0000</td> <td>0000</td> <td>0000</td> <td>0000</td> <td>0000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SV017  | SPEC    | Servo specification selection          | 0000                       | 0000  | 0000 | 0000 | 0000 | 0000   | 0000   |
| SV020         RNG2         Speed detector resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SV018  | PIT     | Ball screw pitch                       |                            |       |      |      |      |        |        |
| SV020         RNG2         Speed detector resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |                                        |                            |       |      |      |      |        |        |
| SV021         OLT         Overlaad detection level         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         70         70         <                                                                                                                                                                                                                                                                                                             |        |         |                                        |                            |       |      |      |      |        |        |
| SV022         OLL         Overload detection level         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150 </td <td></td> <td></td> <td></td> <td>60</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td>                                                                                                                                               |        |         |                                        | 60                         | 60    | 60   | 60   | 60   | 60     | 60     |
| SV023         OD1         Excessive error detection width during servo ON         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         6         7         7         7         7         7         6         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                         |        |         |                                        |                            |       |      |      |      |        |        |
| SV02E         INP         In-position detection width         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50                                                                                                                                                                                                                                                                                                                    |        |         |                                        |                            |       |      |      |      |        |        |
| SV025         MTYP         Motor/detector type         xx80         xx81         xx8A         xx82         xx83         xx84         xx85           SV026         OFF         Excessive error detection width during servo         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                          |        |         | 9                                      |                            |       |      |      |      |        |        |
| SV026         OD2         Excessive error detection width during servo<br>OFF         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                     | SV025  | MTYP    |                                        | xx80                       | xx81  | xx8A | xx82 | xx83 | xx84   | xx85   |
| SV027         SSPT         Serve function selection 1         00         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000                                                                                                                                                                                                                                         |        |         |                                        |                            |       |      |      |      |        |        |
| SV028         VCS         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>SV026</td> <td>OD2</td> <td></td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td>                                                                                                                                                                                                                                     | SV026  | OD2     |                                        | 6                          | 6     | 6    | 6    | 6    | 6      | 6      |
| SV028         VCS         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>SV027</td> <td>SSF1</td> <td>Servo function selection 1</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td>                                                                                                                                                                                     | SV027  | SSF1    | Servo function selection 1             | 4000                       | 4000  | 4000 | 4000 | 4000 | 4000   | 4000   |
| SV030         IVC         Voltage dead time compensation /         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                              | SV028  |         |                                        | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV031         IVC         current bias 1         0         0         0         0         0         0         0         0           SV031         OVErs         Current bias 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                   | SV029  | VCS     | Speed at the change of speed loop gain | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV031         Oversit                                                                                                                                               | SV/030 | IVC     | Voltage dead time compensation /       | 0                          | 0     | 0    | 0    | ٥    | 0      | 0      |
| SV032         TOF         Torque offset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                       |        |         |                                        | -                          | -     | -    | -    |      |        | -      |
| SV033         SF2         Servo function selection 2         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <th< td=""><td></td><td></td><td>Overshooting compensation 1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>                                                                                          |        |         | Overshooting compensation 1            | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV034         SF3         Servo function selection 3         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                            |        |         |                                        |                            |       |      |      |      |        |        |
| SV035         SF4         Servo function selection 4         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                            |        |         |                                        |                            |       |      |      |      |        |        |
| SV036         PTYP         Power supply type         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         000000         000000         000000         000000000         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |                                        |                            |       |      |      |      |        |        |
| SV037         JL         Load inertia scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                   |        |         | Servo function selection 4             |                            |       |      |      |      |        |        |
| SV038         FHz1         Notch filter frequency 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                           |        |         |                                        |                            |       |      |      |      |        |        |
| SV039         LMCD         Lost motion compensation non-sensitive band<br>/current bias 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                         |        |         | Load inertia scale                     | -                          | -     |      | -    |      |        | -      |
| SV040         LMCT         Lost motion compensation non-sensitive band<br>(urrent bias 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                         |        |         |                                        | -                          | -     | -    | -    | -    |        | -      |
| SV040         Lift(1)         /current bias 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>SV039</td> <td>LMCD</td> <td>· · · · · ·</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                  | SV039  | LMCD    | · · · · · ·                            | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| Current bias 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                            | SV040  | IMCT    |                                        | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV042         OVS2         Overshooting compensation 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                  |        |         |                                        | -                          | -     |      | -    |      |        | -      |
| SV043         OBS1         Disturbance observer filter frequency         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td>                                                                                                                                                                                                                                              |        |         |                                        | -                          | -     | -    | -    | -    |        | -      |
| SV044         OBS2         Disturbance observer gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                          |        |         |                                        |                            |       |      |      |      |        |        |
| SV045         TRUB         Frictional torque/current bias 3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                             |        |         |                                        |                            |       |      |      |      |        |        |
| SV046         FHz2         Notch filter frequency 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td>                                                                                                                                                                                                                                                            |        |         |                                        |                            |       |      |      |      |        |        |
| SV047         EC         Inductive voltage compensation gain         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                        |        |         |                                        | -                          | -     | -    | -    | -    | -      | -      |
| SV048         EMGrt         Vertical axis drop prevention time         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                          |        |         |                                        | -                          | -     | -    | -    | -    | -      | -      |
| SV049         PGN1sp         Position loop gain 1 in spindle synchronous<br>control         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15                                                                                                                                                                                                                                                                                                 |        |         | · · ·                                  |                            |       |      |      |      |        |        |
| SV049PGN1spcontrol15151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515 <td>SV048</td> <td>EMGrt</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SV048  | EMGrt   |                                        | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV050PGN2spPosition loop gain 2 in spindle synchronous<br>control000000SV051DFBTDual feedback control time constant00000000SV052DFBNDual feedback control non-sensitive band000000000SV053OD3Excessive error detection width in special control0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <t< td=""><td>SV049</td><td>PGN1sp</td><td></td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SV049  | PGN1sp  |                                        | 15                         | 15    | 15   | 15   | 15   | 15     | 15     |
| SV050         PGN25p<br>control         control         Contrestare frandin the constant at emergency stop <thc< td=""><td></td><td>- 1-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></thc<> |        | - 1-    |                                        | -                          | -     | -    | -    | -    | -      | -      |
| SV051         DFBT         Dual feedback control time constant         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                          | SV050  | PGN2sp  |                                        | 0                          | 0     | 0    | 0    | 0    | 0      | 0      |
| SV052         DFBN         Dual feedback control non-sensitive band         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                     | SV/051 |         |                                        | 0                          | ^     | 0    | 0    | ^    | ^      | 0      |
| SV053         OD3         Excessive error detection width in special control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                      |        |         |                                        |                            |       |      |      |      |        |        |
| SV054         ORE         Overrun detection width in closed loop control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                          |        |         |                                        |                            | -     |      | -    |      |        |        |
| SV055         EMGx         Max. gate off delay time after emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                          |        |         |                                        |                            |       |      |      |      |        |        |
| SV056         EMGt         Deceleration time constant at emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                 |        |         |                                        | -                          | -     |      |      |      |        |        |
| SV057         SHGC         SHG control gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                   |        | -       |                                        |                            |       |      |      |      |        |        |
| SV058         SHG control gain in spindle synchronous control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                 |        |         |                                        |                            |       |      |      |      |        |        |
| SV059         TCNV         Collision detection torque estimating gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                |        |         |                                        |                            | -     |      |      |      |        |        |
| SV060         TLMT         Collision detection level         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                          |        |         |                                        |                            |       |      |      |      |        |        |
| SV061         DA1NO         D/A output channel 1 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                               |        |         |                                        |                            |       |      |      |      |        |        |
| SV062         DA2NO         D/A output channel 2 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                               |        |         |                                        |                            |       |      |      |      |        |        |
| SV063         DA1MPY         D/A output channel 1 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                          |        |         |                                        |                            |       |      |      |      |        |        |
| SV064         DA2MPY         D/A output channel 2 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                          |        |         |                                        |                            |       |      |      |      |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |         |                                        |                            |       |      |      |      |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |         |                                        |                            |       |      |      |      |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57065  | ILC     | 1001 end compensation spring constant  | U                          | U     | U    | U    | 0    | U      | U      |

### 3. Setup

|       |         |                               | Motor            |       |       | HA moto | or 3000 r/m | nin rating |        |        |
|-------|---------|-------------------------------|------------------|-------|-------|---------|-------------|------------|--------|--------|
| Parar | neter   |                               |                  | HA43N | HA83N | HA93N   | HA103N      | HA203N     | HA303N | HA703N |
| No.   | Abbrev. | Details                       | Unit capacity    | 05    | 10    | 20      | 35          | 45         | 70     | 90     |
|       |         | (System parameter area)       |                  |       |       |         |             |            |        |        |
| SV081 | SPEC2   | Servo specification selection | 2                | 0000  | 0000  | 0000    | 0000        | 0000       | 0000   | 0000   |
| SV082 | SSF5    | Servo function selection 5    |                  | 0000  | 0000  | 0000    | 0000        | 0000       | 0000   | 0000   |
| SV083 | SSF6    | Servo function selection 6    |                  | 0000  | 0000  | 0000    | 0000        | 0000       | 0000   | 0000   |
| SV084 | SSF7    | Servo function selection 7    |                  | 0000  | 0000  | 0000    | 0000        | 0000       | 0000   | 0000   |
| SV085 | LMCk    | Lost motion compensation sp   | ring constant    | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV086 | LMCc    | Lost motion compensation vis  | cous coefficient | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV087 | FHz4    | Notch filter frequency 4      |                  | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV088 | FHz5    | Notch filter frequency 5      |                  | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV089 |         |                               |                  |       |       |         |             |            |        |        |
| :     |         |                               |                  | 0     | 0     | 0       | 0           | 0          | 0      | 0      |
| SV100 |         |                               |                  |       |       |         |             |            |        |        |

## 3-2-3 Servo parameter list

#### High-gain specifications

| No.   | Abbrev. | Parameter name                        | Explanation                                                                                                                                                                                                                                                                                                                                                                   | Setting<br>range (Unit) |
|-------|---------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SV001 | PC1*    | Motor side gear ratio                 | Set the motor side and machine side gear ratio.<br>For the rotary axis, set the total deceleration (acceleration) ratio.<br>Even if the gear ratio is within the setting range, the electronic gears may                                                                                                                                                                      | 1 to 32767              |
| SV002 | PC2*    | Machine side gear ratio               | overflow and cause an alarm.                                                                                                                                                                                                                                                                                                                                                  | 1 to 32767              |
| SV003 | PGN1    | Position loop gain 1                  | Set the position loop gain. The standard setting is "47".<br>The higher the setting value is, the more precisely the command can be<br>followed and the shorter the positioning time gets, however, note that a<br>bigger shock is applied to the machine during acceleration/deceleration.<br>When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC).            | 1 to 200<br>(rad/s)     |
| SV004 | PGN2    | Position loop gain 2                  | When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC). When not using the SHG control, set to "0".                                                                                                                                                                                                                                                               | 0 to 999<br>(rad/s)     |
| SV005 | VGN1    | Speed loop gain 1                     | Set the speed loop gain.<br>Set this according to the load inertia size.<br>The higher the setting value is, the more accurate the control will be,<br>however, vibration tends to occur.<br>If vibration occurs, adjust by lowering by 20 to 30%.<br>The value should be determined to be 70 to 80% of the value at the time<br>when the vibration stops.                    | 1 to 999                |
| SV006 | VGN2    | Speed loop gain 2                     | If the noise is bothersome at high speed<br>during rapid traverse, etc, lower the speed<br>loop gain.<br>As in the right figure, set the speed loop<br>gain of the speed 1.2 times as fast as the<br>motor's rated speed, and use this with<br>SV029 (VCS).<br>When not using, set to "0".                                                                                    | -1000 to<br>1000        |
|       |         |                                       | Set this when the limit cycle occurs in the full-closed loop, or overshooting occurs in positioning.<br>Select the control method with SV027 (SSF1)/bit1, 0 (vcnt).<br>Normally, use "Changeover type 2".<br>When you set this parameter, make sure to set the torque offset (SV032 (TOF)). When not using, set to "0".                                                       |                         |
|       |         | Speed loop delay                      | No changeover<br>When SV027 (SSF1)/bit1, 0 (vcnt)=00<br>The delay compensation control is always valid.                                                                                                                                                                                                                                                                       |                         |
| SV007 | VIL     | compensation                          | Changeover type 1<br>When SV027 (SSF1)/bit1, 0 (vcnt)=01<br>The delay compensation control works when the command from the NC<br>is "0".<br>Overshooting that occurs during pulse feeding can be suppressed.                                                                                                                                                                  | 0 to 32767              |
|       |         |                                       | Changeover type 2<br>When SV027 (SSF1)/bit1, 0 (vcnt)=10<br>The delay compensation control works when the command from the NC<br>is "0" and the position droop is "0". Overshooting or the limit cycle that<br>occurs during pulse feeding or positioning can be suppressed.                                                                                                  |                         |
| SV008 | VIA     | Speed loop lead compensation          | Set the gain of the speed loop integration control.<br>The standard setting is "1364". During the SHG control, the standard<br>setting is "1900". Adjust the value by increasing/decreasing it by about 100<br>at a time.<br>Raise this value to improve contour tracking precision in high-speed<br>cutting. Lower this value when the position droop vibrates (10 to 20Hz). | 1 to 9999               |
| SV009 | IQA     | Current loop q axis lead compensation | Set the gain of current loop.<br>As this setting is determined by the motor's electrical characteristics, the                                                                                                                                                                                                                                                                 | 4 40 00 400             |
| SV010 | IDA     | Current loop d axis lead compensation | setting is fixed for each type of motor.<br>Set the standard values for all the parameters depending on each motor<br>type.                                                                                                                                                                                                                                                   | 1 to 20480              |
| SV011 | IQG     | Current loop q axis<br>gain           |                                                                                                                                                                                                                                                                                                                                                                               | 1 to 8192               |
| SV012 | IDG     | Current loop d axis<br>gain           |                                                                                                                                                                                                                                                                                                                                                                               | 1 10 0 192              |

| No.   | Abbrev. | Parameter name                         | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Setting<br>range (Unit)                      |
|-------|---------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| SV013 | ILMT    | Current limit value                    | Set the normal current (torque) limit value. (Limit values for both + and -<br>direction.)<br>When the value is "500" (a standard setting), the maximum torque is<br>determined by the specification of the motor.                                                                                                                                                                                                                                                                                                                                            | 0 to 999<br>(Stall<br>[rated]<br>current %)  |
| SV014 | ILMTsp  | Current limit value in special control | Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.)<br>Set to "500" when not using.                                                                                                                                                                                                                                                                                                                                                       | 0 to 999<br>(Stall<br>[rated]<br>current %)  |
| SV015 | FFC     | Acceleration rate feed forward gain    | When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time.                                                                                                                                                                                                                                                                       | 0 to 999<br>(%)                              |
|       |         |                                        | Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc.) at quadrant change is too large.<br>This compensates the torque at quadrant change.<br>This is valid only when the lost motion compensation (SV027 (SSF1.Imc)) is selected.                                                                                                                                                                                                                                                                     |                                              |
|       |         |                                        | Type 1: When SV027 (SSF1)/bit9, 8 (Imc)=01<br>Set the compensation amount based on the motor torque before the<br>quadrant change.<br>The standard setting is "100". Setting to "0" means the compensation<br>amount is zero.<br>Normally, use Type 2.                                                                                                                                                                                                                                                                                                        | -1 to 200<br>(%)                             |
| SV016 | LMC1    | Lost motion<br>compensation 1          | Type 2: When SV027 (SSF1)/bit9, 8 (Imc)=10<br>Set the compensation amount based on the stall (rated) current of the<br>motor.<br>The standard setting is double of the friction torque. Setting to "0"<br>means the compensation amount is zero.                                                                                                                                                                                                                                                                                                              | -1 to 200<br>(Stall<br>[rated]<br>current %) |
|       |         |                                        | Type3 When SV082(SSF5)/bit1(Imc3)=1<br>Set the compensation amount based on the stall current of the motor.<br>Setting on SV082/bit1(Imc3) has a priority over SV027/bit9,8(Imc)                                                                                                                                                                                                                                                                                                                                                                              | -1 to 200<br>(Stall<br>current %)            |
|       |         |                                        | <ul> <li>When you wish different compensation amount depending on the direction<br/>When SV041 (LMC2) is "0", compensate with the value of SV016<br/>(LMC1) in both of the + and -directions.</li> <li>If you wish to change the compensation amount depending on the<br/>command direction, set this and SV041 (LMC2). (SV016: + direction,<br/>SV041: - direction. However, the directions may be opposite depending<br/>on other settings.)</li> <li>When "-1" is set, the compensation won't be performed in the direction of<br/>the command.</li> </ul> |                                              |

| No.   | Abbrev. | Parameter name      |                                                            |                                                                                          |                              |                 |                                 | Explanation Setting range (Unit) |                           |           |                       |         |                 |       |         |         |               |         |  |
|-------|---------|---------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------|-----------------|---------------------------------|----------------------------------|---------------------------|-----------|-----------------------|---------|-----------------|-------|---------|---------|---------------|---------|--|
|       |         |                     |                                                            |                                                                                          |                              |                 |                                 |                                  |                           |           |                       |         |                 |       |         |         | HEX           | setting |  |
|       |         |                     |                                                            | FE                                                                                       | Ξ [                          | D C             | В                               | А                                |                           | 98        | 7                     | 6       | 5               | 4     | 3       | 2       | 1             | 0       |  |
|       |         |                     |                                                            |                                                                                          | spm                          | 1               |                                 |                                  | r                         | mpt mp    | abs                   |         | vdir            | fdir  | vfb     | seqh    | dfbx          | fdir2   |  |
|       |         |                     |                                                            | bit                                                                                      |                              | Ν               | leanin                          | g whe                            | n "                       | "0" is se | t                     |         | Mea             | ining | wher    | n "1" i | s set         |         |  |
|       |         |                     | (                                                          | 0 fdir2 S                                                                                |                              |                 | d feedb                         | ack fo                           | orw                       | vard pol  | arity                 | Spe     | ed fe           | edba  | ck re   | verse   | polar         | ity     |  |
|       |         |                     |                                                            | 1 di                                                                                     | fbx                          | Dual f          | eedba                           | ck con                           | tro                       | ol stop   |                       | Dua     | al feed         | dback | cont    | rol st  | art           |         |  |
|       |         |                     |                                                            | 2 se                                                                                     | eqh                          |                 |                                 |                                  |                           |           |                       |         |                 |       |         |         |               |         |  |
|       |         |                     | ;                                                          | 3 v                                                                                      | ſb                           | Speed           | d feedb                         | ack fil                          | tei                       | r stop    |                       |         | ed fe<br>50Hz)  |       | ck filt | er sto  | top           |         |  |
|       |         |                     | 4                                                          | 4 fo                                                                                     | dir                          | Positi          | on feed                         | back                             | for                       | rward po  | olarity               | Pos     | ition           | feedb | ack r   | evers   | erse polarity |         |  |
|       |         |                     | 4                                                          | 5 vdir Standard setting HA motor (4 pole motor<br>Detector installation polegrees (B, D) |                              |                 |                                 |                                  |                           |           | otor)                 | tor)    |                 |       |         |         |               |         |  |
| SV017 | SPEC*   | Servo specification | (                                                          | 6                                                                                        |                              |                 |                                 |                                  |                           |           |                       |         |                 |       |         |         |               |         |  |
| 30017 |         | selection           |                                                            | 7 abs Incremental control                                                                |                              |                 |                                 |                                  | Absolute position control |           |                       |         |                 |       |         |         |               |         |  |
|       |         |                     |                                                            | 8 n                                                                                      | mp MP scale 360P (2mm pitch) |                 |                                 |                                  |                           |           | MP scale 720P (1mm pi |         |                 |       | itch)   |         |               |         |  |
|       |         |                     | ę                                                          | 9 m                                                                                      | npt                          | MP so<br>contro |                                 | S det                            | ect                       | tion NC   |                       |         | scale<br>omatio |       |         |         | ing)          |         |  |
|       |         |                     |                                                            | 4                                                                                        |                              |                 |                                 |                                  |                           |           |                       |         |                 |       |         |         |               |         |  |
|       |         |                     | E                                                          | В                                                                                        |                              |                 |                                 |                                  |                           |           |                       |         |                 |       |         |         |               |         |  |
|       |         |                     |                                                            |                                                                                          | om                           | 1 : Wł          | tting fo<br>nen usi<br>: Settii | ng the                           | e S                       | S type dr | ive ui                | nit (Or | nly in          | the c | ase c   | of MD   | S-C1-         | Vx)     |  |
|       |         |                     | (Note) Set to "0" for bits with no particular description. |                                                                                          |                              |                 |                                 |                                  |                           |           |                       |         |                 |       |         |         |               |         |  |

| No.   | Abbrev. | Parameter name                                        |                                                                                                                                                                                                                                                                                                                                               | Explanation                                                                                 |                                                                                                                                                                                                                        | Setting range<br>(Unit)                    |  |  |  |  |  |  |
|-------|---------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| SV018 | PIT*    | Ball screw pitch                                      | Set the ball screw pitch. Se                                                                                                                                                                                                                                                                                                                  | et the ball screw pitch. Set to "360" for the rotary axis.                                  |                                                                                                                                                                                                                        |                                            |  |  |  |  |  |  |
|       |         |                                                       | In the case of the semi-clos<br>Set the same value as SV0<br>(Refer to the explanation of                                                                                                                                                                                                                                                     | )20 (RNG2).                                                                                 |                                                                                                                                                                                                                        | (mm/rev)<br>1 to 9999<br>(kp/rev)          |  |  |  |  |  |  |
| SV019 | RNG1*   | Position detector resolution                          | In the case of the full-closed<br>Set the number of pulses<br>Detector model name<br>OHE25K-ET, OHA25K-ET<br>OSE104-ET, OSA104-ET<br>OSE105-ET, OSA105-ET<br>Relative position<br>detection scale<br>AT41 (Mitsutoyo)<br>FME type, FLE type<br>(Futaba)<br>MP type (Mitsubishi<br>Heavy Industries)<br>AT342 (Mitsutoyo)<br>AT343 (Mitsutoyo) | d loop control                                                                              | SV019 setting<br>100<br>100<br>1000<br>PIT/Resolution<br>(μm)<br>The same as<br>SV018 (PIT)<br>PIT/Resolution<br>(μm)<br>PIT/Resolution<br>(μm)<br>Twice as big as<br>SV018 (PIT)<br>20 times as big<br>as SV018 (PIT) | 1 to 30000<br>(kp/pit)                     |  |  |  |  |  |  |
|       |         |                                                       | AT543 (Mitsutoyo)<br>LC191M (Heidenhain)<br>LC491M (Heidenhain)<br>RCN223(Heidenhain)<br>RCN723(Heidenhain)<br>MDS-B-HR                                                                                                                                                                                                                       | 0.05 (μm/p)<br>0.1, 0.05 (μm/p)<br>0.05 (μm/p)<br>8,000,000(p/rev)<br>8,000,000(p/rev)<br>- | 20 times as big as<br>SV018 (PIT)<br>PIT/Resolution<br>(μm)<br>PIT/Resolution<br>(μm)<br>8000<br>8000<br>PIT/scale(μm)                                                                                                 |                                            |  |  |  |  |  |  |
| SV020 | RNG2*   | Speed detector resolution                             | Set the number of pulses p<br>Detector m<br>OSE104, OSA104<br>OSE105, OSA105                                                                                                                                                                                                                                                                  |                                                                                             | otor end detector.<br>SV020 setting<br>100<br>1000                                                                                                                                                                     | 1 to 9999<br>(kp/rev)                      |  |  |  |  |  |  |
| SV021 | OLT     | Overload detection time constant                      | Set the detection time cons<br>Set to "60" as a standard. (                                                                                                                                                                                                                                                                                   |                                                                                             |                                                                                                                                                                                                                        | 1 to 999<br>(s)                            |  |  |  |  |  |  |
| SV022 | OLL     | Overload detection level                              | Set the current detection le stall (rated) current.<br>Set to "150" as a standard.                                                                                                                                                                                                                                                            |                                                                                             |                                                                                                                                                                                                                        | 110 to 500<br>(Stall [rated]<br>current %) |  |  |  |  |  |  |
| SV023 | OD1     | Excessive error<br>detection width<br>during servo ON | Set the excessive error det<br><standard<br>setting value&gt; OD1=C<br/>When "0" is set, the excess</standard<br>                                                                                                                                                                                                                             | DD2= Rapid traverse ra<br>0D2= (mm/min)<br>60 × PGN1                                        | te<br>÷ 2 (mm)                                                                                                                                                                                                         | 0 to 32767<br>(mm)                         |  |  |  |  |  |  |
| SV024 | INP     | In-position<br>detection width                        | Set the in-position detection<br>Set the accuracy required f<br>The lower the setting is, the<br>however, the cycle time (se<br>setting is "50".                                                                                                                                                                                              | n width.<br>for the machine.<br>e higher the positioning ac                                 | curacy gets,                                                                                                                                                                                                           | 0 to 32767<br>(µm)                         |  |  |  |  |  |  |

| Abbrev. | Parameter name |     |                      |                                                                                      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Explana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|----------------|-----|----------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                | pe  | en                   | 6                                                                                    | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mtyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                | bit |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | xplana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                | 0   |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | et this a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | long wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ith SV017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (SPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C)/spr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                | 1   |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      | 1x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x2                   | HA100N                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA203L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                | 6   | x3                   | HA200N                                                                               | ļļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HA303L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                | 7   |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA503L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      | 11/100011                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HALH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x8                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x9                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA153L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | xD                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | xE                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | xF                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA-LF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | Setting              | 8x                                                                                   | 9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Сх                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                |     | x0                   | HA43N                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x1                   |                                                                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      | HA303N                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MTYP*   |                |     | x5                   | HA703N                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | type           |     | x6                   |                                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HC90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      | HA93N                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | хB                   |                                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ĵ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      | 8x                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                |     | x1                   |                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ┢──                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x2                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x3                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      | HCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x7                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x8                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | x9                   |                                                                                      | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | xA<br>xB             |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | xC                   |                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | xD                   |                                                                                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     |                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |     | MTVP* Motor/Detector | MTYP* Motor/Detector<br>type Motor/Detector<br>type [1] When<br>MTYP* Motor/Detector | MTYP*         Motor/Detector         Image: Setting the system         Setting the syste | Motor/Detector         Motor/Detector         Setting         8x         9x           MTYP*         Motor/Detector         Image: Setting         Setting         8x         9x           MTYP*         Motor/Detector         Image: Setting         8x         9x         9x           MTYP*         Motor/Detector         Image: Setting         8x         9x         9x           Image: Setting         8x         9x         9x         9x         9x         9x           Image: Setting         8x         9x         9x         9x         9x         9x         9x           Image: Setting         8x         9x         9x         9x         9x         9x         9x         9x           Image: Setting         8x         9x         9x | MTYP*         Motor/Detector         F         E         D         C         B         A         9         8           n         0         1         3         Set the motor type. Set this a         11         Yhen SV017/spm=0.0km         Notor/Detector           2         3         mtyp         Set the motor type. Set this a         11         Yhen SV017/spm=0.0km         Notor/Detector           5         K         HA300N         HA200N         HA200N         HA20N         HA10N           2         X         HA30N         HA20N         HA10N         HA20N         HA20N           5         H         A         HA30N         HA20N         HA2N         MA         HA21H         MA         HA21H         MA         HA21H         MA         HA21H         MA         HA21H         MA         HA21H         MA         MA         HA11SN         MA         MA         HA11SN         MA         MA         MA         MA1SN         MA | MTYP*         Motor/Detector         F         E         D         C         B         A         9         8         7         Impo           0         0         1         1         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         Set the motor type. Set this along w         11         12         12         12         12         12         12         12         12         12         12 | MTYP*         Motor/Detector         F         E         D         C         B         A         9         8         7         6         5           pen         ent         ent         ent         Explanation         ent         1           2         mtyp         Set the motor type. Set this along with SV017 (1) When SV017/spm=0 (Normal drive unit)         Setting         0x         1x         2x         3x         1x         2x         3x         1x         1x         2x         3x         1x         1x         1x         2x         3x         1x         1x <t< td=""><td>MTYP*         Motor/Detector         Image: constraint of the state of the state</td><td>Motor/Detector         Motor/Detector         Motor/Detector         Motor/Detector         Motor/Detector         Set the motor type:         A         B         T         6         5         4         3         2           9         0         1         2         3         mtyp         Set the motor type:         Set this along with SV017 (SPEC)/spr         (Normal drive unt)         Set the motor type:         Set t</td><td>Motor/Detector         Motor/Detector         Motor/D</td></t<> | MTYP*         Motor/Detector         Image: constraint of the state | Motor/Detector         Motor/Detector         Motor/Detector         Motor/Detector         Motor/Detector         Set the motor type:         A         B         T         6         5         4         3         2           9         0         1         2         3         mtyp         Set the motor type:         Set this along with SV017 (SPEC)/spr         (Normal drive unt)         Set the motor type:         Set t | Motor/Detector         Motor/D |

| No.          | Abbrev. | Parameter name                                         | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Setting ra<br>(Unit)                                                                                              |
|--------------|---------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| No.<br>SV025 | Abbrev. | Parameter name                                         | B       Set the detector type.         9       ent         A       ent         B       ent         C       pen         D       pen         D       Detector model name         D       pen         OSE104       0 (Note)         OSE105, OSA105       2 (Note)         OSE104.ET       4         OSE105, OSA105       2 (Note)         OSE105, OSA105       2 (Note)         OHE25K-ET, OSE104-ET       4         Setting im       OSE105-ET, OSA105-ET, RCN223, 6         OSE105-ET, OSA105-ET, RCN223, 6       Setting im         OSE105-ET, OSA105-ET, RCN223, 6       Setting im         RCN723 (Heidenhain)       7       Setting im         NCN723 (Heidenhain)       7       Setting im         AT41 (Mitsutoyo), FME type, FLE type       9       Setting im         AT342, AT343, AT543 (Mitsutoyo),       A       Setting im         AT342, AT343, AT543 (Mitsutoyo),       A       Setting im         MDS-B-HR       B       Setting im         The setting of the slave axis in the       B       Setting im         NDS-B-HR       B       Setting im         The setting of the slave axis in | tting<br>possible<br>possible<br>possible<br>possible<br>possible<br>possible<br>possible<br>possible<br>possible |
|              |         |                                                        | semi-closed control.         The setting of the slave axis in the speed/ current synchronization control.         When the master axis is the full-closed control.         (Current synchronization control is only for MDS-C1-V2.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ization)                                                                                                          |
|              |         |                                                        | E Setting im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |
|              |         |                                                        | F Setting im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | possible                                                                                                          |
|              |         |                                                        | (Note) Setting for semi-closed loop control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |
| SV026        | OD2     | Excessive error<br>detection width<br>during servo OFF | Set the excessive error detection width when servo ON.<br>For the standard setting, refer to the explanation of SV023 (OD1).<br>When "0" is set, the excessive error detection will not be performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 to 32<br>(mm                                                                                                    |

| No.   | Abbrev.               | Parameter name                               | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Setting rang<br>(Unit)                                                                          |
|-------|-----------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|       |                       |                                              | F     E     D     C     B     A     9     8     7     6     5     4     3     2       afit     zrn2     afse     ovs     Imc     omr     zrn3     vfct     upc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEX setting                                                                                     |
| SV027 | SSF1                  | Servo function<br>selection 1                | bit         Meaning when "0" is set         Meaning when "1" is significant of the speed loop delay compensation 0: Delay compensation changeover invalid 10: Delay compensation 01: Delay compensation changeover invalid 10: Delay compensation 01: Delay compensation changeover type 1         11: Setting prohibited           2         upc         Starting torque compensation invalid Starting torque compensation valid         Starting torque compensation invalid Starting torque compensation valid           3         4         Set the number of compensation pulses of the jitter compensation 2 put 01: Jitter compensation 1 pulse         11: Jitter compensation 2 put 01: Jitter compensation 1 pulse           6         zrn3         ABZ phase scale: Set to "1" to fix Z-phase detection edge.           7         orr         Machine end compensation invalid         Machine end compensation valid           8         Set the compensation amount with SV016 (LMC1) and SV041 (LMC2         9           9         Imc         00: Adaptive filter sensitivity standard         10: Overshooting compensation type 1           8         ovs         00: Overshooting compensation type 1         11: Overshooting compensation           01         Jiter sensitivity standard         11: Adaptive filter sensitivity increase (Set 2bits at a time)           8         ovs         00: Adaptive filter start | tion.<br>n type 2<br>lid<br>ulses<br>ulses<br>l.<br>d<br>).<br>on type 2<br>).<br>tition type 2 |
| SV028 |                       |                                              | Not used. Set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                               |
| SV029 | VCS                   | Speed at the<br>change of speed<br>loop gain | If the noise is bothersome at high speed during rapid traverse, etc, lower<br>the speed loop gain.<br>Set the speed at which the speed loop gain changes, and use this with<br>SV006 (VGN2). (Refer to SV006)<br>When not using, set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 to 9999<br>(r/min)                                                                            |
|       | U U                   |                                              | r order 8bits are used for different functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|       | Abbrev                | ng value of SV030" =<br>/. Parameter name    | Explanation Setting range (Unit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |
| SV030 | IVC<br>(Low<br>order  | compensation                                 | When 100% is set, the voltage equivalent to the logical<br>non-energized time will be compensated.0 to 255When "0" is set, a 100% compensation will be performed.0 to 255Adjust in increments of 10% from the default value 100%.(%)If increased too much, vibration or vibration noise may be<br>generated.(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 to 32767                                                                                      |
|       | lcx<br>(High<br>order |                                              | Normally set to "0".<br>Use this in combination with SV040 and the high order<br>8bits of SV045.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |

| Abbrev. | Parameter name                 | Explanation Setting range (Unit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                | Set this if overshooting occurs during positioning. This compensates the motor torque during positioning.<br>This is valid only when the overshooting compensation SV027 (SSF1.ovs) is selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                                | Type 1: When SV027 (SSF1)/bitB, A (ovs)=01<br>Normally use type 3 to provide compatibility with the old method.<br>Type 2: When SV027 (SSF1)/bitB, A (ovs)=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                | Normally use type 3 to provide compatibility with the old method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OVS1    | Overshooting<br>compensation 1 | Type 3: When SV027 (SSF1)/bitB, A (ovs)=11<br>Increase the amount in increments of 1%, and find the amount where<br>overshooting does not occur. Also set SV034 (SSF3)/bit F to C (ovsn)<br>when using feed forward control1 to 100<br>(Stall [rated<br>current %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                | when using feed forward control.       current %)         When you wish different compensation amount depending on the direction       when SV042 (OVS2) is "0", compensate with the value of SV031 (OVS1) in both of the + and -directions.         If you wish to change the compensation amount depending on the command direction, set this and SV042 (OVS2).       (SV031: + direction, SV042: - direction. However, the directions may be opposite depending on other settings.)         When "-1" is set, the compensation won't be performed in the direction of the command.                                                                                                                                                                                                                                                                                              |
| TOF     | Torque offset                  | Set the unbalance torque of vertical axis and inclined axis100 to 100<br>(Stall [rated<br>current %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SSF2    | Servo function selection 2     | FEDCBA9876543210bitMeaning when "0" is setMeaning when "1" is set0zck Z phase check valid (Alarm 42)Z phase check invalid1Set the filter depth for Notch filter 1 (SV038).2nfd1 Value000001010011110111Depth (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.5-1.23Deep Set the filter depth of Notch filter 2 (SV046).Notch filter 3 start (1125Hz)55Set the filter depth of Notch filter 2 (SV046).6nfd2 Value000001010011100111Depth (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.5-1.25Set the filter depth of Notch filter 2 (SV046).6nfd2 Value000001010011100111Depth (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.5-1.26nfd2 Value000001010011100111Depth (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.5-1.26nfd2 Value000001010011100101111Depth (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.5-1.27Deep Set the performance mode of the serve control. (only for MDS-C1-VX)00: By current loop gain <t< td=""></t<> |
|         | OVS1                           | OVS1       Overshooting compensation 1         TOF       Torque offset         SSE2       Servo function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| No.   | Abbrev. | Parameter name                | Explanation Setting rar<br>(Unit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|---------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SV034 | SSF3    | Servo function<br>selection 3 | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         ovsn       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                          |
| SV035 | SSF4    | Servo function<br>selection 4 | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         clt       clG1       cl2n       clet       cltq       iup       tdt         bit       Meaning when "0" is set       Meaning when "1" is set         0       1       2       tdt       Td creation time setting         3       tdt       Creation time setting       Set to "0". (For machine tool builder adjustment)         4       5       6       iup       HC153 to HC453.         7       Set to "1" when using any of motors from HC152 to HC702 and from         8       Citq maximum torque of the motor.       9       00: 100%       01: 80% (Standard)       11: 70%         8       Citq maximum torque of the motor.       9       00: 100%       01: 80% (Standard)       11: 70%         A       Celt       Collision detection method 1       Collision detection method 2       NPOS of the servo monitor screen.         B       Cl2n       Collision detection method 1       Set the collision detection level during cutting feed (G1).       D       Cell The G1 collision detection level=SV060 × clG1.         B       Cl1       Clt       Collision detection level=SV060 × clG1.       Wh |

| No.     | Abbrev. | Parameter name              |                              |                     |            |                                 |                                                                      | Explan                                                               | ation                                                                          |                                |          |          |      | Se       | tting ran<br>(Unit)                   |
|---------|---------|-----------------------------|------------------------------|---------------------|------------|---------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------|----------|----------|------|----------|---------------------------------------|
|         |         |                             |                              |                     |            |                                 |                                                                      |                                                                      |                                                                                |                                |          |          |      | HE       | X settin                              |
|         |         |                             | F                            |                     |            | С                               | В                                                                    | A 9                                                                  | 8                                                                              | 76                             | 5        |          | 3    | 2 1      | 0                                     |
|         |         |                             |                              | ar                  | np         |                                 |                                                                      | rtyp                                                                 |                                                                                |                                |          | ptyp     |      |          |                                       |
|         |         |                             |                              | bit                 |            |                                 |                                                                      |                                                                      | E                                                                              | xplanati                       | on       |          |      |          |                                       |
|         |         |                             | 0                            |                     | со         | nnected                         | l, setti                                                             | ng belo                                                              | or of the<br>w is neo<br>emerge                                                | cessary.                       |          | •        |      |          | are                                   |
|         |         |                             | 3                            |                     | 10         | Setting                         |                                                                      | 1x                                                                   | 2x                                                                             | 3x                             | 4x       |          | 6x   |          | x                                     |
|         |         |                             | 4                            |                     |            | x0                              | Not<br>used                                                          |                                                                      |                                                                                | CV-300                         |          |          |      |          |                                       |
|         |         |                             | 5                            |                     |            | x1                              |                                                                      | CV-110                                                               |                                                                                |                                |          |          |      | CR       | -10                                   |
|         |         |                             | 6                            |                     |            | x2                              |                                                                      |                                                                      | CV-220                                                                         |                                |          |          | ļļ   | ·····    | -15                                   |
|         |         |                             | 7                            |                     |            | x3                              | CV-37                                                                |                                                                      |                                                                                |                                |          |          |      | CR<br>CR | -22                                   |
|         |         |                             |                              |                     |            | x4                              | UV-3/                                                                |                                                                      |                                                                                |                                | MDS-B-   | MDS-B-   |      | CR       | -57                                   |
|         |         |                             |                              |                     |            | x5                              |                                                                      | CV-150                                                               |                                                                                |                                | CVE-450  |          | 1 1  |          |                                       |
|         |         |                             |                              |                     |            | x6                              | CV-55                                                                |                                                                      | CV-260                                                                         |                                |          |          |      | CR       | -55                                   |
|         |         |                             |                              |                     |            | x7                              |                                                                      |                                                                      |                                                                                | CV-370                         |          |          |      |          |                                       |
| 0) (000 |         | Deverse                     |                              |                     |            |                                 | CV-75                                                                |                                                                      |                                                                                |                                |          |          |      |          | -75                                   |
| SV036   | PTYP*   | Power supply type           |                              |                     |            | x9                              |                                                                      | CV-185                                                               |                                                                                |                                |          |          |      | CR       | -90                                   |
|         |         |                             | B<br>B<br>C<br>D<br>E<br>F   | amp                 | Alv        |                                 | Rege<br>MDS<br>GZC<br>MR-<br>MR-<br>GZC<br>R-U<br>R-U<br>R-U<br>No s | nerative<br>S-C1-CV<br>S200W26<br>S300W13<br>RB30<br>RB50<br>S200W26 | sistor typ<br>resistor n<br>(Setting<br>50HMJ<br>30HMJ ×<br>00HMJ ×<br>00HMJ × | x odel na<br>when us<br>2<br>3 | me Resi  | stance v | alue | Сара     | n)<br>V<br>W<br>W<br>W<br>W<br>W<br>W |
| SV037   | JL      | Load inertia scale          | Set "the<br>motor in<br>SV03 | nertia.             |            | ertia + m<br><u>JI+Jm</u><br>Jm |                                                                      |                                                                      | Moto                                                                           |                                |          |          |      | C        | to 5000<br>(%)                        |
| SV038   | FHz1    | Notch filter<br>frequency 1 | Set the<br>(Valid a          | vibratio<br>t 36 or | on f<br>mc | requent<br>re) W                | cy to s<br>hen n                                                     | uppres<br>ot using                                                   | s if mac<br>, set to                                                           | hine vib<br>"0".               | ration o | ccurs.   |      | C        | to 9000<br>(Hz)                       |

| No.   | Abbrev.                | Parameter name                                            | Explanation                                                                                                                                                                                                                                                                                     |                                          | Setting range<br>(Unit)                   |  |  |  |  |
|-------|------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|--|--|--|--|
| SV039 | LMCD                   | Lost motion<br>compensation<br>timing                     | Set this when the lost motion compensation type2 timing a<br>Adjust by increasing the value by 10 at a time.                                                                                                                                                                                    | doest not match.                         | 0 to 2000<br>(ms)                         |  |  |  |  |
|       |                        | 040, the hex. value's h<br>value of SV040" = (lo          | nigher order 8bits and lower order 8bits are used for differe<br>cy×256) + LMCT                                                                                                                                                                                                                 | nt functions.                            |                                           |  |  |  |  |
|       | Abbrev.                | Parameter name                                            | Explanation                                                                                                                                                                                                                                                                                     | Setting range<br>(Unit)                  |                                           |  |  |  |  |
| SV040 | LMCT<br>(Low<br>order) | Lost motion<br>compensation<br>non-sensitive band         | Set the non-sensitive band of the lost motion<br>compensation in the feed forward control.<br>When "0" is set, the actual value that is set is 2µm.<br>Adjust by increasing by 1µm at a time.                                                                                                   | 0 to 100<br>(μm)                         | 0 to 32767                                |  |  |  |  |
|       | lcy<br>(High<br>order) | Current bias 2                                            | Normally, set to "40" if you use HC202 to HC902, HC203 to HC703.<br>Use this in combination with SV030 and the high order 8bits of SV045.                                                                                                                                                       | 0 to 127                                 |                                           |  |  |  |  |
| SV041 | LMC2                   | Lost motion<br>compensation 2                             | Set this with SV016 (LMC1) only when you wish to set the compensation amount to be different depending on the co directions. Set to "0" as a standard.                                                                                                                                          | e lost motion<br>ommand                  | -1 to 200<br>(Stall [rated]<br>current %) |  |  |  |  |
| SV042 | OVS2                   | Overshooting compensation 2                               | Set this with SV031 (OVS1) only when you wish to set the<br>compensation amount to be different depending on the co<br>directions. Set to "0" as a standard.                                                                                                                                    |                                          | -1 to 100<br>(Stall [rated]<br>current %) |  |  |  |  |
| SV043 | OBS1                   | Disturbance<br>observer filter<br>frequency               | Set the disturbance observer filter band. Set to "100" as a standard.<br>To use the disturbance observer, also set SV037 (JL), SV044 (OBS2) and<br>SV082/bit7 (obshj). When not using, set to "0".                                                                                              |                                          |                                           |  |  |  |  |
| SV044 | OBS2                   | Disturbance<br>observer gain                              | Set the disturbance observer gain. The standard setting is "100" to "300". To use the disturbance observer, also set SV037 (JL), SV043 (OBS1) and SV082/bit7 (obshj). When not using, set to "0".                                                                                               |                                          |                                           |  |  |  |  |
|       | functior               |                                                           | l value's higher order 8 bits and lower order 8 bits are<br>cy × 256) + LMCT<br>Explanation                                                                                                                                                                                                     | Used for different Setting range (Unit)  |                                           |  |  |  |  |
| SV045 | TRUB<br>(Low<br>order) | Frictional torque                                         | When you use the collision detection function, set the frictional torque.                                                                                                                                                                                                                       | 0 to 100<br>(Stall [rated]<br>current %) | 0 to 32767                                |  |  |  |  |
|       | lb1<br>(High<br>order) | Current bias 3                                            | Normally set to "0".<br>Use this in combination with SV030 and the high order<br>8bits of SV040.                                                                                                                                                                                                | 0 to 127                                 |                                           |  |  |  |  |
| SV046 | FHz2                   | Notch filter<br>frequency 2                               | Set the vibration frequency to suppress if machine vibratio<br>(Valid at 36 or more) When not using, set to "0".                                                                                                                                                                                | on occurs.                               | 0 to 9000<br>(Hz)                         |  |  |  |  |
| SV047 | EC                     | Inductive voltage compensation gain                       | Set the inductive voltage compensation gain. Set to "100"<br>If the current FB peak exceeds the current command pea                                                                                                                                                                             |                                          | 0 to 200<br>(%)                           |  |  |  |  |
| SV048 | EMGrt                  | Vertical axis drop<br>prevention time                     | Input a length of time to prevent the vertical axis from dro<br>Ready OFF until the brake works when the emergency st<br>Increase the setting by 100msec at a time and set the val<br>does not drop.                                                                                            | 0 to 20000<br>(ms)                       |                                           |  |  |  |  |
| SV049 | PGN1sp                 | Position loop gain 1<br>in spindle<br>synchronous control | Set the position loop gain during the spindle synchronous<br>(synchronous tapping, synchronous control with spindle/C<br>Set the same value as the value of the spindle parameter<br>gain in synchronous control.<br>When performing the SHG control, set this with SV050 (P<br>SV058 (SHGCsp). | 1 to 200<br>(rad/s)                      |                                           |  |  |  |  |
| SV050 | PGN2sp                 | Position loop gain 2<br>in spindle<br>synchronous control | Set this with SV049 (PGN1sp) and SV058 (SHGCsp) if you the SHG control in the spindle synchronous control (synchronous control with spindle/C axis).<br>When not performing the SHG control, set to "0".                                                                                        |                                          | 0 to 999<br>(rad/s)                       |  |  |  |  |

| No.   | Abbrev. | Parameter name                                           | Explanation                                                                                                                                                                                                                                                                                                                                                                                 | Setting range<br>(Unit)    |
|-------|---------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| SV051 | DFBT    | Dual feed back<br>control time<br>constant               | Set the control time constant in dual feed back.<br>When "0" is set, the actual value that is set is 1ms.<br>The higher the time constant is, the closer it gets to the semi-closed<br>control, so the limit of the position loop gain is raised.                                                                                                                                           | 0 to 9999<br>(ms)          |
| SV052 | DFBN    | Dual feedback<br>control<br>non-sensitive band           | Set to "0" as a standard.<br>Set the dead zone in the dual feedback control.                                                                                                                                                                                                                                                                                                                | 0 to 9999<br>(µm)          |
| SV053 | OD3     | Excessive error<br>detection width in<br>special control | Set the excessive error detection width when servo ON in a special control (initial absolute position setting, stopper control, etc.).<br>If "0" is set, excessive error detection won't be performed.                                                                                                                                                                                      | 0 to 32767<br>(mm)         |
| SV054 | ORE     | Overrun detection<br>width in closed loop<br>control     | Set the overrun detection width in the full-closed loop control.<br>If the gap between the motor end detector and the linear scale (tool end<br>detector) exceeds the value set by this parameter, it is judged to be<br>overrun and Alarm 43 will be detected.<br>When "-1" is set, the alarm detection won't be performed. When "0" is set,<br>overrun is detected with a 2mm width.      | -1 to 32767<br>(mm)        |
| SV055 | EMGx    | Max. gate off delay<br>time after<br>emergency stop      | Set a length of time from the point when the emergency stop is input to the point when READY OFF is compulsorily executed.<br>Normally, set the same value as the absolute value of SV056.<br>In preventing the vertical axis from dropping, the gate off is delayed for the length of time set by SV048 if SV055's value is smaller than that of SV048.                                    | 0 to 20000<br>(ms)         |
| SV056 | EMGt    | Deceleration time<br>constant at<br>emergency stop       | Set the time constant used for the deceleration control at emergency stop.<br>Set a length of time that takes from rapid traverse rate (rapid) to stopping.<br>Normally, set the same value as the rapid traverse<br>acceleration/deceleration time constant.<br>When executing the synchronous operation, put the minus sign to the<br>settings of both of the master axis and slave axis. | -20000 to<br>20000<br>(ms) |
| SV057 | SHGC    | SHG control gain                                         | When performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2).<br>When not performing the SHG control, set to "0".                                                                                                                                                                                                                                                            | 0 to 1200<br>(rad/s)       |
| SV058 | SHGCsp  | SHG control gain in spindle synchronous control          | Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the synchronous tapping control. When not performing the SHG control, set to "0".                                                                                                                                                                                                                 | 0 to 1200<br>(rad/s)       |
| SV059 | TCNV    | Collision detection<br>torque estimating<br>gain         | Set the torque estimating gain when using the collision detection function.<br>After setting as SV035/bitF(clt)=1 and performing<br>acceleration/deceleration, set the value displayed in MPOS of the NC<br>servo monitor screen.<br>Set to "0" when not using the collision detection function.                                                                                            | -32768 to<br>32767         |

| No.                 | Abbrev. | Parameter name                              | Explanation                                                                                                                                                                                                                                                                                 | Setting range<br>(Unit)                  |
|---------------------|---------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| SV060               | TLMT    | Collision detection level                   | When using the collision detection function, set the collision detection level during the G0 feeding.<br>If "0" is set, none of the collision detection function will work.                                                                                                                 | 0 to 999<br>(Stall [rated]<br>current %) |
| SV061               | DA1NO   | D/A output channel<br>1 data No.            | Input the data number you wish to output to D/A output channel.<br>In the case of MDS-C1-V2, set the axis on the side to which the data will<br>not be output to "-1".                                                                                                                      | -1 to 127                                |
| SV062               | DA2NO   | D/A output channel 2 data No.               |                                                                                                                                                                                                                                                                                             |                                          |
| SV063               | DA1MPY  | D/A output channel<br>1 output scale        | Set the scale with a 1/256 unit.<br>When "0" is set, output is done with the standard output unit.                                                                                                                                                                                          | -32768 to                                |
| SV064               | DA2MPY  | D/A output channel 2 output scale           |                                                                                                                                                                                                                                                                                             | 32767<br>(Unit: 1/256)                   |
| SV065               | TLC     | Tool end<br>compensation<br>spring constant | Set the spring constant of the tool end compensation.<br>In the semi-closed loop control, the tool end compensation amount is<br>calculated with the following equation.<br>Compensation amount= $\frac{F (mm/min)^2 \times SV065}{R (mm) \times 10^9}$ (µm)<br>When not using, set to "0". | -32768 to<br>32767                       |
| SV066<br>:<br>SV080 |         | System setting<br>parameter                 | These parameters are set automatically by the NC system.                                                                                                                                                                                                                                    |                                          |

| No.   | Abbrev. | Parameter name                  |           |               |       |        |        |      |        | Expla   | inatio     | n                                                     |        |                 |       |         |              |      |
|-------|---------|---------------------------------|-----------|---------------|-------|--------|--------|------|--------|---------|------------|-------------------------------------------------------|--------|-----------------|-------|---------|--------------|------|
|       |         |                                 |           | -             |       |        | _      |      |        |         |            |                                                       | I _    |                 | -     |         |              | _    |
|       |         |                                 | F         | E             | D     | С      | В      | Α    | 9      | 8       | 7          | 6                                                     | 5      | 4<br>pabs       | 3     | 2       | 1<br>rabs    | 0    |
|       |         |                                 |           | •             |       |        |        |      |        | •       |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 |           | oit           |       | Mear   | ning   | whe  | n "0"  | is set  |            |                                                       | Mea    | aning           | when  | ı "1" i | s set        |      |
|       |         |                                 | 0         | rabs          | Norr  | nal se | etting |      |        |         |            |                                                       |        |                 |       | e enc   | abso         | lute |
|       |         |                                 | 2         | 1405          |       |        |        |      |        |         |            | posi                                                  | tion o | contro          | ol    |         |              |      |
|       |         |                                 | 3         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | 4         | pabs          | Norr  | nal se | etting |      |        |         |            |                                                       |        | urrent<br>bsolu |       |         | ous<br>contr | ol   |
| SV081 | SPEC2*  | Servo specification selection 2 | 5         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         | selection 2                     | 6         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | 7         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | 9         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | A         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | B         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | D         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | E         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | F<br>(Not | e) S          | et to | "0" fo | r bits | with | h no r | particu | ılar d     | escrir                                                | otion. |                 |       |         |              |      |
|       |         |                                 |           | ., .          |       |        |        |      | -      |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | F         | E             | D     | с      | В      | A    | 9      | 8       | 7          | 6                                                     | 5      | 4               | 3     | 2       | 1            | 0    |
|       |         |                                 |           |               |       | 0      | 0      |      | 5      | 0       | ,<br>obshj | -                                                     | 5      |                 | 5     |         | Imc3         |      |
|       |         |                                 |           | .,            |       |        |        |      |        |         |            | 1                                                     |        |                 |       |         |              |      |
|       |         |                                 |           | oit           | Sett  | ing fo |        |      |        | is set  |            | Meaning when "1" is set<br>Lost motion compensation 3 |        |                 |       |         |              |      |
|       |         |                                 | 0         | Imct          |       | U      |        |      |        |         |            |                                                       | istme  |                 |       |         | emen         | t    |
|       |         |                                 | 1         | lmc3          | Lost  | motic  | on co  | mpe  | ensati | on 3    | stop       |                                                       |        | ion cc          | ompe  | nsatio  | on 3 s       | tart |
|       |         |                                 | 2         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | 3         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         | Servo function                  | 5         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
| SV082 | SSF5    | selection5                      | 6         |               | Norr  | nalue  | 20     |      |        |         |            | Diet                                                  | urba   | nce ol          | beony | or      |              |      |
|       |         |                                 | 7         | obshj         |       | nal us | Se     |      |        |         |            | High                                                  | n-load | d iner          |       |         | ible         |      |
|       |         |                                 | 8         |               |       |        |        |      |        |         |            | cont                                                  | rol    |                 |       |         |              |      |
|       |         |                                 | 9         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | A         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | B         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | D         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | E         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |
|       |         |                                 | F<br>(Not | i <b>e)</b> S | et to | "0" fo | r bits | with | h no r | partici | ılar d     | l<br>escrir                                           | otion  |                 |       |         |              |      |
|       |         |                                 | (         |               |       |        |        |      |        |         |            |                                                       |        |                 |       |         |              |      |

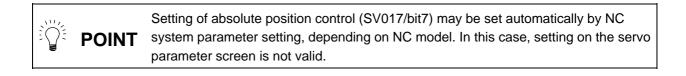
|        | Abbrev. | Parameter name | Explanation Setting<br>range (Unit) |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|--------|---------|----------------|-------------------------------------|-----|----------|-----------------------|----------|----------|--------------|---------|---------|-----------|----|--------|-------|-----------|-----------------|---------|
|        |         |                | F                                   | E   |          |                       | В        | A        | 9            | 8       | 7       | 6<br>nfd5 | 5  | 4      | 3     | 2<br>nfd4 | 1               | 0       |
|        |         |                |                                     | bit |          | Meaning when set to 0 |          |          |              |         |         |           | м  | leanin | ig wh | en set t  | 01              |         |
|        |         |                | 0                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 1                                   |     |          | Set the               |          | -        |              | h filte | r 4 (S\ | /038).    |    |        |       |           |                 |         |
|        |         |                | 2                                   | . , | nfd4     | Setting               | value    | Deep     | $\leftarrow$ |         |         |           |    |        |       |           | $\rightarrow$ S | Shallow |
|        |         |                | 3                                   | _ ' | iiu-     |                       |          | 000      | 001          | (       | 010     | 011       | 10 | 00     | 101   | 110       | )               | 111     |
|        |         |                |                                     |     |          | Depth (               | dB)      |          | -18.1        | 1 -     | 12.0    | -8.5      | -6 | .0     | -4.1  | -2.5      | 5               | -1.2    |
|        |         |                | 4                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         | Servo function | 5                                   | r   | <br>nfd5 | Set the               | filter o | depth fo | or Noto      | h filte | r 5 (S) | /046).    |    |        |       |           |                 |         |
| SV083  | SSF6    | selection 6    | 6                                   |     |          | Setting               |          |          |              |         | - (-    | ,         |    |        |       |           | <u>ب</u> ج      | Shallow |
|        |         |                | 7                                   |     |          | octang                | value    | 000      | 001          | (       | 010     | 011       | 10 | 0      | 101   | 110       |                 | 111     |
|        |         |                | 1                                   |     |          |                       |          | 000      | 001          |         |         |           |    |        | 101   | TIC       | ,               |         |
|        |         |                |                                     |     |          | Depth (               | dB)      | -00      | -18.1        | 1 -     | 12.0    | -8.5      | -6 | .0     | -4.1  | -2.5      | <b>;</b>        | -1.2    |
|        |         |                | 8                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 9                                   |     |          | Ι                     |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | А                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | В                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | С                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | D                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | E                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | F<br>(Note)                         | Set | to "0'   | for bits              | with     | no pa    | rticula      | r des   | cripti  | on.       |    |        |       |           |                 |         |
|        |         |                |                                     |     | 2        |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | F                                   |     |          | <u> </u>              | В        | A        | 9            | 8       | 7       | 6         | 5  | 4      | 3     | 2         | 1               | 0       |
|        |         |                |                                     |     |          |                       |          | 1        |              |         |         | <u> </u>  |    |        |       |           | _               |         |
|        |         |                |                                     | bi  | t        |                       | Меа      | ning w   | /hen se      | et to ( | )       |           | N  | leanii | ng wh | en set f  | :0 1            |         |
|        |         |                | 0                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 1                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 2                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 3                                   |     |          | -                     |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 4                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
| SV/004 | SSF7    | Servo function |                                     |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
| SV084  | 33F1    | selection 7    | 6                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 7                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 8                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | 9                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | A                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | B                                   | _   |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | C                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | D                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | E                                   |     |          |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | F                                   |     | 4. 10    |                       |          |          |              |         |         |           |    |        |       |           |                 |         |
|        |         |                | (Note)                              | Set | to "0'   | for bits              | with     | no pa    | rticula      | r des   | cripti  | on.       |    |        |       |           |                 |         |

| No.   | Abbrev.     | Parameter name                                     | Explanation                                                                                                                                                                                               | Setting<br>range (Unit) |
|-------|-------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SV085 |             | Lost motion<br>compensation<br>spring constant     | Set the machine system's spring constant when using lost motion compensation type 3.                                                                                                                      | 0 to 32767              |
| SV086 | LMCc        | Lost motion<br>compensation<br>viscous coefficient | Set the machine system's viscous coefficient when using lost motion compensation type 3.                                                                                                                  | 0 to 32767              |
| SV087 | <b>HH74</b> | Notch filter<br>frequency 4                        | Set the vibration frequency to suppress if machine vibration occurs. (Valid at 141 or more) When not using, set to "0".<br>To use this function, set to not "0" (normally "1") when turning the power ON. | 0 to 2250<br>(Hz)       |
| SV088 |             | Notch filter<br>frequency 5                        | This function cannot be used with adaptive filter.                                                                                                                                                        | 0 to 2250<br>(Hz)       |
| SV089 |             |                                                    | Not used. Set to "0".                                                                                                                                                                                     | 0                       |
| SV100 |             |                                                    |                                                                                                                                                                                                           | 0                       |

## **3-3** Setting the initial parameters for the servo drive unit (Standard specifications)

The servo parameters must be set before the servo system can be started up. The servo parameters are input from the NC. The input method differs according to the NC being used, so refer to each NC Instruction Manual.

### 3-3-1 Setting the standard parameters


When starting up the system, first set the standard parameters listed in "3-3-2 List of standard parameters for each servomotor". For the parameters shown below, check the machine and servo system specifications and determine the setting value.

### (1) Basic specification parameters

- [1] When performing absolute position control, set SV017/bit7=1. This may be automatically set by NC system parameter setting, depending on NC model. (Setting on the servo parameter screen is not valid.)
- [2] For HA053N, HA13N, HA23N, HA33N motors, if the connector direction of the motor end detector with motor power supply connector is 90°, set SV017/bit5=1. If the angle is 180°, use a standard setting (SV017/bit5=0).

| No.   | Abbrev. | Parameter<br>name                     | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|-------|---------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| SV017 | SPEC*   | Servo<br>specification<br>selection 1 | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         spm       mpt       mpt       mp       abs       vdir       fdir       vfb       seqh dfbx         bit       Meaning when set to 0       Meaning when set to 0       Meaning when set to 1         5       vdir       Standard setting       HA motor (4 pole motor)<br>Detector installation position 90<br>degrees (B, D)         7       abs       Incremental control       Absolute position control |  |  |  |  |  |  |  |  |  |

### Setting basic specification parameters



### (2) Electronic gear related parameters

The setting range of the following parameters, which configure the electronic gears, may be limited according to the combination. Refer to section "3-4 Restrictions on servo control" for details.

#### Standard specifications

| No.     | Abbrev.                                          | Parameter name                                               |                                                                | Explanation                                                                                                          |                                | Setting<br>range (Unit) |  |  |  |  |  |
|---------|--------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|--|--|--|--|--|
| SV001   | PC1*                                             | Motor side gear ratio                                        | Set the motor side and mach<br>For the rotary axis, set the to | otal deceleration (accele                                                                                            | ,                              | 1 to 32767              |  |  |  |  |  |
| SV002   | PC2*                                             | Machine side gear<br>ratio                                   | Even if the gear ratio is withi<br>overflow and cause an alarm |                                                                                                                      | electronic gears may           | 1 to 32767              |  |  |  |  |  |
| SV018   | PIT*                                             | Ball screw pitch                                             | Set the ball screw pitch. Set t                                | the ball screw pitch. Set to "360" for the rotary axis.                                                              |                                |                         |  |  |  |  |  |
|         |                                                  |                                                              |                                                                | he case of the semi-closed loop control<br>et the same value as SV020 (RNG2). (Refer to the explanation of<br>V020.) |                                |                         |  |  |  |  |  |
|         |                                                  |                                                              |                                                                | the case of the full-closed loop control<br>Set the number of pulses per ball screw pitch.                           |                                |                         |  |  |  |  |  |
|         |                                                  |                                                              | Detector model name                                            | Resolution                                                                                                           | SV019 setting                  |                         |  |  |  |  |  |
|         |                                                  |                                                              | OHE25K-ET, OHA25K-ET                                           | 100,000 (p/rev)                                                                                                      | 100                            |                         |  |  |  |  |  |
|         |                                                  |                                                              | OSE104-ET,OSA104-ET                                            | 100,000 (p/rev)                                                                                                      | 100                            |                         |  |  |  |  |  |
|         |                                                  | Position detector OSE105-ET,OSA105-ET 1,000,000 (p/rev) 1000 |                                                                | 1000                                                                                                                 |                                |                         |  |  |  |  |  |
| SV019   | RNG1*                                            | resolution                                                   | Relative position detection scale                              | Refer to detector specification manual                                                                               | PIT/Resolution<br>(μm)         | 1 to 9999               |  |  |  |  |  |
|         |                                                  |                                                              | AT41 (Mitsutoyo)                                               | 1 (μm/p)                                                                                                             | The same as<br>SV018 (PIT)     | (kp/pit)                |  |  |  |  |  |
|         |                                                  |                                                              | AT342 (Mitsutoyo)                                              | 0.5 (μm/p)                                                                                                           | Twice as big as<br>SV018 (PIT) |                         |  |  |  |  |  |
|         |                                                  |                                                              | FME type, FLE type<br>(Futaba)                                 | Refer to detector<br>specification manual                                                                            | PIT/Resolution                 |                         |  |  |  |  |  |
|         |                                                  |                                                              | MP type (Mitsubishi Heavy<br>Industries)                       | Refer to detector<br>specification manual                                                                            | (μm)<br>PIT/Resolution<br>(μm) |                         |  |  |  |  |  |
|         |                                                  |                                                              |                                                                | ·                                                                                                                    |                                |                         |  |  |  |  |  |
|         |                                                  |                                                              | Set the number of pulses per                                   | one revolution of the m                                                                                              | otor end detector.             |                         |  |  |  |  |  |
| 0) (000 | Speed detector Detector model name SV020 setting | SV020 setting                                                | 1 to 9999                                                      |                                                                                                                      |                                |                         |  |  |  |  |  |
| SV020   | RNG2*                                            | resolution                                                   | OSE104, OSA104                                                 | 100                                                                                                                  | (kp/rev)                       |                         |  |  |  |  |  |
|         |                                                  |                                                              | OSE105, OSA105                                                 |                                                                                                                      | 1000                           |                         |  |  |  |  |  |

#### (3) Detector related parameters

Standard specifications

#### (a) For semi-closed loop control

For control using only the motor end detector, specify the settings shown in the table below. For speed and current synchronous control, refer to section "2-4-3 Connecting the synchronous control system".

#### Setting for semi-closed loop control

| No. Abbr<br>ev. | Parameter name      | Explanation                                          |                                                                                                                                                                                                                |                    |  |  |  |  |  |  |  |
|-----------------|---------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| SV025 MTYP*     | Motor/Detector type | bit<br>8<br>9<br>A<br>ent<br>B<br>C<br>D<br>pen<br>F | Details<br>Set the detector type.<br>Set the position detector type for "pen"<br>for "ent". In the case of the semi-clos<br>value for "pen" and "ent".<br>Detector model<br>OSE104<br>OSE104<br>OSE105, OSA105 | ', and the speed o |  |  |  |  |  |  |  |

Parameters with an asterisk \* in the abbreviation, such as PC1\*, are validated with the NC power turned ON again.

#### (b) For full-closed loop control

Some parameter settings must be specified in order to use the machine end detector. These settings are determined by type or the installation conditions of the linear scale and the ball screw end detector.

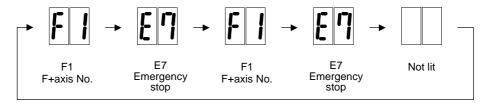
- [1] The SV025/bit8 to B (ent) setting must be specified according to the motor end detector specifications, in the same manner as for semi-closed loop control. For current synchronous control, however, refer to section "2-4-3 Connecting the synchronous control system".
- [2] If the polarities of the motor end detector and the machine end detector do not match, specify SV017/bit4=1 setting.
- [3] To use AT342, specify SV027/bit6=1 setting.
- [4] To use the MP scale, specify SV017/bit8 setting in accordance with the scale specifications. For absolute position control, specify SV017/bit9=1 setting.
- [5] For ABZ phase pulse output type relative position detection scale with constant Z-phase detection position without regard to the travel direction, specify SV027/bit6=1 setting. Z-phase detection occurs as follows: Plus-direction travel: Rising edge detection, Minus-direction travel: Falling edge detection
- [6] For machine end absolute position control at the rotation axis, specify SV081/bit1=1 setting.
- [7] For speed and current synchronous control, refer to "2-4-3 Connecting the synchronous control system".

| Setting | for | full-closed | loop | control |
|---------|-----|-------------|------|---------|
|---------|-----|-------------|------|---------|

| No.    | Abbrev. | Parameter name      | Explanation                                                                        | n                    |                                    |  |  |  |  |  |
|--------|---------|---------------------|------------------------------------------------------------------------------------|----------------------|------------------------------------|--|--|--|--|--|
| NO.    | ADDIEV. | r drameter hame     |                                                                                    |                      |                                    |  |  |  |  |  |
|        |         |                     | F E D C B A 9 8 7                                                                  | 6 5 4                | 3 2 1 0                            |  |  |  |  |  |
|        |         |                     | mpt mp abs                                                                         | vdir fdir            | spwvseqh dfbx                      |  |  |  |  |  |
| 0.4047 | 0050+   | Servo specification | bit Meaning when set to 0                                                          | Meaning              | when set to 1                      |  |  |  |  |  |
| 50017  | SPEC*   | selection           | 4 fdir Position feedback forward polarity                                          |                      | Position feedback reverse polarity |  |  |  |  |  |
|        |         |                     | 8 mp MP scale 360P (2mm pitch)                                                     | MP scale 720         |                                    |  |  |  |  |  |
|        |         |                     | 9 mpt MP scale ABS detection NC control                                            | MP scale ABS         | detection<br>andard swetting)      |  |  |  |  |  |
|        |         |                     | Control                                                                            |                      | andard Swetting)                   |  |  |  |  |  |
|        |         |                     |                                                                                    |                      |                                    |  |  |  |  |  |
|        |         |                     | bit         Expla           8         Set the detector type.                       | nation               |                                    |  |  |  |  |  |
|        |         |                     | 9 Set the position detector type for "p                                            |                      |                                    |  |  |  |  |  |
|        |         |                     | A ent for "ent". In the case of the semi-                                          | closed loop con      | trol, set the same                 |  |  |  |  |  |
|        |         |                     | value for pen and ent.                                                             | pen                  | ent sotting                        |  |  |  |  |  |
|        |         |                     |                                                                                    | setting              | ent setting                        |  |  |  |  |  |
|        |         |                     | C         OSE104           D         OSA104                                        | 0 (Note)<br>1 (Note) | 0                                  |  |  |  |  |  |
|        |         |                     | E pen OSA104<br>OSE105, OSA105                                                     | 2 (Note)             | 2                                  |  |  |  |  |  |
|        |         |                     | F                                                                                  | 3 (Note)             | 3                                  |  |  |  |  |  |
|        |         |                     | OHE25K-ET,OSE104-ET                                                                | 4                    | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     | OHA25K-ET,OSA104-ET                                                                | 5                    | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     | OSE105-ET,OSA105-ET                                                                | 6                    | Setting<br>impossible              |  |  |  |  |  |
| SV025  | MTYP*   | Motor/Detector type |                                                                                    | 7                    | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     | Relative position detection scale,<br>MP type (Mitsubishi Heavy Industrie          | es) 8                | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     | AT41 (Mitsutoyo), FME type,<br>FLE type (Futaba)                                   | 9                    | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     | AT342 (Mitsutoyo)                                                                  | A                    | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     |                                                                                    | В                    | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     | The setting of the slave axis i                                                    |                      | С                                  |  |  |  |  |  |
|        |         |                     | speed/current synchronization contr<br>When the master axis is the semi-           | C                    | (Current                           |  |  |  |  |  |
|        |         |                     | control.                                                                           |                      | synchronization)                   |  |  |  |  |  |
|        |         |                     |                                                                                    | D                    | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     |                                                                                    | E                    | Setting<br>impossible              |  |  |  |  |  |
|        |         |                     |                                                                                    | F                    | Setting                            |  |  |  |  |  |
|        |         |                     | (Note) Setting for semi-closed lo                                                  |                      | impossible                         |  |  |  |  |  |
|        |         |                     |                                                                                    | •                    |                                    |  |  |  |  |  |
|        |         |                     | F E D C B A 9 8 7                                                                  | 6 5 4                | 3 2 1 0                            |  |  |  |  |  |
|        |         |                     |                                                                                    | zrn3 vfct            | upc vcnt                           |  |  |  |  |  |
| SV027  | SSF1    | Servo function      |                                                                                    |                      |                                    |  |  |  |  |  |
| ,      |         | selection 2         | bit Meaning when set to 0                                                          |                      |                                    |  |  |  |  |  |
|        |         |                     | 6 Zrn3 ABZ scale: Set to "1" to fix Z-phase<br>Absolute position scale: Set to "1" |                      |                                    |  |  |  |  |  |
|        |         |                     |                                                                                    | doing /11042         | ••                                 |  |  |  |  |  |

### (4) Setting the power supply type

Set the drive unit connected to the power supply unit with the CN4 connector. This does not need to be set if the power supply for the axis is not connected with the CN4 connector. (Set "0000".) If the power supply unit is connected with the spindle drive unit, the parameters do not need to be set on the servo side. When connected to a 2-axis servo drive unit (MDS-C1-V2), set the power supply type for one of the two target axes.


Setting power supply type

| No. | Abbrev. | Parameter name |                                                               | Explanation |                       |                                                                                              |                                                                     |                                                                                                          |                                                                                          |                                                                               |                                                                |                                                       |                      |                                                                                |                                                           |
|-----|---------|----------------|---------------------------------------------------------------|-------------|-----------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|----------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|
| No. | Abbrev. | Parameter name | b<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>A |             | mp<br>Wr<br>Cor<br>To | validate<br>Setting<br>x0<br>x1<br>x2<br>x3<br>x4<br>x5<br>x6<br>x7<br>x8<br>x9<br>t the reg | I, setti<br>e the c<br>0x<br>Not<br>used<br>CV-37<br>CV-55<br>CV-75 | A 9<br>rtyp<br>connect<br>ng belo<br>external<br>1x<br>CV-110<br>CV-110<br>CV-150<br>CV-185<br>ative res | 8<br>Eror of the<br>w is need<br>emergy<br>2x<br>CV-220<br>CV-220<br>CV-260<br>Sistor ty | 7 6<br>xplanat<br>e drive u<br>cessary.<br>ency sto<br>3x<br>CV-300<br>CV-300 | ion<br>unit and<br><u>op functi</u><br>4x<br>MDS-B-<br>CVE-450 | ptyp<br>the pov<br>on, add<br>5x<br>MDS-B-<br>CVE-550 | ver s<br>40h<br>6x 7 | upply<br>x 8<br>CR<br>CR<br>CR<br>CR<br>CR<br>CR<br>CR<br>CR<br>CR<br>CR<br>CR | are<br>x<br>-10<br>-15<br>-22<br>-37<br>-55<br>-75<br>-90 |
|     |         |                | B<br>C<br>D                                                   | amp         |                       | ways se                                                                                      | et "O".                                                             |                                                                                                          |                                                                                          |                                                                               |                                                                |                                                       |                      |                                                                                |                                                           |

#### Standard specifications

Parameters with an asterisk \* in the abbreviation, such as PC1\*, are validated with the NC power turned ON again.

If alarm 7F occurs after setting the initial parameters, turn the drive unit power ON again. If the unit's LEDs indicate the following emergency stop state, the unit has started up normally.



Normal LED display when NC power is turned ON (1st axis)

## 3-3-2 List of standard parameters for each servomotor

## (1) HC series (Standard 2000 r/min rating) Standard specifications

| Parameter         HCG2                                                                                                                                                                                                                                                                               | otania |          | Matar                                            |       |        | Ctondord |          | 2000 -/ | rating |        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------------------------------------------------|-------|--------|----------|----------|---------|--------|--------|--------|
| No.         Abbrew.         Dentain         Unit capacity         05         10         20         25         45         70         90           SV000         PC1         Madrine side gear ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Doror  | notor    | Motor                                            | 11050 | 110400 |          |          |         |        | 110700 | 110000 |
| SY002         PC1         Moder safe gear ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |                                                  |       |        |          |          |         |        |        |        |
| SY002         PC2         Machine side gar ratio                                                                              50005         S001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.    | Abbrev.  | Details Unit capacity                            | 05    | 10     | 20       | 20       | 35      | 45     | 70     | 90     |
| SV003         PCNN         Pealain loog gain 1         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         3                                                                                                                                                                                                                                                                                                                                                    | SV001  | PC1      | Motor side gear ratio                            |       |        |          |          |         |        |        |        |
| SY004         PCNZ         Position loop gain 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0         0 </td <td>SV002</td> <td>PC2</td> <td>Machine side gear ratio</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                 | SV002  | PC2      | Machine side gear ratio                          |       |        |          |          |         |        |        |        |
| SY004         PCNZ         Position loop gain 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0         0 </td <td>SV003</td> <td>PGN1</td> <td>Position loop gain 1</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td> <td>33</td>                                                                                                                                                                                                                                   | SV003  | PGN1     | Position loop gain 1                             | 33    | 33     | 33       | 33       | 33      | 33     | 33     | 33     |
| Sivos         VCN1         Speed toop gain 1         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                               |        |          |                                                  |       |        |          |          |         |        |        |        |
| SY000         VCN2         Speed top dely compensation         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                     | -      |          |                                                  | -     | -      | -        | -        | -       |        | -      | -      |
| SY007         Vit.         Speed toop delay compensation         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV008         VA         Speed loop lead compensation         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         1364         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>                                                                                                                                                 |        |          |                                                  |       | -      |          | -        | -       | -      | -      | -      |
| SY009         DA         Current loop q axis lead compensation         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048                                                                                                                                                                                                                                                                 |        |          |                                                  | -     | -      | -        | -        | -       | -      | -      | -      |
| SV010         IDA         Current loop a dask gain         2148         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2049         2040         2040         2                                                                                                                                                                                                                                                                   | SV008  | VIA      |                                                  | 1364  | 1364   | 1364     | 1364     | 1364    | 1364   | 1364   | 1364   |
| SV011         IQC         Current loop a asis gain         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512 </td <td>SV009</td> <td>IQA</td> <td>Current loop q axis lead compensation</td> <td>2048</td> <td>2048</td> <td>2048</td> <td>2048</td> <td>2048</td> <td>2048</td> <td>2048</td> <td>2048</td>                                                                                                         | SV009  | IQA      | Current loop q axis lead compensation            | 2048  | 2048   | 2048     | 2048     | 2048    | 2048   | 2048   | 2048   |
| SV012         IDC         Current limit value         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512                                                                                                                                                                                                                                                                                                              | SV010  | IDA      |                                                  | 2048  | 2048   | 2048     | 2048     | 2048    | 2048   | 2048   | 2048   |
| SV012         IDC         Current limit value         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512                                                                                                                                                                                                                                                                                                              | SV011  | IQG      | Current loop q axis gain                         | 512   | 512    | 512      | 256      | 256     | 256    | 200    | 200    |
| SV013         ILMT         Current limit value in special control         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                                      | SV012  | IDG      |                                                  | 512   | 512    | 512      | 512      | 512     | 512    | 256    | 256    |
| SY014         LUMTSp.         Current limit value in special control         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                                   |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV015         FFC         Acceleration rate feed forward gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                              |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV016         LMC1         Lost motion compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        <                                                                                                                                                                                                                                                                                                                                                                                             |        |          |                                                  |       |        |          |          |         |        |        |        |
| SY017         SPEC         Servo specifications selection 1         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                                                                                                                                                                    |        |          |                                                  |       | -      |          | -        |         |        |        | -      |
| SY018         PT         Ball strew plich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |                                                  |       |        |          |          |         |        |        | -      |
| SY019         RNG1         Position delector resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SV017  | SPEC     | Servo specifications selection 1                 | 0000  | 0000   | 0000     | 0000     | 0000    | 0000   | 0000   | 0000   |
| SV2021         ENG2         Special detector resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SV018  | PIT      | Ball screw pitch                                 |       |        |          |          |         |        |        |        |
| Siv02D         ING2         Speed detector resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SV019  | RNG1     | Position detector resolution                     |       |        |          |          |         |        |        |        |
| SY0221         OLT         Överlaad detection invection         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60                                                                                                                                                                                                                                                                                                                                                     |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV022         OLL         Overload detection width during serve ON         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6        7         7         7 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                      |        | -        |                                                  |       |        |          |          |         |        |        |        |
| SV023         OD1         Excessive error detection width during servo ON         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6        7        <                                                                                                                                                                                                                                                                                                                                                                                    |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV025         INP         In-position detection width         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50      <                                                                                                                                                                                                                                                                                                                                                |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV02E         MTYP         Motor/detector type         xxB0         xxB1         xxB2         xxB2         xxB2         xxB2         xxB3         xxB4         xxB2         xxB4         xxB2         xxB3         xxB4         xxB2         xxB4         xxB2         xxB3         xxB4         xxB2         xxB3         xxB4         xxB3         xxB4         xxB4         xxB4         xxB3         xxB4         xxB4         xxB4         xxB4         xxB3         xxB4         xxB4         xxB3         xxB4         xxB4         xxB3         xxB4         xXB4<                                                                                                                                                                                                                                                                   |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV026         OD2         Excessive error detection width during serve OFF         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                           |        |          | •                                                |       |        |          |          |         |        |        |        |
| SV027         SF1         Servo function selection 1         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                      |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV028         CC         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>SV026</td> <td>OD2</td> <td>Excessive error detection width during servo OFF</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td> <td>6</td>                                                                                                                                                                                                              | SV026  | OD2      | Excessive error detection width during servo OFF | 6     | 6      | 6        | 6        | 6       | 6      | 6      | 6      |
| SV028         CC         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>SV027</td> <td>SSF1</td> <td>Servo function selection 1</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td> <td>4000</td>                                                                                                                                                                                                           | SV027  | SSF1     | Servo function selection 1                       | 4000  | 4000   | 4000     | 4000     | 4000    | 4000   | 4000   | 4000   |
| SV029         VCS         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td>                                                                                                                                                                                                                                                                             |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV030         IVC         Voltage dead time compensation / current bias 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                            |        | VCS      | Speed at the change of speed loop gain           |       | -      |          |          |         |        |        | -      |
| SV031         OVErshooting compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></t<>                                                                                                                                                                                                                                                                                   |        |          |                                                  |       |        |          |          |         |        | -      | -      |
| SV032         TOF         Torque offset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |                                                  | -     | -      | -        | -        | -       | -      | -      | -      |
| SV033         SF2         Servo function selection 2         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                      |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV034         SSF3         Servo function selection 3         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0003         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <t< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>_</td><td>-</td><td>_</td></t<>                                                                                                                                               |        |          |                                                  | -     | -      | -        | -        | -       | _      | -      | _      |
| SV035         SEF4         Servo function selection 4         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                       |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV036         PTYP         Power supply type         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <td>SV034</td> <td>SSF3</td> <td>Servo function selection 3</td> <td>0003</td> <td>0003</td> <td>0003</td> <td>0003</td> <td>0003</td> <td>0003</td> <td>0003</td> <td>0003</td>                                                                                     | SV034  | SSF3     | Servo function selection 3                       | 0003  | 0003   | 0003     | 0003     | 0003    | 0003   | 0003   | 0003   |
| SV036         PTYP         Power supply type         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <td>SV035</td> <td>SSF4</td> <td>Servo function selection 4</td> <td>0000</td> <td>0000</td> <td>0040</td> <td>0040</td> <td>0040</td> <td>0040</td> <td>0040</td> <td>0000</td>                                                                                     | SV035  | SSF4     | Servo function selection 4                       | 0000  | 0000   | 0040     | 0040     | 0040    | 0040   | 0040   | 0000   |
| SV037         JL         Load inertia scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                      | SV036  | PTYP     | Power supply type                                | 0000  | 0000   | 0000     | 0000     | 0000    | 0000   | 0000   | 0000   |
| SV038         FHz1         Notch filter frequency 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                     |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV039         LMCD         Lost motion compensation non-sensitive band         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                        |        |          |                                                  |       | -      |          |          |         | -      | -      | -      |
| SV040         LMCT         Lost motion compensation non-sensitive band         0         0         0         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         <                                                                                                                                                                                                                           |        |          |                                                  |       | -      |          | -        | -       | _      |        | -      |
| SV040         LMC1         /current bias 2         0         0         0         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10240         10                                                                                                                                                                                                                                        | 20039  | LIVICD   |                                                  | 0     | 0      | 0        | 0        | 0       | 0      | 0      | 0      |
| Current bias 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                               | SV040  | LMCT     |                                                  | 0     | 0      | 0        | 10240    | 10240   | 10240  | 10240  | 10240  |
| SV042         OVS2         Overshooting compensation 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |                                                  |       | -      |          |          |         |        |        |        |
| SV043         OBS1         Disturbance observer filter frequency         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>SV041</td> <td></td> <td>Lost motion compensation 2</td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                         | SV041  |          | Lost motion compensation 2                       |       | 0      |          |          | 0       | 0      | 0      | 0      |
| SV044         OBS2         Disturbance observer gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                             | SV042  | OVS2     | Overshooting compensation 2                      | 0     | 0      | 0        | 0        | 0       | 0      | 0      | 0      |
| SV045         TRUB         Frictional torque/current bias 3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                | SV043  | OBS1     | Disturbance observer filter frequency            | 0     | 0      | 0        | 0        | 0       | 0      | 0      | 0      |
| SV045         TRUB         Frictional torque/current bias 3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                | SV044  | OBS2     | Disturbance observer gain                        | 0     | 0      | 0        | 0        | 0       | 0      | 0      | 0      |
| SV046         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td>°</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                       |        |          | °                                                | -     | -      | -        | -        | -       | -      | -      | -      |
| SV047         EC         Inductive voltage compensation gain         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                           |        | Intel    |                                                  |       |        |          |          |         |        |        |        |
| SV048         EMGrt         Vertical axis drop prevention time         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             |        | EC       | Inductive voltage compensation gain              |       | -      |          |          | -       |        |        |        |
| SV049         PGN1sp         Position loop gain 1 in spindle synchronous<br>control         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15                                                                                                                                                                                                                                                                                                                                    |        | EMO      | Vertical axis drap provention time               |       |        |          | 100      | 100     |        |        | 100    |
| SV049         PGN1sp         control         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15 <th15< th=""> <th15< th="">         15</th15<></th15<>                                                                                                                                                                                                                                                                                                                                       | SVU48  | EIVIGIT  |                                                  | 0     | 0      | 0        | 0        | 0       | 0      | 0      | U      |
| SV050         PGN2sp         Position loop gain 2 in spindle synchronous control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                     | SV049  | PGN1sp   |                                                  | 15    | 15     | 15       | 15       | 15      | 15     | 15     | 15     |
| SV050         PGN2Sp         control         Control <thcontrol< th=""> <thcontrol< th=""> <thcont< td=""><td>2.010</td><td></td><td></td><td>.0</td><td>.5</td><td>.0</td><td>.0</td><td>.0</td><td>.0</td><td>.0</td><td>.0</td></thcont<></thcontrol<></thcontrol<> | 2.010  |          |                                                  | .0    | .5     | .0       | .0       | .0      | .0     | .0     | .0     |
| SV051         DFBT         Dual feedback control time constant         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             | SV/050 | PGN/2cc  |                                                  | 0     | 0      | ^        | <u>م</u> | 0       | 0      | 0      | 0      |
| SV052         DFBN         Dual feedback control non-sensitive band         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                        |        | r Givzsp |                                                  | 0     | 0      | 0        | 0        | 0       | 0      | 0      | U      |
| SV052         DFBN         Dual feedback control non-sensitive band         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                        | SV051  | DFBT     | Dual feedback control time constant              | 0     | 0      | 0        | 0        | 0       | 0      | 0      | 0      |
| SV053         OD3         Excessive error detection width in special control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                         |        |          |                                                  |       |        |          |          |         | -      |        | 0      |
| SV054         ORE         Overrun detection width in closed loop control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV055         EMGx         Max. gate off delay time after emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV056         EMGt         Deceleration time constant at emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                    |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV057         SHGC         SHG control gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |                                                  |       | -      |          |          |         |        |        |        |
| SV058         SHG csp         SHG control gain in spindle synchronous control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                        |        |          |                                                  |       |        |          |          |         | -      | -      |        |
| SV059         TCNV         Collision detection torque estimating gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>                                                                                                                                                                                                                                                                          |        |          |                                                  |       |        |          |          |         |        |        | 0      |
| SV059         TCNV         Collision detection torque estimating gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td>SV058</td><td>SHGCsp</td><td>SHG control gain in spindle synchronous control</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>                                                                                                                                                                                                         | SV058  | SHGCsp   | SHG control gain in spindle synchronous control  | 0     | 0      | 0        | 0        | 0       | 0      | 0      | 0      |
| SV060         TLMT         Collision detection level         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                             |        |          |                                                  | 0     | 0      | 0        | 0        | 0       | 0      | 0      | 0      |
| SV061         DA1NO         D/A output channel 1 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                  |        |          |                                                  |       |        |          |          |         |        |        | 0      |
| SV062         DA2NO         D/A output channel 2 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                  | -      |          |                                                  |       |        |          |          |         |        |        |        |
| SV063         DA1MPY         D/A output channel 1 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             |        |          |                                                  |       |        |          |          |         |        |        |        |
| SV064         DA2MPY         D/A output channel 2 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                             |        |          |                                                  |       |        |          |          |         |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |                                                  |       |        |          |          |         |        |        |        |
| <u> SV065    0  0  0  0  0  0  0  0  0  0  0  0  </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | DA2MPY   | D/A output channel 2 output scale                |       |        |          |          |         | -      |        | 0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SV065  |          |                                                  | 0     | 0      | 0        | 0        | 0       | 0      | 0      | 0      |

# (2) HC series (Standard 3000 r/min rating) Standard specifications

| Standard specifications Motor Standard HC motor 3000 r/min rating |         |                                                    |      |       |       |       |       |       |       |  |
|-------------------------------------------------------------------|---------|----------------------------------------------------|------|-------|-------|-------|-------|-------|-------|--|
| -                                                                 |         | Motor                                              |      |       |       |       |       |       |       |  |
| Paran                                                             |         |                                                    | HC53 | HC103 | HC153 | HC203 | HC353 | HC453 | HC703 |  |
| No.                                                               | Abbrev. | Details Unit capacity                              | 05   | 10    | 20    | 35    | 45    | 70    | 90    |  |
| SV001                                                             | PC1     | Motor side gear ratio                              |      |       |       |       |       |       |       |  |
| SV002                                                             | PC2     | Machine side gear ratio                            |      |       |       |       |       |       |       |  |
| SV003                                                             | PGN1    | Position loop gain 1                               | 33   | 33    | 33    | 33    | 33    | 33    | 33    |  |
| SV004                                                             | PGN2    | Position loop gain 2                               | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV004<br>SV005                                                    | VGN1    |                                                    | 100  | 100   | 100   | -     | -     | -     | 100   |  |
|                                                                   |         | Speed loop gain 1                                  |      |       |       | 100   | 100   | 100   |       |  |
| SV006                                                             | VGN2    | Speed loop gain 2                                  | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV007                                                             | VIL     | Speed loop delay compensation                      | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV008                                                             | VIA     | Speed loop lead compensation                       | 1364 | 1364  | 1364  | 1364  | 1364  | 1364  | 1364  |  |
| SV009                                                             | IQA     | Current loop q axis lead compensation              | 2048 | 2048  | 2048  | 2048  | 2048  | 2048  | 2048  |  |
| SV010                                                             | IDA     | Current loop d axis lead compensation              | 2048 | 2048  | 2048  | 2048  | 2048  | 2048  | 2048  |  |
| SV011                                                             | IQG     | Current loop q axis gain                           | 256  | 256   | 256   | 256   | 256   | 256   | 256   |  |
| SV012                                                             | IDG     | Current loop d axis gain                           | 512  | 512   | 512   | 512   | 512   | 512   | 512   |  |
| SV012<br>SV013                                                    | ILMT    | Current limit value                                | 500  | 500   | 500   |       | 500   | 500   | 500   |  |
|                                                                   |         |                                                    |      |       |       | 500   |       |       |       |  |
| SV014                                                             | ILMTsp  | Current limit value in special control             | 500  | 500   | 500   | 500   | 500   | 500   | 500   |  |
| SV015                                                             | FFC     | Acceleration rate feed forward gain                | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV016                                                             | LMC1    | Lost motion compensation 1                         | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV017                                                             | SPEC    | Servo specifications selection 1                   | 0000 | 0000  | 0000  | 0000  | 0000  | 0000  | 0000  |  |
| SV018                                                             | PIT     | Ball screw pitch                                   |      |       |       |       |       |       |       |  |
| SV019                                                             | RNG1    | Position detector resolution                       |      |       |       |       |       |       |       |  |
| SV019                                                             | RNG2    | Speed detector resolution                          |      |       |       |       |       |       |       |  |
|                                                                   |         |                                                    |      |       |       |       |       |       |       |  |
| SV021                                                             | OLT     | Overload detection time constant                   | 60   | 60    | 60    | 60    | 60    | 60    | 60    |  |
| SV022                                                             | OLL     | Overload detection level                           | 150  | 150   | 150   | 150   | 150   | 150   | 150   |  |
| SV023                                                             | OD1     | Excessive error detection width during servo ON    | 6    | 6     | 6     | 6     | 6     | 6     | 6     |  |
| SV024                                                             | INP     | In-position detection width                        | 50   | 50    | 50    | 50    | 50    | 50    | 50    |  |
| SV025                                                             | MTYP    | Motor/detector type                                | xxC0 | xxC1  | xxC2  | xxC3  | xxC4  | xxC5  | xxC6  |  |
| SV026                                                             | OD2     | Excessive error detection width during servo OFF   | 6    | 6     | 6     | 6     | 6     | 6     | 6     |  |
| SV027                                                             | SSF1    | Servo function selection 1                         | 4000 | 4000  | 4000  | 4000  | 4000  | 4000  | 4000  |  |
| SV027<br>SV028                                                    | 3311    |                                                    | 4000 | 4000  |       |       | 4000  |       |       |  |
|                                                                   | 1/00    |                                                    | -    | -     | 0     | 0     | -     | 0     | 0     |  |
| SV029                                                             | VCS     | Speed at the change of speed loop gain             | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV030                                                             | IVC     | Voltage dead time compensation / current bias 1    | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV031                                                             | OVS1    | Overshooting compensation 1                        | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV032                                                             | TOF     | Torque offset                                      | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV033                                                             | SSF2    | Servo function selection 2                         | 0000 | 0000  | 0000  | 0000  | 0000  | 0000  | 0000  |  |
| SV034                                                             | SSF3    | Servo function selection 3                         | 0003 | 0003  | 0003  | 0003  | 0003  | 0003  | 0003  |  |
| SV035                                                             | SSF4    | Servo function selection 4                         | 0000 | 0000  | 0000  | 0000  | 0000  | 0040  | 0000  |  |
|                                                                   |         |                                                    |      |       |       |       |       |       |       |  |
| SV036                                                             | PTYP    | Power supply type                                  | 0000 | 0000  | 0000  | 0000  | 0000  | 0000  | 0000  |  |
| SV037                                                             | JL      | Load inertia scale                                 | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV038                                                             | FHz1    | Notch filter frequency 1                           | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV039                                                             | LMCD    | Lost motion compensation timing                    | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| 01/040                                                            | LMOT    | Lost motion compensation non-sensitive band        | 0    | 0     | 0     | 10010 | 40040 | 40040 | 10010 |  |
| SV040                                                             | LMCT    | /current bias 2                                    | 0    | 0     | 0     | 10240 | 10240 | 10240 | 10240 |  |
| SV041                                                             | LMC2    | Lost motion compensation 2                         | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV042                                                             | OVS2    | Overshooting compensation 2                        | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV042                                                             | OBS1    | Disturbance observer filter frequency              | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
|                                                                   |         |                                                    | 0    | 0     | 0     |       | 0     |       | 0     |  |
| SV044                                                             | OBS2    | Disturbance observer gain                          | -    | -     | -     | 0     | -     | 0     | -     |  |
| SV045                                                             | TRUB    | Frictional torque/current bias 3                   | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV046                                                             |         |                                                    | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV047                                                             | EC      | Inductive voltage compensation gain                | 100  | 100   | 100   | 100   | 100   | 100   | 100   |  |
| SV048                                                             | EMGrt   | Vertical axis drop prevention time                 | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| 01/0.15                                                           |         | Position loop gain 1 in spindle synchronous        |      |       |       |       |       |       |       |  |
| SV049                                                             | PGN1sp  | control                                            | 15   | 15    | 15    | 15    | 15    | 15    | 15    |  |
|                                                                   |         | Position loop gain 2 in spindle synchronous        |      |       |       |       | -     |       |       |  |
| SV050                                                             | PGN2sp  | control                                            | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV051                                                             | DFBT    | Dual feedback control time constant                | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
|                                                                   |         |                                                    |      |       |       |       |       | -     |       |  |
| SV052                                                             | DFBN    | Dual feedback control non-sensitive band           | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV053                                                             | OD3     | Excessive error detection width in special control | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV054                                                             | IRE     | Overrun detection width in closed loop control     | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV055                                                             | EMGx    | Max. gate off delay time after emergency stop      | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV056                                                             | EMGt    | Deceleration time constant at emergency stop       | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV057                                                             | SHGC    | SHG control gain                                   | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
|                                                                   |         | SHG control gain in spindle synchronous control    | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
|                                                                   |         |                                                    |      |       |       |       |       |       |       |  |
| SV059                                                             |         | Collision detection torque estimating gain         | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV060                                                             | TLMT    | Collision detection level                          | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV061                                                             |         | D/A output channel 1 data No.                      | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV062                                                             | DA2NO   | D/A output channel 2 data No.                      | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV063                                                             |         | D/A output channel 1 output scale                  | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
|                                                                   |         | D/A output channel 2 output scale                  | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| SV065                                                             |         |                                                    | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |
| 0,000                                                             |         |                                                    | 0    | 0     | 0     | 0     | 0     | 0     | 0     |  |

# (3) HC series (Low-inertia) Standard specifications

|                |         | Matan                                              |        | 1      |               | 4      |        |
|----------------|---------|----------------------------------------------------|--------|--------|---------------|--------|--------|
| _              |         | Motor                                              |        |        | inertia HC mo |        |        |
| Parar          |         |                                                    | HC103R | HC153R | HC203R        | HC353R | HC503R |
| No.            | Abbrev. | Details Unit capacity                              | 10     | 10     | 20            | 35     | 45     |
| SV001          | PC1     | Motor side gear ratio                              |        |        |               |        |        |
| SV002          | PC2     | Machine side gear ratio                            |        |        |               |        |        |
| SV003          | PGN1    | Position loop gain 1                               | 33     | 33     | 33            | 33     | 33     |
| SV004          |         | Position loop gain 2                               | 0      | 0      | 0             | 0      | 0      |
| SV004<br>SV005 | VGN1    | Speed loop gain 1                                  | 15     | 15     | 20            | 40     | 40     |
|                |         |                                                    |        |        |               |        |        |
| SV006          | VGN2    | Speed loop gain 2                                  | 0      | 0      | 0             | 0      | 0      |
| SV007          | VIL     | Speed loop delay compensation                      | 0      | 0      | 0             | 0      | 0      |
| SV008          | VIA     | Speed loop lead compensation                       | 1364   | 1364   | 1364          | 1364   | 1364   |
| SV009          | IQA     | Current loop q axis lead compensation              | 4096   | 4096   | 4096          | 4096   | 4096   |
| SV010          | IDA     | Current loop d axis lead compensation              | 4096   | 4096   | 4096          | 4096   | 4096   |
| SV011          | IQG     | Current loop q axis gain                           | 256    | 256    | 256           | 256    | 256    |
| SV012          | IDG     | Current loop d axis gain                           | 512    | 512    | 512           | 512    | 512    |
| SV013          | ILMT    | Current limit value                                | 500    | 500    | 500           | 500    | 500    |
| SV014          |         | Current limit value in special control             | 500    | 500    | 500           | 500    | 500    |
| SV015          | FFC     | Acceleration rate feed forward gain                | 0      | 0      | 0             | 0      | 0      |
|                |         |                                                    |        | -      | -             |        | -      |
| SV016          | LMC1    | Lost motion compensation 1                         | 0      | 0      | 0             | 0      | 0      |
| SV017          | SPEC    | Servo specifications selection 1                   | 0000   | 0000   | 0000          | 0000   | 0000   |
| SV018          | PIT     | Ball screw pitch                                   |        |        |               |        |        |
| SV019          | RNG1    | Position detector resolution                       |        |        |               |        |        |
| SV020          | RNG2    | Speed detector resolution                          |        |        |               |        |        |
| SV021          | OLT     | Overload detection time constant                   | 60     | 60     | 60            | 60     | 60     |
| SV022          | OLL     | Overload detection level                           | 150    | 150    | 150           | 150    | 150    |
| SV023          | OD1     | Excessive error detection width during servo ON    | 6      | 6      | 6             | 6      | 6      |
| SV024          | INP     | In-position detection width                        | 50     | 50     | 50            | 50     | 50     |
| SV025          | MTYP    | Motor/detector type                                | xxE1   | xxE2   | xxE3          | xxE4   | xxE5   |
| SV025          | OD2     | Excessive error detection width during servo OFF   | 6      | 6      | 6             | 6      | 6      |
|                |         | ·                                                  | -      |        | -             | -      |        |
| SV027          | SSF1    | Servo function selection 1                         | 4000   | 4000   | 4000          | 4000   | 4000   |
| SV028          |         |                                                    | 0      | 0      | 0             | 0      | 0      |
| SV029          | VCS     | Speed at the change of speed loop gain             | 0      | 0      | 0             | 0      | 0      |
| SV030          | IVC     | Voltage dead time compensation / current bias 1    | 0      | 0      | 0             | 0      | 0      |
| SV031          | OVS1    | Overshooting compensation 1                        | 0      | 0      | 0             | 0      | 0      |
| SV032          | TOF     | Torque offset                                      | 0      | 0      | 0             | 0      | 0      |
| SV033          | SSF2    | Servo function selection 2                         | 0000   | 0000   | 0000          | 0000   | 0000   |
| SV034          | SSF3    | Servo function selection 3                         | 0000   | 0000   | 0000          | 0000   | 0000   |
| SV035          | SSF4    | Servo function selection 4                         | 0000   | 0000   | 0000          | 0000   | 0000   |
| SV036          | PTYP    | Power supply type                                  | 0000   | 0000   | 0000          | 0000   | 0000   |
|                | JL      |                                                    | 0000   | 0000   | 0000          | 0000   | 0000   |
| SV037          |         | Load inertia scale                                 |        | -      | -             | -      | -      |
| SV038          | FHz1    | Notch filter frequency 1                           | 0      | 0      | 0             | 0      | 0      |
| SV039          | LMCD    | Lost motion compensation timing                    | 0      | 0      | 0             | 0      | 0      |
| SV040          | LMCT    | Lost motion compensation non-sensitive band        | 0      | 0      | 0             | 0      | 0      |
|                | LIVICI  | /current bias 2                                    | 0      | 0      | 0             | 0      | 0      |
| SV041          | LMC2    | Lost motion compensation 2                         | 0      | 0      | 0             | 0      | 0      |
| SV042          | OVS2    | Overshooting compensation 2                        | 0      | 0      | 0             | 0      | 0      |
| SV043          | OBS1    | Disturbance observer filter frequency              | 0      | 0      | 0             | 0      | 0      |
| SV044          | OBS2    | Disturbance observer gain                          | 0      | 0      | 0             | 0      | 0      |
| SV045          | TRUB    | Frictional torque/current bias 3                   | 0      | 0      | 0             | 0      | 0      |
| SV045          |         |                                                    | 0      | 0      | 0             | 0      | 0      |
| SV040          | EC      | Inductive voltage compensation gain                | 100    | 100    | 100           | 100    | 100    |
|                |         |                                                    |        |        |               |        |        |
| SV048          | EMGrt   | Vertical axis drop prevention time                 | 0      | 0      | 0             | 0      | 0      |
| SV049          | PGN1sp  | Position loop gain 1 in spindle synchronous        | 15     | 15     | 15            | 15     | 15     |
|                | op      | control                                            | 10     | 10     | 10            |        | 10     |
| SV050          | PGN2sp  | Position loop gain 2 in spindle synchronous        | 0      | 0      | 0             | 0      | 0      |
|                | •       | control                                            |        |        |               |        |        |
| SV051          | DFBT    | Dual feedback control time constant                | 0      | 0      | 0             | 0      | 0      |
| SV052          | DFBN    | Dual feedback control non-sensitive band           | 0      | 0      | 0             | 0      | 0      |
| SV053          | OD3     | Excessive error detection width in special control | 0      | 0      | 0             | 0      | 0      |
| SV054          | IRE     | Overrun detection width in closed loop control     | 0      | 0      | 0             | 0      | 0      |
| SV055          | EMGx    | Max. gate off delay time after emergency stop      | 0      | 0      | 0             | 0      | 0      |
| SV055          | EMGt    | Deceleration time constant at emergency stop       | 0      | 0      | 0             | 0      | 0      |
|                |         |                                                    |        |        |               |        |        |
| SV057          | SHGC    | SHG control gain                                   | 0      | 0      | 0             | 0      | 0      |
|                |         | SHG control gain in spindle synchronous control    | 0      | 0      | 0             | 0      | 0      |
| SV059          | TCNV    | Collision detection torque estimating gain         | 0      | 0      | 0             | 0      | 0      |
| SV060          |         | Collision detection level                          | 0      | 0      | 0             | 0      | 0      |
| SV061          | DA1NO   | D/A output channel 1 data No.                      | 0      | 0      | 0             | 0      | 0      |
| SV062          |         | D/A output channel 2 data No.                      | 0      | 0      | 0             | 0      | 0      |
|                |         | D/A output channel 1 output scale                  | 0      | 0      | 0             | 0      | 0      |
|                |         | D/A output channel 2 output scale                  | 0      | 0      | 0             | 0      | 0      |
|                |         |                                                    |        |        |               |        |        |
| SV065          |         |                                                    | 0      | 0      | 0             | 0      | 0      |

# (4) HA series (Standard 2000 r/min rating) Standard specifications

| Stand          | ard speci    | ifications                                                                                           | -            |              |              |              |              |              |              |
|----------------|--------------|------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Derer          | a a ta r     | Motor                                                                                                |              |              | standard HA  |              |              | 0            | 114.0001     |
| Parar<br>No.   | Abbrev.      | Details Unit capacity                                                                                | HA40N<br>05  | HA80N<br>10  | HA100N<br>20 | HA200N<br>35 | HA300N<br>45 | HA700N<br>70 | HA900N<br>90 |
| SV001          | PC1          | Motor side gear ratio                                                                                |              |              |              |              | 43           |              |              |
| SV001<br>SV002 | PC2          | Machine side gear ratio                                                                              |              |              |              |              |              |              |              |
| SV003          | PGN1         | Position loop gain 1                                                                                 | 33           | 33           | 33           | 33           | 33           | 25           | 25           |
| SV004          | PGN2         | Position loop gain 2                                                                                 | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV005          | VGN1         | Speed loop gain 1                                                                                    | 150          | 150          | 150          | 150          | 150          | 250          | 250          |
| SV006          | VGN2         | Speed loop gain 2                                                                                    | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV007          | VIL          | Speed loop delay compensation                                                                        | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV008<br>SV009 | VIA<br>IQA   | Speed loop lead compensation<br>Current loop q axis lead compensation                                | 1364<br>2048 |
| SV009          | IDA          | Current loop d axis lead compensation                                                                | 2048         | 2048         | 2048         | 2048         | 2048         | 2048         | 2048         |
| SV011          | IQG          | Current loop q axis gain                                                                             | 512          | 512          | 256          | 256          | 256          | 200          | 2040         |
| SV012          | IDG          | Current loop d axis gain                                                                             | 512          | 512          | 512          | 512          | 512          | 256          | 256          |
| SV013          | ILMT         | Current limit value                                                                                  | 500          | 500          | 500          | 500          | 500          | 500          | 500          |
| SV014          | ILMTsp       | Current limit value in special control                                                               | 500          | 500          | 500          | 500          | 500          | 500          | 500          |
| SV015          | FFC          | Acceleration rate feed forward gain                                                                  | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV016          | LMC1         | Lost motion compensation 1                                                                           | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV017<br>SV018 | SPEC<br>PIT  | Servo specifications selection 1<br>Ball screw pitch                                                 | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         |
| SV018          | RNG1         | Position detector resolution                                                                         |              |              |              |              |              |              |              |
| SV013          | RNG2         | Speed detector resolution                                                                            |              |              |              |              |              |              |              |
| SV021          | OLT          | Overload detection time constant                                                                     | 60           | 60           | 60           | 60           | 60           | 60           | 60           |
| SV022          | OLL          | Overload detection level                                                                             | 150          | 150          | 150          | 150          | 150          | 150          | 150          |
| SV023          | OD1          | Excessive error detection width during servo ON                                                      | 6            | 6            | 6            | 6            | 6            | 6            | 6            |
| SV024          | INP          | In-position detection width                                                                          | 50           | 50           | 50           | 50           | 50           | 50           | 50           |
| SV025          | MTYP         | Motor/detector type                                                                                  | xx00         | xx01         | xx02         | xx03         | xx04         | xx05         | xx06         |
| SV026<br>SV027 | OD2<br>SSF1  | Excessive error detection width during servo OFF<br>Servo function selection 1                       | 6<br>4000    |
| SV027<br>SV028 | 3311         |                                                                                                      | 4000         | 4000         | 4000         | 4000         | 4000         | 4000         | 4000         |
| SV029          | VCS          | Speed at the change of speed loop gain                                                               | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV030          | IVC          | Voltage dead time compensation / current bias 1                                                      | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV031          | OVS1         | Overshooting compensation 1                                                                          | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV032          | TOF          | Torque offset                                                                                        | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV033          | SSF2         | Servo function selection 2                                                                           | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         |
| SV034<br>SV035 | SSF3<br>SSF4 | Servo function selection 3<br>Servo function selection 4                                             | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         |
| SV035          | PTYP         | Power supply type                                                                                    | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         |
| SV030          | JL           | Load inertia scale                                                                                   | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         | 0000         |
| SV038          | FHz1         | Notch filter frequency 1                                                                             | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV039          | LMCD         | Lost motion compensation timing                                                                      | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV040          | LMCT         | Lost motion compensation non-sensitive band                                                          | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV041          | LMC2         | /current bias 2<br>Lost motion compensation 2                                                        | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV042          | OVS2         | Overshooting compensation 2                                                                          | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV043          | OBS1         | Disturbance observer filter frequency                                                                | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV044          | OBS2         | Disturbance observer gain                                                                            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV045          | TRUB         | Frictional torque/current bias 3                                                                     | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV046          |              |                                                                                                      | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV047          | EC<br>EMCrt  | Inductive voltage compensation gain                                                                  | 100          | 100          | 100          | 100          | 100          | 100          | 100          |
| SV048          | EMGrt        | Vertical axis drop prevention time<br>Position loop gain 1 in spindle synchronous                    | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV049          | PGN1sp       | control                                                                                              | 15           | 15           | 15           | 15           | 15           | 15           | 15           |
| SV050          | PGN2sp       | Position loop gain 2 in spindle synchronous                                                          | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
|                | •            | control                                                                                              |              |              |              |              |              |              |              |
| SV051          | DFBT         | Dual feedback control time constant                                                                  | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV052          | DFBN<br>OD3  | Dual feedback control non-sensitive band                                                             | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV053<br>SV054 | OD3<br>IRE   | Excessive error detection width in special control<br>Overrun detection width in closed loop control | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV054<br>SV055 | EMGx         | Max. gate off delay time after emergency stop                                                        | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV056          | EMGt         | Deceleration time constant at emergency stop                                                         | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV057          | SHGC         | SHG control gain                                                                                     | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV058          | SHGCsp       | SHG control gain in spindle synchronous control                                                      | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV059          | TCNV         | Collision detection torque estimating gain                                                           | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV060          | TLMT         | Collision detection level                                                                            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV061          |              | D/A output channel 1 data No.                                                                        | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV062          |              | D/A output channel 2 data No.                                                                        | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
|                |              | D/A output channel 1 output scale<br>D/A output channel 2 output scale                               | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| SV064<br>SV065 |              |                                                                                                      | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| 01000          |              |                                                                                                      |              | U U          | 0            | 0            | 0            | 0            | 5            |

## (5) HA series (Standard 3000 r/min rating) Standard specifications

| Standard specifications Motor Standard HA motor 3000 r/min rating |              |                                                                                |           |           |           |           |           |           |           |
|-------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Daram                                                             | otor         | Motor                                                                          | 114.4011  |           |           |           |           | <u> </u>  |           |
| Param                                                             |              |                                                                                | HA43N     | HA83N     | HA93N     | HA103N    | HA203N    | HA303N    | HA703N    |
| No.                                                               | Abbrev.      | Details Unit capacity                                                          | 05        | 10        | 20        | 35        | 45        | 70        | 90        |
| SV001                                                             | PC1          | Motor side gear ratio                                                          |           |           |           |           |           |           |           |
| SV002                                                             | PC2          | Machine side gear ratio                                                        |           |           |           |           |           |           |           |
| SV003                                                             | PGN1         | Position loop gain 1                                                           | 33        | 33        | 33        | 33        | 33        | 33        | 25        |
| SV004                                                             | PGN2         | Position loop gain 2                                                           | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV005                                                             |              | Speed loop gain 1                                                              | 150       | 150       | 150       | 150       | 150       | 150       | 250       |
| SV006                                                             | VGN2         | Speed loop gain 2                                                              | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV007                                                             | VIL          | Speed loop delay compensation                                                  | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV008                                                             | VIA          | Speed loop lead compensation                                                   | 1364      | 1364      | 1364      | 1364      | 1364      | 1364      | 1364      |
| SV009                                                             | IQA          | Current loop q axis lead compensation                                          | 2048      | 2048      | 2048      | 2048      | 2048      | 2048      | 2048      |
| SV010                                                             | IDA          | Current loop d axis lead compensation                                          | 2048      | 2048      | 2048      | 2048      | 2048      | 2048      | 2048      |
| SV011                                                             | IQG          | Current loop q axis gain                                                       | 256       | 256       | 256       | 256       | 256       | 256       | 200       |
| SV012                                                             | IDG          | Current loop d axis gain                                                       | 512       | 512       | 512       | 512       | 512       | 512       | 256       |
| SV013                                                             | ILMT         | Current limit value                                                            | 500       | 500       | 500       | 500       | 500       | 500       | 500       |
| SV014                                                             | ILMTsp       | Current limit value in special control                                         | 500       | 500<br>0  | 500<br>0  | 500       | 500       | 500<br>0  | 500<br>0  |
| SV015                                                             | FFC          | Acceleration rate feed forward gain                                            | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV016                                                             | LMC1<br>SPEC | Lost motion compensation 1<br>Servo specifications selection 1                 | 0000      | -         | -         | 0000      | 0         | -         | 0000      |
| SV017<br>SV018                                                    | PIT          |                                                                                |           | 0000      | 0000      |           | 0000      | 0000      |           |
|                                                                   |              | Ball screw pitch Position detector resolution                                  |           |           |           |           |           |           |           |
| SV019<br>SV020                                                    | RNG1<br>RNG2 | Speed detector resolution                                                      |           |           |           |           |           |           |           |
| SV020<br>SV021                                                    | OLT          | Overload detection time constant                                               |           |           |           |           |           |           |           |
| SV021<br>SV022                                                    | OLI          | Overload detection time constant<br>Overload detection level                   | 60<br>150 |
| SV022<br>SV023                                                    | OLL<br>OD1   | Excessive error detection width during servo ON                                | 150       | 6         |           |           |           |           | 150       |
| SV023<br>SV024                                                    | INP          | Excessive error detection width during servo ON<br>In-position detection width | 50        | 6<br>50   | 6<br>50   | 6<br>50   | 6<br>50   | 6<br>50   | 50        |
| SV024<br>SV025                                                    | MTYP         | •                                                                              |           |           |           |           |           |           |           |
| SV025<br>SV026                                                    | OD2          | Motor/detector type<br>Excessive error detection width during servo OFF        | xx80<br>6 | xx81<br>6 | xx8A<br>6 | xx82<br>6 | xx83<br>6 | xx84<br>6 | xx85      |
| SV020                                                             | SSF1         | Servo function selection 1                                                     | 4000      | 4000      | 4000      | 4000      | 4000      | 4000      | 6<br>4000 |
| SV027<br>SV028                                                    | 29L I        | Servo function selection 1                                                     | 4000      | 4000      | 4000      | 4000      | 4000      | 4000      | 4000      |
| SV028                                                             | VCS          | Speed at the change of speed loop gain                                         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV029                                                             | IVC          | Voltage dead time compensation / current bias 1                                | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV030                                                             | OVS1         | Overshooting compensation 1                                                    | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV031<br>SV032                                                    | TOF          | Torque offset                                                                  | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV032                                                             | SSF2         | Servo function selection 2                                                     | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      |
| SV033                                                             | SSF3         | Servo function selection 2                                                     | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      |
| SV034                                                             | SSF4         | Servo function selection 3                                                     | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      |
| SV036                                                             | PTYP         | Power supply type                                                              | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      |
| SV037                                                             | JL           | Load inertia scale                                                             | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      | 0000      |
| SV038                                                             | FHz1         | Notch filter frequency 1                                                       | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV039                                                             | LMCD         | Lost motion compensation timing                                                | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
|                                                                   |              | Lost motion compensation non-sensitive band                                    |           | -         | -         | -         |           | -         |           |
| SV040                                                             | LMCT         | /current bias 2                                                                | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV041                                                             | LMC2         | Lost motion compensation 2                                                     | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV042                                                             | OVS2         | Overshooting compensation 2                                                    | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV043                                                             | OBS1         | Disturbance observer filter frequency                                          | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV044                                                             | OBS2         | Disturbance observer gain                                                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV045                                                             | TRUB         | Frictional torgue/current bias 3                                               | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV046                                                             |              |                                                                                | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV047                                                             | EC           | Inductive voltage compensation gain                                            | 100       | 100       | 100       | 100       | 100       | 100       | 100       |
| SV048                                                             | EMGrt        | Vertical axis drop prevention time                                             | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV049                                                             | PGN1sp       | Position loop gain 1 in spindle synchronous                                    | 15        | 15        | 15        | 15        | 15        | 15        | 15        |
|                                                                   |              | control<br>Position loop gain 2 in spindle synchronous                         |           |           |           |           |           |           |           |
| SV050                                                             | PGN2sp       | Position loop gain 2 in spindle synchronous<br>control                         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV051                                                             | DFBT         | Dual feedback control time constant                                            | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV052                                                             | DFBN         | Dual feedback control non-sensitive band                                       | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV053                                                             | OD3          | Excessive error detection width in special control                             | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV054                                                             | IRE          | Overrun detection width in closed loop control                                 | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV055                                                             | EMGx         | Max. gate off delay time after emergency stop                                  | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV056                                                             | EMGt         | Deceleration time constant at emergency stop                                   | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV057                                                             | SHGC         | SHG control gain                                                               | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV058                                                             | SHGCsp       | SHG control gain in spindle synchronous control                                | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV059                                                             |              | Collision detection torque estimating gain                                     | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV060                                                             | TLMT         | Collision detection level                                                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV061                                                             | DA1NO        | D/A output channel 1 data No.                                                  | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
|                                                                   | DA2NO        | D/A output channel 2 data No.                                                  | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV062                                                             | DITENO       |                                                                                |           |           |           |           |           | -         |           |
|                                                                   |              | D/A output channel 1 output scale                                              | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SV063                                                             | DA1MPY       | D/A output channel 1 output scale<br>D/A output channel 2 output scale         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |

## (6) HA series (Low-inertia 2000 r/min rating) Standard specifications

| otania         | alu spec     | fications                                          |       |        |      |      |      | - / .       |           |      |
|----------------|--------------|----------------------------------------------------|-------|--------|------|------|------|-------------|-----------|------|
|                |              | Motor                                              |       |        |      |      |      | 0 r/min rat |           |      |
| Parar          |              |                                                    | HA50L | HA100L |      |      |      |             | HA-LH11K2 |      |
| No.            | Abbrev.      | Details Unit capacity                              | 05    | 10     | 10   | 20   | 35   | 45          | 110       | 150  |
| SV001          | PC1          | Motor side gear ratio                              |       |        |      |      |      |             |           |      |
| SV002          | PC2          | Machine side gear ratio                            |       |        |      |      |      |             |           |      |
| SV003          | PGN1         | Position loop gain 1                               | 33    | 33     | 33   | 33   | 33   | 33          | 33        | 33   |
| SV004          | PGN2         | Position loop gain 2                               | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV005          | VGN1         | Speed loop gain 1                                  | 30    | 30     | 30   | 30   | 30   | 50          | 150       | 150  |
| SV006          | VGN2         | Speed loop gain 2                                  | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV007          | VIL          | Speed loop delay compensation                      | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV007<br>SV008 | VIA          | Speed loop lead compensation                       | 1364  | 1364   | 1364 | 1364 | 1364 | 1364        | 1364      | 1364 |
| SV008<br>SV009 | IQA          | Current loop q axis lead compensation              | 2048  | 2048   | 2048 | 2048 | 2048 | 2048        | 2048      | 2048 |
|                |              |                                                    |       |        |      |      |      |             |           |      |
| SV010          | IDA          | Current loop d axis lead compensation              | 2048  | 2048   | 2048 | 2048 | 2048 | 2048        | 2048      | 2048 |
| SV011          | IQG          | Current loop q axis gain                           | 512   | 512    | 512  | 512  | 256  | 256         | 512       | 512  |
| SV012          | IDG          | Current loop d axis gain                           | 512   | 512    | 512  | 512  | 512  | 512         | 512       | 512  |
| SV013          | ILMT         | Current limit value                                | 500   | 500    | 500  | 500  | 500  | 500         | 500       | 500  |
| SV014          | ILMTsp       | Current limit value in special control             | 500   | 500    | 500  | 500  | 500  | 500         | 500       | 500  |
| SV015          | FFC          | Acceleration rate feed forward gain                | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV016          | LMC1         | Lost motion compensation 1                         | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV017          | SPEC         | Servo specifications selection 1                   | 0000  | 0000   | 0000 | 0000 | 0000 | 0000        | 0000      | 0000 |
| SV018          | PIT          | Ball screw pitch                                   |       |        |      |      |      |             |           |      |
| SV019          | RNG1         | Position detector resolution                       |       |        |      |      |      |             |           |      |
| SV019<br>SV020 | RNG2         | Speed detector resolution                          |       |        |      |      |      |             |           |      |
| SV020<br>SV021 | OLT          | Overload detection time constant                   | 60    | 60     | 60   | 60   | 60   | 60          | 60        | 3    |
|                | -            |                                                    |       |        |      |      |      |             |           |      |
| SV022          | OLL          | Overload detection level                           | 150   | 150    | 150  | 150  | 150  | 150         | 150       | 150  |
| SV023          | OD1          | Excessive error detection width during servo ON    | 6     | 6      | 6    | 6    | 6    | 6           | 6         | 6    |
| SV024          | INP          | In-position detection width                        | 50    | 50     | 50   | 50   | 50   | 50          | 50        | 50   |
| SV025          | MTYP         | Motor/detector type                                | xx20  | xx21   | xx2A | xx22 | xx23 | xx24        | xx27      | xx28 |
| SV026          | OD2          | Excessive error detection width during servo OFF   | 6     | 6      | 6    | 6    | 6    | 6           | 6         | 6    |
| SV027          | SSF1         | Servo function selection 1                         | 4000  | 4000   | 4000 | 4000 | 4000 | 4000        | 4000      | 4000 |
| SV028          |              |                                                    | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV029          | VCS          | Speed at the change of speed loop gain             | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV030          | IVC          | Voltage dead time compensation / current bias 1    | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV031          | OVS1         | Overshooting compensation 1                        | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV031<br>SV032 | TOF          | Torque offset                                      | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
|                |              |                                                    |       | -      | ÷    | -    | -    | -           | -         | -    |
| SV033          | SSF2         | Servo function selection 2                         | 0000  | 0000   | 0000 | 0000 | 0000 | 0000        | 0000      | 0000 |
| SV034          | SSF3         | Servo function selection 3                         | 0000  | 0000   | 0000 | 0000 | 0000 | 0000        | 0000      | 0000 |
| SV035          | SSF4         | Servo function selection 4                         | 0000  | 0000   | 0000 | 0000 | 0000 | 0000        | 0000      | 0000 |
| SV036          | PTYP         | Power supply type                                  | 0000  | 0000   | 0000 | 0000 | 0000 | 0000        | 0000      | 0000 |
| SV037          | JL           | Load inertia scale                                 | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV038          | FHz1         | Notch filter frequency 1                           | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV039          | LMCD         | Lost motion compensation timing                    | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
|                |              | Lost motion compensation non-sensitive band        |       | _      | -    | _    | _    | -           | -         | -    |
| SV040          | LMCT         | /current bias 2                                    | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV041          | LMC2         | Lost motion compensation 2                         | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV042          | OVS2         | Overshooting compensation 2                        | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV042<br>SV043 | OV32<br>OBS1 | Disturbance observer filter frequency              | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
|                | OBS1<br>OBS2 |                                                    | -     | -      | -    | -    | -    | -           | -         | -    |
| SV044          |              | Disturbance observer gain                          | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV045          | TRUB         | Frictional torque/current bias 3                   | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV046          |              |                                                    | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV047          |              | Inductive voltage compensation gain                | 100   | 100    | 100  | 100  | 100  | 100         | 100       | 100  |
| SV048          | EMGrt        | Vertical axis drop prevention time                 | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV049          | PGN1sp       | Position loop gain 1 in spindle synchronous        | 4 5   | 45     | 4 5  | 45   | 4 5  | 45          | 4 5       | 45   |
| 5v049          | PGINTSP      | control                                            | 15    | 15     | 15   | 15   | 15   | 15          | 15        | 15   |
| 01/050         | DONIC        | Position loop gain 2 in spindle synchronous        | ^     | ^      | ^    | ~    | _    | _           | ~         | ~    |
| SV050          | PGN2sp       | control                                            | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV051          | DFBT         | Dual feedback control time constant                | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV052          | DFBN         | Dual feedback control non-sensitive band           | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV052<br>SV053 | OD3          | Excessive error detection width in special control | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
|                |              |                                                    |       |        |      | -    |      |             |           |      |
| SV054          | IRE          | Overrun detection width in closed loop control     | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV055          | EMGx         | Max. gate off delay time after emergency stop      | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV056          | EMGt         | Deceleration time constant at emergency stop       | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV057          | SHGC         | SHG control gain                                   | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV058          | SHGCsp       | SHG control gain in spindle synchronous control    | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV059          | TCNV         | Collision detection torque estimating gain         | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV060          |              | Collision detection level                          | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV061          |              | D/A output channel 1 data No.                      | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
| SV062          |              | D/A output channel 2 data No.                      | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
|                |              | D/A output channel 1 output scale                  | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |
|                |              |                                                    |       |        | 0    | 0    |      | -           |           | 0    |
|                | DAZIVIPY     | D/A output channel 2 output scale                  | 0     | 0      |      | -    | 0    | 0           | 0         | -    |
| SV065          |              |                                                    | 0     | 0      | 0    | 0    | 0    | 0           | 0         | 0    |

## (7) HA series (Small capacity, Low-inertia 3000 r/min rating) Standard specifications

| Parameter         PHA032         PHA318         PHA320         PHA330         PHA332         PHA33         PHA33 <t< th=""><th>Standa</th><th>ard spec</th><th>fications</th><th>0</th><th></th><th></th><th> 4</th><th></th><th></th><th>110</th><th> 0000</th><th></th><th>the e</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standa | ard spec | fications                                   | 0   |      |     | 4   |     |     | 110 | 0000 |     | the e |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|---------------------------------------------|-----|------|-----|-----|-----|-----|-----|------|-----|-------|
| No.         Abdrav.         Details         Unit capacity         01         01         03         03         10         20         20         23         64         70           SV002         PC1         Moder side guar ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Deren  | a otor   | Motor                                       |     |      |     |     |     |     |     |      |     |       |
| SY001         PC1         Motion safe gaur ratio                                                                    SV000         VCNL         Speed loop gain option opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          | Dotaila Unit conceitu                       |     |      |     |     |     |     |     |      |     |       |
| SY002         PC21         Machine ake guar ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      |          | = = = = = = = = = = = = = = = = = = = =     |     | -    |     |     | -   |     |     |      | -   |       |
| \$Y000         POINT         Position loog gain 1         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SY000         POINZ         Position toop gain 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV000         VCN1         Speed loop gain 1         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SY00E         VENZE         Speed loop dan 2         Image: Constraint of the state o |        |          |                                             | -   | -    | -   | -   | -   | -   | -   | -    | -   | -     |
| SYOUT         VILL         Speed toop, beaks compensation         ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SY008         VIA.         Speed toop lead compensation         1984         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         1384         208         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -        |                                             | _   | -    | -   |     |     |     |     | -    | -   |       |
| SY000         IDA         Current loop q axis lead compensation         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          | · · · · ·                                   | -   | -    |     |     | -   |     |     | -    | -   | -     |
| SV010         IDA         Current loog of axis lead compensation         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048         2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV011         IDG         Current loop q axis gain         256         256         224         224         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV012         IDG         Current limit value         256         224         224         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512         512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |          |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV015         ILMT         Current limit value         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV014         LMTSp.         Current limit value in special control         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -        |                                             |     |      |     |     |     |     |     |      |     |       |
| SV015         FFC         Acceleration rate feed forward gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SW16         LMC1         Lost methon compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          | -                                           | _   |      |     |     |     |     |     |      |     |       |
| SY017         SPEC         Serve specifications selection 1         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |                                             | _   | -    | -   | -   | -   | -   |     | -    | -   | -     |
| SV016         PTT         Ball screw pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | -        |                                             | -   | -    | -   | -   | -   | -   | -   | -    | -   | -     |
| SV019         RNG1         Position detector resolution                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                             |     | 0000 |     |     |     |     |     |      |     |       |
| SV0210         RNG2         Speed detection tresolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| Sivez1         OLT         Överdaad detection inve constant         60         80         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV022         OLL         Overload detection level         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV023         OD1         Excessive error detection width during servo ON         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | -        |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV025         INP         In-position detection width         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV025         IMTYP         Motor/detector type         xx8C         xx8E         xxx8E         xxx8E <t< td=""><td></td><td>-</td><td></td><td>_</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | -        |                                             | _   | -    | -   |     |     |     |     |      | -   |       |
| SV02E         COD2         Excessive error detection width during servo OFF         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6        6         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV027         SF1         Servo function selection 1         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000         4000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV028         VCS         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV028         VCS         Speed at the change of speed loop gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>33F I</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 33F I    |                                             |     |      |     |     |     |     |     |      |     |       |
| SV030         IVC         Voltage dead time compensation / current bias 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | VCS      | Speed at the abange of aneod loop gain      | _   | -    |     |     |     |     |     |      | -   |       |
| SV031         Overshooting compensation 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |          |                                             | -   |      | -   | -   |     |     | -   | -    | -   | -     |
| SV032         TOF         Torque offset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                                             | -   | -    |     |     | -   | -   | -   | -    | -   | -     |
| SV033         SSF2         Servo function selection 2         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <t< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |          |                                             | -   | -    | -   | -   | -   | -   | -   | -    | -   | -     |
| SY034         SF3         Servo function selection 3         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |          |                                             | -   | -    |     |     | -   |     |     | -    | -   | -     |
| SV035         SF4         Servo function selection 4         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <th< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |          |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV036         PTYP         Power supply type         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV037         JL         Load inertia scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV038         FHz1         Notch filter frequency 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV039         LMCD         Lost motion compensation timing         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |                                             |     | -    |     |     |     |     |     |      |     |       |
| SV040         LMCT         Lost motion compensation non-sensitive band<br>(urrent bias 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |          |                                             | -   | -    | -   |     | -   | -   | -   | -    | -   | -     |
| SV040         LMC1         /current bias 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          | •                                           |     |      |     |     |     |     |     |      |     |       |
| SV041         LMC2         Lost motion compensation 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SV040  | LMCT     |                                             | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0     |
| SV042         OVS2         Overshooting compensation 2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SV041  | LMC2     |                                             | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0     |
| SV043         OBS1         Disturbance observer filter frequency         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |                                             | -   | -    | -   | -   | -   | -   | -   | -    | -   | -     |
| SV044         OBS2         Disturbance observer gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |                                             | 0   | 0    | 0   | 0   |     |     |     | 0    | 0   |       |
| SV045         TRUB         Frictional torque/current bias 3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |                                             | _   | -    |     |     |     |     |     |      | -   |       |
| SV046         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |                                             | 0   | 0    | 0   | 0   | 0   |     | 0   | 0    | 0   |       |
| SV048         EMGrt         Vertical axis drop prevention time         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SV046  |          |                                             | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0     |
| SV048         EMGrt         Vertical axis drop prevention time         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SV047  | EC       | Inductive voltage compensation gain         | 100 | 100  | 100 | 100 | 100 | 100 | 100 | 100  | 100 | 100   |
| SV049         PGN15p<br>control         control         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SV048  |          |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV050         PGN2sp         Position loop gain 2 in spindle synchronous<br>control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01/040 | DONIA    | Position loop gain 1 in spindle synchronous | 45  | 45   | 45  | 45  | 45  | 45  | 45  | 45   | 45  | 45    |
| SV050         PGN2sp<br>control         control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50049  | PGINTSP  | control                                     | 15  | 15   | 15  | 15  | 15  | 15  | 15  | 15   | 15  | 15    |
| SV051         DFBT         Dual feedback control time constant         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SVOED  | DCN/2op  | Position loop gain 2 in spindle synchronous | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0     |
| SV052         DFBN         Dual feedback control non-sensitive band         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV053         OD3         Excessive error detection width in special control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SV051  |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV054         IRE         Overrun detection width in closed loop control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV055         EMGx         Max. gate off delay time after emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SV053  |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV056         EMGt         Deceleration time constant at emergency stop         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SV054  |          | -                                           | _   | -    |     |     |     |     |     |      |     |       |
| SV057         SHGC         SHG control gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SV055  |          |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV058         SHGCsp         SHG control gain in spindle synchronous control         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV059         TCNV         Collision detection torque estimating gain         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td>SV057</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SV057  |          |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV060         TLMT         Collision detection level         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV061         DA1NO         D/A output channel 1 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |                                             | _   |      |     |     |     |     |     |      |     |       |
| SV062         DA2NO         D/A output channel 2 data No.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |                                             |     |      | -   |     |     |     |     |      |     |       |
| SV063         DA1MPY         D/A output channel 1 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV064         DA2MPY         D/A output channel 2 output scale         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |                                             | _   | -    | -   |     |     |     |     |      | -   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |                                             |     |      |     |     |     |     |     |      |     |       |
| SV065 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | DA2MPY   | D/A output channel 2 output scale           | _   |      |     |     |     |     |     |      |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SV065  |          |                                             | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0     |

### 3-3-3 Servo parameter list

#### Standard specifications

| No.   | Abbrev. | Parameter name                        | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                        | Setting<br>range (Unit) |
|-------|---------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SV001 | PC1*    | Motor side gear<br>ratio              | Set the motor side and machine side gear ratio.<br>For the rotary axis, set the total deceleration (acceleration) ratio.                                                                                                                                                                                                                                                                                                           | 1 to 32767              |
| SV002 | PC2*    | Machine side gear ratio               | Even if the gear ratio is within the setting range, the electronic gears may overflow and cause an alarm.                                                                                                                                                                                                                                                                                                                          | 1 to 32767              |
| SV003 | PGN1    | Position loop gain 1                  | Set the position loop gain. The standard setting is "33".<br>The higher the setting value is, the more precisely the command can be<br>followed and the shorter the positioning time gets, however, note that a<br>bigger shock is applied to the machine during acceleration/deceleration.<br>When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC).                                                                 | 1 to 200<br>(rad/s)     |
| SV004 | PGN2    | Position loop gain 2                  | When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC). When not using the SHG control, set to "0".                                                                                                                                                                                                                                                                                                                    | 0 to 999<br>(rad/s)     |
| SV005 | VGN1    | Speed loop gain 1                     | Set the speed loop gain.<br>Set this according to the load inertia size.<br>The higher the setting value is, the more accurate the control will be,<br>however, vibration tends to occur.<br>If vibration occurs, adjust by lowering by 20 to 30%.<br>The value should be determined to be 70 to 80% of the value at the time<br>when the vibration stops.                                                                         | 1 to 999                |
| SV006 | VGN2    | Speed loop gain 2                     | If the noise is bothersome at high speed<br>during rapid traverse, etc, lower the speed<br>loop gain.<br>As in the right figure, set the speed loop<br>gain of the speed 1.2 times as fast as the<br>motor's rated speed, and use this with<br>SV029 (VCS).<br>When not using, set to "0".                                                                                                                                         | -1000 to<br>1000        |
|       |         |                                       | Set this when the limit cycle occurs in the full-closed loop, or overshooting occurs in positioning.<br>Select the control method with SV027 (SSF1)/bit1, 0 (vcnt).<br>Normally, use "Changeover type 2".<br>When you set this parameter, make sure to set the torque offset (SV032 (TOF)). When not using, set to "0".<br>No changeover<br>When SV027 (SSF1)/bit1, 0 (vcnt)=00<br>The delay compensation control is always valid. |                         |
| SV007 | VIL     | Speed loop delay compensation         | Changeover type 1<br>When SV027 (SSF1)/bit1, 0 (vcnt)=01<br>The delay compensation control works when the command from the NC<br>is "0".<br>Overshooting that occurs during pulse feeding can be suppressed.<br>Changeover type 2                                                                                                                                                                                                  | 0 to 32767              |
|       |         |                                       | When SV027 (SSF1)/bit1, 0 (vcnt)=10<br>The delay compensation control works when the command from the NC<br>is "0" and the position droop is "0". Overshooting or the limit cycle that<br>occurs during pulse feeding or positioning can be suppressed.                                                                                                                                                                            |                         |
| SV008 | VIA     | Speed loop lead compensation          | Set the gain of the speed loop integration control.<br>The standard setting is "1364". During the SHG control, the standard<br>setting is "1900". Adjust the value by increasing/decreasing it by about<br>100 at a time.<br>Raise this value to improve contour tracking precision in high-speed<br>cutting. Lower this value when the position droop vibrates (10 to 20Hz).                                                      | 1 to 9999               |
| SV009 | IQA     | Current loop q axis lead compensation | Set the gain of current loop.<br>As this setting is determined by the motor's electrical characteristics, the                                                                                                                                                                                                                                                                                                                      | 4 40 00 100             |
| SV010 | IDA     | Current loop d axis lead compensation | setting is fixed for each type of motor.<br>Set the standard values for all the parameters depending on each motor<br>type.                                                                                                                                                                                                                                                                                                        | 1 to 20480              |
| SV011 | IQG     | Current loop q axis<br>gain           |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 to 2560               |
| SV012 | IDG     | Current loop d axis<br>gain           |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 10 2000               |

| No.   | Abbrev. | Parameter name                         | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Setting<br>range (Unit)                      |
|-------|---------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| SV013 | ILMT    | Current limit value                    | Set the normal current (torque) limit value. (Limit values for both + and -<br>direction.)<br>When the value is "500" (a standard setting), the maximum torque is<br>determined by the specification of the motor.                                                                                                                                                                                                                                                                                                                                            | 0 to 999<br>(Stall<br>[rated]<br>current %)  |
| SV014 | ILMTsp  | Current limit value in special control | Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.)<br>Set to "500" when not using.                                                                                                                                                                                                                                                                                                                                                       | 0 to 999<br>(Stall<br>[rated]<br>current %)  |
| SV015 | FFC     | Acceleration rate feed forward gain    | When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time.                                                                                                                                                                                                                                                                       | 0 to 999<br>(%)                              |
|       |         |                                        | Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change is too large.<br>This compensates the torque at quadrant change.<br>This is valid only when the lost motion compensation (SV027 (SSF1.Imc)) is selected.                                                                                                                                                                                                                                                                      |                                              |
|       |         |                                        | Type 1: When SV027 (SSF1)/bit9, 8 (Imc)=01<br>Set the compensation amount based on the motor torque before the<br>quadrant change.<br>The standard setting is "100". Setting to "0" means the compensation<br>amount is zero.<br>Normally, use Type 2.                                                                                                                                                                                                                                                                                                        | -1 to 200<br>(%)                             |
| SV016 | LMC1    | Lost motion<br>compensation 1          | Type 2: When SV027 (SSF1)/bit9, 8 (Imc)=10<br>Set the compensation amount based on the stall (rated) current of the<br>motor.<br>The standard setting is double of the friction torque. Setting to "0"<br>means the compensation amount is zero.                                                                                                                                                                                                                                                                                                              | -1 to 200<br>(Stall<br>[rated]<br>current %) |
|       |         |                                        | <ul> <li>When you wish different compensation amount depending on the direction<br/>When SV041 (LMC2) is "0", compensate with the value of SV016<br/>(LMC1) in both of the + and -directions.</li> <li>If you wish to change the compensation amount depending on the<br/>command direction, set this and SV041 (LMC2). (SV016: + direction,<br/>SV041: - direction. However, the directions may be opposite<br/>depending on other settings.)</li> <li>When "-1" is set, the compensation won't be performed in the direction of<br/>the command.</li> </ul> |                                              |

| No.          | Abbrev. | Parameter name                                     |                                                                                 | Explanation Setting range (Unit)                                       |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|--------------|---------|----------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| No.<br>SV017 | Abbrev. | Parameter name<br>Servo specification<br>selection | FEDbit01dfbx2seqh3spwv4fdir5vdir                                                | · · · · · · · · · · · · · · · · · · ·                                  | range (Unit)       2     1       0     qh       qh     dfbx       " is set       start       servo ON       ironization       erse polarity       or) |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | 6<br>7 abs                                                                      | Incremental control Absolute position cont                             |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | 8 mp                                                                            | MP scale 360P (2mm pitch) MP scale 720P (1mm                           |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | 9 mpt                                                                           | MP scale ABS detection NC MP scale ABS detection automatic (Standard s |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | A                                                                               |                                                                        |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | В                                                                               |                                                                        |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | С                                                                               |                                                                        |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | D                                                                               |                                                                        |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | E                                                                               |                                                                        |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | F                                                                               |                                                                        |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|              |         |                                                    | (Note) Set                                                                      | to "0" for bits with no particular description.                        |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| SV018        | PIT*    | Ball screw pitch                                   | Set the ball screw pitch. Set to "360" for the rotary axis. 1 to 32767 (mm/rev) |                                                                        |                                                                                                                                                       |  |  |  |  |  |  |  |  |  |

| No.   | Abbrev. | Parameter name                                        |                                                                                                                                                                                                                                                                                                     | Explanation                                               |                                                                                                                                                                   | Setting range<br>(Unit)                    |  |  |  |  |
|-------|---------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|
|       |         |                                                       | In the case of the semi-closed loop control<br>Set the same value as SV020 (RNG2). (Refer to the explanation of<br>SV020.)                                                                                                                                                                          |                                                           |                                                                                                                                                                   |                                            |  |  |  |  |
| SV019 | RNG1*   | Position detector<br>resolution                       | In the case of the full-closed<br>Set the number of pulses<br>Detector model name<br>OHE25K-ET, OHA25K-ET<br>OSE104-ET, OSA104-ET<br>OSE105-ET, OSA105-ET<br>Relative position<br>detection scale<br>AT41 (Mitsutoyo)<br>AT342 (Mitsutoyo)<br>FME type, FLE type<br>(Futaba)<br>MP type (Mitsubishi | •                                                         | SV019 setting<br>100<br>100<br>PIT/Resolution<br>(μm)<br>The same as<br>SV018 (PIT)<br>Twice as big as<br>SV018 (PIT)<br>PIT/Resolution<br>(μm)<br>PIT/Resolution | 1 to 9999<br>(kp/pit)                      |  |  |  |  |
| SV020 | RNG2*   | Speed detector resolution                             | Set the number of pulses pe<br>Detector me<br>OSE104, OSA104                                                                                                                                                                                                                                        | er one revolution of the mo                               | SV020 setting<br>100                                                                                                                                              | 1 to 9999<br>(kp/rev)                      |  |  |  |  |
| SV021 | OLT     | Overload detection time constant                      | OSE105, OSA105<br>Set the detection time const<br>Set to "60" as a standard. (F                                                                                                                                                                                                                     | ,                                                         | ,                                                                                                                                                                 | 1 to 999<br>(s)                            |  |  |  |  |
| SV022 | OLL     | Overload detection level                              | Set the current detection lev<br>stall (rated) current.<br>Set to "150" as a standard.                                                                                                                                                                                                              | vel of Overload 1 (Alarm 5                                | 0) in respect to the                                                                                                                                              | 110 to 500<br>(Stall [rated]<br>current %) |  |  |  |  |
| SV023 | OD1     | Excessive error<br>detection width<br>during servo ON | Set the excessive error detection width when servo ON.<br><standard rapid="" rate<br="" traverse="">setting value&gt; OD1=OD2= <math>(mm/min)</math> ÷ 2 (mm)<br/><math>60 \times PGN1</math><br/>When "0" is set, the excessive error detection will not be performed.</standard>                  |                                                           |                                                                                                                                                                   |                                            |  |  |  |  |
| SV024 | INP     | In-position<br>detection width                        | Set the in-position detection<br>Set the accuracy required for<br>The lower the setting is, the<br>the cycle time (setting time)                                                                                                                                                                    | n width.<br>or the machine.<br>higher the positioning acc | curacy gets, however,                                                                                                                                             | 0 to 32767<br>(μm)                         |  |  |  |  |

| No.   | Abbrev. | Parameter name |                            |      |           |            |    | Explana | ation   |        |     |     |      |     |
|-------|---------|----------------|----------------------------|------|-----------|------------|----|---------|---------|--------|-----|-----|------|-----|
|       |         |                | F                          | E    |           |            | 9  | 8       | 7       | 6 5    |     |     | 2    | 1 0 |
|       |         |                |                            | per  | 1 I       | е          | nt |         |         |        | mty | þ   |      |     |
|       |         |                | bit                        |      |           |            |    | E,      | xplana  | tion   |     |     |      |     |
|       |         |                | 0                          |      | Set the m | otor type. |    |         | , piana |        |     |     |      |     |
|       |         |                | 1                          |      |           |            |    |         |         |        |     |     |      |     |
|       |         |                | 2<br>3<br>4<br>5<br>6<br>7 |      | Setting   |            | 1x |         | (       | 3x     | 4x  | 5x  | 6x   | 7x  |
|       |         |                | 3                          | ntyp | x0        | HA40N      |    | HA50L   |         | HA53L  |     |     |      |     |
|       |         |                | 4                          | пур  | x1        | HA80N      |    | HA100l  | -       | HA103L |     |     |      |     |
|       |         |                | 5                          |      | x2        | HA100N     |    | HA2001  | -       | HA203L |     |     |      |     |
|       |         |                | 6                          |      | x3        | HA200N     |    | HA300L  |         | HA303L |     |     |      |     |
|       |         |                | 7                          |      | x4        | HA300N     |    | HA500l  | -       | HA503L |     |     |      |     |
|       |         |                |                            |      | x5        | HA700N     |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | x6        | HA900N     |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | x7        |            |    | HA-LH1  | 1K2     |        |     |     |      |     |
|       |         |                |                            |      | x8        |            |    | HA-LH1  |         |        |     |     |      |     |
|       |         |                |                            |      | x9        |            |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | xA        |            |    | HA150L  | -       | HA153L |     |     |      |     |
|       |         |                |                            |      | хB        |            |    |         |         |        |     |     | ſ    |     |
|       |         |                |                            |      | xC        |            |    |         |         |        |     |     | 1    |     |
| SV025 | MTYP*   | Motor/Detector |                            |      | хD        |            |    |         |         |        |     |     |      |     |
| 30025 | WITTE   | type           |                            |      | хE        |            |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | xF        |            |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | <b>.</b>  |            |    |         |         |        |     |     |      | :   |
|       |         |                |                            |      | Setting   | 8x         | 9x | Ax      |         | Сх     | Dx  |     | Ex   | Fx  |
|       |         |                |                            |      | x0        | HA43N      |    |         | HC52    |        |     |     |      |     |
|       |         |                |                            |      | x1        | HA83N      |    |         | HC10    |        |     |     | 103R |     |
|       |         |                |                            |      | x2        | HA103N     |    |         | HC15    |        |     |     | 153R |     |
|       |         |                |                            |      | x3        | HA203N     |    |         | HC20    |        |     |     | 203R |     |
|       |         |                |                            |      | x4        | HA303N     |    |         | HC35    |        |     |     | 353R |     |
|       |         |                |                            |      | x5        | HA703N     |    |         | HC45    |        |     | HC  | 503R |     |
|       |         |                |                            |      | x6        |            |    | ļ       | HC70    |        |     |     |      |     |
|       |         |                |                            |      | x7        |            |    |         | HC90    | 2      |     |     |      |     |
|       |         |                |                            |      | x8        |            |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | x9        |            |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | xA        | HA93N      |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | хB        |            |    | ļ       | ļ       | ļ      |     | .l  |      |     |
|       |         |                |                            |      | xC        | HA053N     |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | хD        | HA13N      |    |         |         |        |     |     |      |     |
|       |         |                |                            |      | хE        | HA23N      |    |         |         |        |     |     |      |     |
|       | 1       |                |                            | 1    | xF        | HA33N      |    | 1       | I       | T      |     | - T |      |     |

| No.   | Abbrev. | Parameter name                                         | Explanation Setting ra (Unit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |  |  |  |  |  |  |  |  |  |
|-------|---------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| SV025 | MTYP*   | Motor/Detector<br>type                                 | bit         Explanation           8         Set the detector type.           9         ent           A         Set the position detector type for "pen", and the speed detector "pen" and "ent".           C         Detector model name         pen setting           D         pen         Detector model name         pen setting           C         Detector model name         pen setting         ent setting           D         Detector model name         pen setting         nt setting           D         OSE104         0 (Note)         0           OSE104         1 (Note)         1           OSE105_OSA105         2 (Note)         2           3 (Note)         3         OHE25K-ET, OSE104-ET         4           Setting impos         OSE105-ET, OSA104-ET         5         Setting impos           OSE105-ET, OSA105-ET         6         Setting impos         7           Relative position detection         scale, MP type (Mitsubishi         8         Setting impos           Heavy Industries)         AT41 (Mitsutoyo), FME type, FLE type (Futaba)         A         Setting impos           AT342 (Mitsubyo)         A         Setting impos         B         Setting impos           The setting of the slave axis in | ctor type<br>ne same<br>g<br>sible<br>sible<br>sible<br>sible<br>sible<br>sible<br>sible |  |  |  |  |  |  |  |  |  |
|       |         |                                                        | E Setting impos<br>F Setting impos<br>(Note) Setting for semi-closed loop control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |  |  |  |  |  |  |  |  |  |
| SV026 | OD2     | Excessive error<br>detection width<br>during servo OFF | Set the excessive error detection width when servo ON.<br>For the standard setting, refer to the explanation of SV023 (OD1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 to 32767<br>(mm)                                                                       |  |  |  |  |  |  |  |  |  |

| No.   | Abbrev.                               | Parameter name                                                                                  | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Setting range<br>(Unit)                                                     |
|-------|---------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| SV027 | SSF1                                  | Servo function<br>selection 1                                                                   | F       E       D       C       B       A       9       8       7       6       5       4       3       2         afft       zrn2       afse       ovs       Imc       zrn3       vfct       upc         bit       Meaning when "0" is set       Meaning when "1" is st         0       Set the execution changeover type of the speed loop delay compensatio 01: Delay compensation changeover type 1       11: Setting prohibited         2       upc       Starting torque compensation invalid       Starting torque compensation invalid       Starting torque compensation valid         3 | ation.<br>In type 2<br>alid<br>ulses<br>ulses<br>d<br>).<br>on type 2<br>). |
| SV028 |                                       |                                                                                                 | Not used. Set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                           |
| SV029 |                                       | Speed at the<br>change of speed<br>loop gain<br>er order 8bits and lowe<br>ng value of SV030" = | If the noise is bothersome at high speed during rapid traverse, etc, lower<br>the speed loop gain.<br>Set the speed at which the speed loop gain changes, and use this with<br>SV006 (VGN2).<br>When not using, set to "0".<br>er order 8bits are used for different functions.<br>( $I_{CY} \propto 256$ ) + IVC                                                                                                                                                                                                                                                                                | 0 to 9999<br>(r/min)                                                        |
| SV030 | Abbrev                                |                                                                                                 | Explanation Setting range (Unit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |
|       | IVC<br>(Low<br>order)                 | compensation                                                                                    | When 100% is set, the voltage equivalent to the logical<br>non-energized time will be compensated.0 to 255When "0" is set, a 100% compensation will be performed.0 to 255Adjust in increments of 10% from the default value 100%.(%)If increased too much, vibration or vibration noise may be<br>generated.(%)                                                                                                                                                                                                                                                                                  | 0 to 32767                                                                  |
|       | Icx<br>(High Current bias 1<br>order) |                                                                                                 | Normally set to "0".<br>Use this in combination with SV040 and the high order 0 to 127<br>8bits of SV045.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |

| No.   | Abbrev. | Parameter name                 | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Setting range<br>(Unit)                     |
|-------|---------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|       |         |                                | Set this if overshooting occurs during positioning. This compensates the motor torque during positioning. This is valid only when the overshooting compensation SV027 (SSF1.ovs) is selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| SV031 | OVS1    | Overshooting<br>compensation 1 | <ul> <li>Type 1: When SV027 (SSF1)/bitB, A (ovs)=01<br/>Set the compensation amount based on the motor's stall current.<br/>This compensates overshooting that occurs during pulse feeding.<br/>Normally, use Type 2.</li> <li>Type 2: When SV027 (SSF1)/bitB, A (ovs)=10<br/>Set the compensation amount based on the motor's stall current.<br/>Increase by 1% and determine the amount that overshooting doesn't<br/>occur.<br/>In Type 2, compensation during the feed forward control during circular<br/>cutting won't be performed.</li> <li>Type 3: When SV027 (SSF1)/bitB, A (ovs)=11<br/>Use this to perform the overshooting compensation during circular<br/>cutting or the feed forward control. The setting method is the same in<br/>Type 2.</li> <li>When you wish different compensation amount depending on the direction<br/>When SV042 (OVS2) is "0", compensate with the value of SV031<br/>(OVS1) in both of the + and -directions.<br/>If you wish to change the compensation amount depending on the<br/>command direction, set this and SV042 (OVS2). (SV031: + direction,<br/>SV042: - direction. However, the directions may be opposite<br/>depending on other settings.)<br/>When "-1" is set, the compensation won't be performed in the direction of<br/>the command.</li> </ul> | -1 to 100<br>(Stall [rated]<br>current %)   |
| SV032 | TOF     | Torque offset                  | Set the unbalance torque of vertical axis and inclined axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -100 to 100<br>(Stall [rated]<br>current %) |
| SV033 | SSF2    | Servo function<br>selection 2  | FEDCBA98765432bitMeaning when "0" is sethvxsvxfhz2nfd10zckZ phase check valid (Alarm 42)Z phase check invalid1Set the filter depth for Notch filter 1 (SV038).2nfd1Value0000010100111001011Depth (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.53Deep deep00010100111101Deth (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.53Deep 0: Invalid3: 750Hz6: 375Hz6fhz21: 2250Hz4: 563Hz7: 321Hz72: 1125Hz5: 450Hz8 to F: 281Hz8svxSet the performance mode of the servo control. (Only for<br>MDS-C1-Vx)00: By current loop gain10: High gain mode sele9hvx01: MDS-B-Vx compatible mode11: High gain mode sele9hvxSet to "0" for bits with no particular description.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s set<br>111<br>-1.2<br>Shallow-→           |

| No.   | Abbrev. | Parameter name                | Explanation Setting ran<br>(Unit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|---------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SV034 | SSF3    | Servo function<br>selection 3 | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         ovsn       Image: Setting for normal use.       Image: Setting for normal use.       HAS control 1 valid       HAS control 1 valid         1       has1       Setting for normal use.       HAS control 2 valid       HC: High acceleration rate support)         1       has2       Setting for normal use.       HAS control 2 valid       HC: Overshooting support)         2       Image: Setting for normal use.       HAS control 2 valid       HC: Overshooting support)         2       Image: Setting for normal use.       HAS control 2 valid       HC: Overshooting support)         2       Image: Setting for normal use.       HAS control 2 valid       HC: Overshooting support)         2       Image: Setting for normal use.       HAS control 2 valid       HC: Overshooting support)         3       Image: Setting for normal use.       HAS control 2 valid       HC: Overshooting support)         3       Image: Setting for normal use.       Image: Setie for HC)       Image: Setie for HC: Overshooting compensation type 3 in transition for the non-sensitive band of the model position drop is set and overshooting of the model is ignored. Set |
|       |         |                               | F       Discrete and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SV035 | SSF4    | Servo function<br>selection 4 | 5       6       iup       Set to "1" when using any of motors from HC152 to HC702 and from HC153 to HC453.         7       ckab       Setting for normal use       No signal 2 (Alarm 21) special detection         8       Cltq       Set the retracting torque for collision detection in respect to the maximum torque of the motor.         9       00: 100%       01: 90%       10: 80% (Standard)       11: 70%         A       clet       Setting for normal use       The disturbance torque peak of the latest two seconds is displayed in MPOS of the servo monitor screen.         B       cl2n       Collision detection method 2 valid       Collision detection method 2 invalid         C       Collision detection level during cutting feed (G1).       D         D       clG1       The G1 collision detection level=SV060*clG1.         When clG1=0, the collision detection method 1 during cutting feed won't function.       The guide value of the SV059 setting value is displayed in MPOS of the servo monitor screen.                                                                                                                                                                                                                                                                      |

| No.            | Abbrev.    | Parameter name                                    |                                 |                                   |                          |           |                                                                   |                                                                | Explan                                                                        | ation                  |                                     |          |                       |       | Settin<br>(L                                                        | g rar<br>Jnit) |          |   |
|----------------|------------|---------------------------------------------------|---------------------------------|-----------------------------------|--------------------------|-----------|-------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------|-------------------------------------|----------|-----------------------|-------|---------------------------------------------------------------------|----------------|----------|---|
|                |            |                                                   |                                 | F                                 |                          |           | С                                                                 | В                                                              | A 9                                                                           | 8                      | 7 6                                 | 5        |                       | 2     | 1                                                                   | 0              |          |   |
|                |            |                                                   | amp rtyp ptyp                   |                                   |                          |           |                                                                   |                                                                |                                                                               |                        |                                     |          |                       |       |                                                                     |                |          |   |
|                |            |                                                   |                                 |                                   | oit                      |           |                                                                   |                                                                |                                                                               |                        | xplanati                            |          |                       |       |                                                                     |                |          |   |
|                |            |                                                   |                                 |                                   |                          | 0<br>1    |                                                                   | cor                                                            | nnected                                                                       | l, setti               | ng belo                             | w is neo | e drive ι<br>cessary. |       |                                                                     |                | pply are | e |
|                |            |                                                   |                                 | 2                                 |                          | То        |                                                                   |                                                                |                                                                               |                        | ency sto                            |          |                       |       | -                                                                   | 7              |          |   |
|                |            |                                                   |                                 | 3                                 | ntur                     |           | Setting                                                           | 0x                                                             | 1x                                                                            | 2x                     | 3x                                  | 4x       | 5x                    | 6x 7x | 8x                                                                  | -              |          |   |
|                |            |                                                   |                                 | 4                                 | ptyp                     |           | x0                                                                | Not<br>used                                                    |                                                                               |                        | CV-300                              |          |                       |       |                                                                     |                |          |   |
|                |            |                                                   |                                 | 5                                 |                          |           | x1                                                                |                                                                | CV-110                                                                        |                        |                                     |          |                       | ††    | CR-10                                                               |                |          |   |
|                |            |                                                   |                                 | 6                                 |                          |           | x2                                                                |                                                                |                                                                               | CV-220                 |                                     |          |                       |       | CR-15                                                               |                |          |   |
|                |            |                                                   |                                 | 7                                 |                          |           | x3                                                                |                                                                |                                                                               |                        |                                     |          |                       |       | CR-22                                                               |                |          |   |
|                |            |                                                   |                                 |                                   |                          |           |                                                                   | CV-37                                                          |                                                                               |                        |                                     |          |                       |       | CR-37                                                               |                |          |   |
|                |            |                                                   |                                 |                                   |                          |           | x5                                                                |                                                                | CV-150                                                                        |                        |                                     | MDS-B-   | MDS-B-                |       |                                                                     |                |          |   |
|                |            |                                                   |                                 |                                   |                          |           | ~5                                                                |                                                                | 01-130                                                                        |                        |                                     | CVE-450  | CVE-550               | ļļ    | ļ                                                                   |                |          |   |
|                |            |                                                   |                                 |                                   |                          |           | x6                                                                | CV-55                                                          |                                                                               | CV-260                 |                                     |          |                       |       | CR-55                                                               |                |          |   |
|                |            |                                                   |                                 |                                   |                          |           | x7                                                                |                                                                |                                                                               |                        | CV-370                              |          |                       | ļļ    | ļ                                                                   |                |          |   |
|                |            |                                                   |                                 |                                   |                          |           |                                                                   | CV-75                                                          |                                                                               |                        |                                     |          |                       |       | CR-75                                                               |                |          |   |
| SV036          | PTYP*      | Power supply type                                 |                                 |                                   |                          |           | x9                                                                |                                                                | CV-185                                                                        |                        |                                     |          |                       |       | CR-90                                                               |                |          |   |
|                |            |                                                   |                                 | 8<br>9<br>A<br>B                  | rtyp                     |           | Setting<br>0<br>1<br>2<br>3<br>4<br>5<br>6                        | Reger<br>MDS<br>GZG2<br>GZG3<br>MR-R<br>MR-R<br>GZG2<br>GZG3   | nerative<br>S-C1-CV<br>200W260<br>800W130<br>B30<br>B50<br>200W200<br>800W200 | resistor r<br>(Setting | 3                                   | me Resi  | stance v              | alue  | Capacity<br>eration)<br>80W<br>150W<br>300W<br>500W<br>350W<br>500W |                |          |   |
|                |            |                                                   |                                 | C<br>D<br>F                       | amp                      |           | 7<br>8<br>9<br>A to F<br>vays se                                  | R-UN<br>R-UN<br>No se                                          | IT-2<br>IT-3                                                                  |                        |                                     |          | <u>15Ω</u><br>15Ω     |       | 700W<br>700W<br>2100W                                               |                |          |   |
| SV037          | JL         | Load inertia scale                                | moto                            | D<br>E<br>F<br>the m              | notor<br>rtia.           | ine       | 8<br>9<br>A to F<br>vays se                                       | R-UN<br>R-UN<br>No se<br>et "0".                               | IT-2<br>IT-3<br>tting                                                         | Moto                   | load ine<br>or inertia<br>or axis c |          | 15Ω<br>15Ω            |       | 700W<br>2100W                                                       | 5000           |          |   |
| SV037<br>SV038 | JL<br>FHz1 | Load inertia scale<br>Notch filter<br>frequency 1 | moto<br>S <sup>v</sup><br>Set t | D<br>E<br>the m<br>r inei<br>V037 | notor<br>rtia.<br>(JL) : | inei<br>= | 8<br>9<br>A to F<br>vays se<br>tia + m<br>JI+Jm<br>Jm<br>requence | R-UN<br>R-UN<br>No se<br>et "0".<br>otor a<br>- ×10<br>cy to s | IT-2<br>IT-3<br>ttting<br>xis conv<br>0 Jm<br>0 JI<br>uppresa                 | Moto<br>Moto           | or inertia<br>or axis c<br>hine vib | onversio | 15Ω<br>15Ω            |       | 700W<br>2100W<br>0 to<br>('a<br>0 to                                |                |          |   |

| Standard | specifications |
|----------|----------------|
|----------|----------------|

| No.   | Abbrev.                | Parameter name                                            | Explanation                                                                                                                                                                                                                                                                                  |                                                                                                                                                    | Setting range<br>(Unit)                   |  |  |  |
|-------|------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
|       |                        | 040, the hex. value's h<br>value of SV040" = (lo          | higher order 8bits and lower order 8bits are used for differe<br>sy*256) + LMCT                                                                                                                                                                                                              | nt functions.                                                                                                                                      |                                           |  |  |  |
|       | Abbrev.                | Parameter name                                            | Explanation                                                                                                                                                                                                                                                                                  | Setting range<br>(Unit)                                                                                                                            |                                           |  |  |  |
| SV040 | LMCT<br>(Low<br>order) | Lost motion<br>compensation dead<br>band                  | Set the dead band of the lost motion compensation in the feed forward control.<br>When "0" is set, the actual value that is set is 2 m.<br>Adjust by increasing by 1 m at a time.                                                                                                            | 0 to 100<br>(μm)                                                                                                                                   | 0 to 32767                                |  |  |  |
|       | lcy<br>(High<br>order) | Current bias 2                                            | Normally, set to "40" if you use HC202 to HC902, HC203<br>to HC703.<br>Use this in combination with SV030 and the high order<br>8bits of SV045.                                                                                                                                              | 0 to 127                                                                                                                                           |                                           |  |  |  |
| SV041 | LMC2                   | Lost motion compensation 2                                | Set this with SV016 (LMC1) only when you wish to set the<br>compensation amount to be different depending on the con<br>Set to "0" as a standard.                                                                                                                                            |                                                                                                                                                    | -1 to 200<br>(Stall [rated]<br>current %) |  |  |  |
| SV042 | OVS2                   | Overshooting compensation 2                               | Set this with SV031 (OVS1) only when you wish to set the<br>compensation amount to be different depending on the con<br>Set to "0" as a standard.                                                                                                                                            |                                                                                                                                                    | -1 to 100<br>(Stall [rated]<br>current %) |  |  |  |
| SV043 | OBS1                   | Disturbance<br>observer filter<br>frequency               | Set the disturbance observer filter band.<br>Set to "100" as a standard.<br>To use the disturbance observer, also set SV037 (JL) and<br>When not using, set to "0".                                                                                                                          | Set the disturbance observer filter band.<br>Set to "100" as a standard.<br>To use the disturbance observer, also set SV037 (JL) and SV044 (OBS2). |                                           |  |  |  |
| SV044 | OBS2                   | Disturbance<br>observer gain                              | Set the disturbance observer gain. The standard setting<br>To use the disturbance observer, also set SV037 (JL) and<br>When not using, set to "0".                                                                                                                                           | 0 to 500<br>(%)                                                                                                                                    |                                           |  |  |  |
|       | function               |                                                           | l value's higher order 8 bits and lower order 8 bits are<br>cy x 256) + LMCT<br>Explanation                                                                                                                                                                                                  | Setting range<br>(Unit)<br>0 to 100                                                                                                                |                                           |  |  |  |
| SV045 | (Low<br>order)         | Frictional torque                                         | When you use the collision detection function, set the frictional torque.                                                                                                                                                                                                                    | (Stall [rated]<br>current %)                                                                                                                       | 0 to 32767                                |  |  |  |
|       | lb1<br>(High<br>order) | Current bias 3                                            | Normally set to "0".<br>Use this in combination with SV030 and the high order<br>8bits of SV040.                                                                                                                                                                                             | 0 to 127                                                                                                                                           |                                           |  |  |  |
| SV046 |                        |                                                           | Not used. Set to "0".                                                                                                                                                                                                                                                                        |                                                                                                                                                    | 0                                         |  |  |  |
| SV047 | EC                     | Inductive voltage compensation gain                       | Set the inductive voltage compensation gain. Set to "100<br>If the current FB peak exceeds the current command peal                                                                                                                                                                          |                                                                                                                                                    | 0 to 200<br>(%)                           |  |  |  |
| SV048 | EMGrt                  | Vertical axis drop<br>prevention time                     | Input a length of time to prevent the vertical axis from drop<br>Ready OFF until the brake works when the emergency sto<br>Increase the setting by 100msec at a time and set the valu<br>does not drop.                                                                                      | op occurs.                                                                                                                                         | 0 to 20000<br>(ms)                        |  |  |  |
| SV049 | PGN1sp                 | Position loop gain 1<br>in spindle<br>synchronous control | Set the position loop gain during the spindle synchronous<br>(synchronous tapping, synchronous control with spindle/C<br>Set the same value as the value of the spindle parameter,<br>in synchronous control.<br>When performing the SHG control, set this with SV050 (Pr<br>SV058 (SHGCsp). | 1 to 200<br>(rad/s)                                                                                                                                |                                           |  |  |  |
| SV050 | PGN2sp                 | Position loop gain 2<br>in spindle<br>synchronous control | Set this with SV049 (PGN1sp) and SV058 (SHGCsp) if yo<br>the SHG control in the spindle synchronous control (synch<br>synchronous control with spindle/C axis).<br>When not performing the SHG control, set to "0".                                                                          | •                                                                                                                                                  | 0 to 999<br>(rad/s)                       |  |  |  |

| No.   | Abbrev. | Parameter name                                           | Explanation                                                                                                                                                                                                                                                                                                                                                                                 | Setting range<br>(Unit)                  |
|-------|---------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| SV051 | DFBT    | Dual feed back<br>control time<br>constant               | Set the control time constant in dual feed back.<br>When "0" is set, the actual value that is set is 1ms.<br>The higher the time constant is, the closer it gets to the semi-closed control,<br>so the limit of the position loop gain is raised.                                                                                                                                           | 0 to 9999<br>(ms)                        |
| SV052 | DFBN    | Dual feedback<br>control dead zone                       | Set to "0" as a standard.<br>Set the dead zone in the dual feedback control.                                                                                                                                                                                                                                                                                                                | 0 to 9999<br>(µm)                        |
| SV053 | OD3     | Excessive error<br>detection width in<br>special control | Set the excessive error detection width when servo ON in a special control (initial absolute position setting, stopper control, etc.).<br>If "0" is set, excessive error detection won't be performed.                                                                                                                                                                                      | 0 to 32767<br>(mm)                       |
| SV054 | ORE     | Overrun detection<br>width in closed loop<br>control     | Set the overrun detection width in the full-closed loop control.<br>If the gap between the motor end detector and the linear scale (tool end<br>detector) exceeds the value set by this parameter, it is judged to be overrun<br>and Alarm 43 will be detected.<br>When "-1" is set, the alarm detection won't be performed. When "0" is set,<br>overrun is detected with a 2mm width.      | -1 to 32767<br>(mm)                      |
| SV055 | EMGx    | Max. gate off delay<br>time after<br>emergency stop      | Set a length of time from the point when the emergency stop is input to the point when READY OFF is compulsorily executed.<br>Normally, set the same value as the absolute value of SV056.<br>In preventing the vertical axis from dropping, the gate off is delayed for the length of time set by SV048 if SV055's value is smaller than that of SV048.                                    | 0 to 20000<br>(ms)                       |
| SV056 | EMGt    | Deceleration time<br>constant at<br>emergency stop       | Set the time constant used for the deceleration control at emergency stop.<br>Set a length of time that takes from rapid traverse rate (rapid) to stopping.<br>Normally, set the same value as the rapid traverse acceleration/deceleration<br>time constant.<br>When executing the synchronous operation, put the minus sign to the<br>settings of both of the master axis and slave axis. | -20000 to<br>20000<br>(ms)               |
| SV057 | SHGC    | SHG control gain                                         | When performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2).<br>When not performing the SHG control, set to "0".                                                                                                                                                                                                                                                            | 0 to 999<br>(rad/s)                      |
| SV058 | SHGCsp  | SHG control gain in<br>spindle<br>synchronous control    | Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the synchronous tapping control.<br>When not performing the SHG control, set to "0".                                                                                                                                                                                                              | 0 to 999<br>(rad/s)                      |
| SV059 | TCNV    | Collision detection<br>torque estimating<br>gain         | Set the torque estimating gain when using the collision detection function.<br>After setting as SV035/bitF(clt)=1 and performing acceleration/deceleration,<br>set the value displayed in MPOS of the NC servo monitor screen.<br>Set to "0" when not using the collision detection function.                                                                                               | -32768 to<br>32767                       |
| SV060 | TLMT    | Collision detection<br>level                             | When using the collision detection function, set the collision detection level during the G0 feeding.<br>If "0" is set, none of the collision detection function will work.                                                                                                                                                                                                                 | 0 to 999<br>(Stall [rated]<br>current %) |
| SV061 | DA1NO   | D/A output channel<br>1 data No.                         | Input the data number you wish to output to D/A output channel.<br>In the case of MDS-C1-V2, set the axis on the side to which the data will not                                                                                                                                                                                                                                            | -1 to 127                                |
| SV062 | DA2NO   | D/A output channel<br>2 data No.                         | be output to "-1".                                                                                                                                                                                                                                                                                                                                                                          | -1 10 127                                |
| SV063 | DA1MPY  | D/A output channel<br>1 output scale                     | Set the scale with a 1/256 unit.<br>When "0" is set, output is done with the standard output unit.                                                                                                                                                                                                                                                                                          | -32768 to<br>32767                       |
| SV064 | DA2MPY  | D/A output channel<br>2 output scale                     |                                                                                                                                                                                                                                                                                                                                                                                             | (Unit: 1/256)                            |
| SV065 |         |                                                          | Not used. Set to "0".                                                                                                                                                                                                                                                                                                                                                                       | 0                                        |
|       |         |                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                          |

# 3-4 Restrictions on servo control

There may be some restrictions on mechanical specifications and electrical specifications when executing servo controls. Always read this section when designing machines and confirm that no problems exist with the specifications.

# 3-4-1 Restrictions of electronic gear setting value

The servo drive unit has internal electronic gears. The command value from the NC is converted into a detector resolution unit to carry out position control. The electronic gears are single gear ratios calculated from multiple parameters as shown below, and each value (ELG1, ELG2) must be 32767 or less.

If the value overflows, the initial parameter error (alarm 37) or error parameter No. 101 (2301 with M60S/E60 Series NC) will be output.

If an alarm occurs, the mechanical specifications and electrical specifications (such as resolution of the detector) must be revised so that the electronic gears are within the specifications range.

## (1) For semi-closed loop control

Reduced fraction of  $\frac{ELG1}{ELG2} = \frac{PC2 \times RNG1}{PC1 \times PIT \times IUNIT}$  (reduced fraction)

 $\begin{array}{l} \text{IUNIT} = 2/\text{NC} \text{ command unit } (\mu\text{m}) \\ 1\mu\text{m}: \text{IUNIT} = 2, \quad 0.1\mu\text{m}: \text{IUNIT} = 20 \end{array}$ 

When the above is calculated, the following conditions must be satisfied. ELG1  $\leq$  32767 ELG2  $\leq$  32767

# (2) For full-closed loop control

Reduced fraction of  $\frac{PGNX}{PGNY} = \frac{PC2 \times RNG2 \times PGN1}{PC1 \times RNG1 \times 30}$  (reduced fraction)

When the above is calculated, the following conditions must be satisfied. PGNX  $\leq$  32767 PGNY  $\leq$  32767

And,

Reduced fraction of 
$$\frac{PGNXsp}{PGNYsp} = \frac{PC2 \times RNG2 \times PGN1sp}{PC1 \times RNG1 \times 30}$$
 (reduced fraction)

When the above is calculated, the following conditions must be satisfied. PGNXsp  $\leq$  32767 PGNYsp  $\leq$  32767

If the electronic gears overflow, the alarm 37 or error parameter No. 101 (2301 with M60S/E60 series NC) will be output.

#### 3-4-2 Restrictions on absolute position control

When executing absolute position control, the following conditions must be satisfied. If not satisfied, mechanical specifications and electrical specifications (such as resolution of the detector) must be revised.

When executing incremental control, there are no particular restrictions on servo control. (Confirm with the NC system side specifications.)

#### (1) For linear axis

The following conditions, Condition 1 and 2, must be satisfied simultaneously.

(Condition 1)

 $Length of stroke \leq \frac{2147}{IUNIT} \text{ [m]}$ 

IUNIT = 2/NC command unit ( $\mu$ m) 1 $\mu$ m : IUNIT = 2, 0.1 $\mu$ m : IUNIT = 20

(Condition 2)

(a) For semi-closed loop control

Length of stroke  $\leq 2147 \text{ x} \frac{\text{PC1 x PIT}}{\text{PC2 x RNG2}}$  [m]

(b) For full-closed loop control

Length of stroke  $\leq$  2147 x  $\frac{\text{PIT}}{\text{RNG1}}$  [m]

(Note) Even during the full-closed loop control, when the MP scale is used, restrictions are applied with the condition (a), as well.

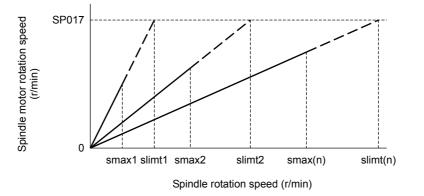
#### (2) For rotary axis

The following conditions must be satisfied.

$$PC2 \leq \frac{2147000}{RNG2} \times PC1$$

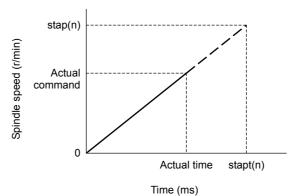
# 3-5 Setting the initial parameters for the spindle drive unit

The spindle specification parameters and spindle parameters must be set before the spindle system can be started up. The spindle related parameters are input from the NC. The input method differs according to the NC being used, so refer to each NC Instruction Manual.


# 3-5-1 Spindle specification parameters

The configuration of these parameters depends on the NC, so refer to each NC Instruction Manual. The following table shows the configuration of the M60S and E60 Series NC.

| M60S<br>Series<br>No.        | Abbrev.                 | Parameter name         | Details                                                                                                                                                                                                                | Setting range<br>(Unit) |
|------------------------------|-------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 3001<br>3002<br>3003<br>3004 | slimit 1<br>2<br>3<br>4 | Limit rotation speed   | Set spindle rotation speed for maximum motor rotation speed with gears 00, 01, 10, 11.<br>(Set the spindle speed for the S analog output 10V.)                                                                         | 0 to 99999<br>(r/min)   |
| 3005<br>3006<br>3007<br>3008 | smax 1<br>2<br>3<br>4   | Maximum rotation speed | Set maximum spindle rotation speed with gears 00, 01, 10, 11.<br>Set to slimt $\ge$ smax.<br>By comparing the S command value and the value of gear 1 to 4, a spindle gear shift command will be output automatically. | 0 to 99999<br>(r/min)   |
| 3009<br>3010<br>3011<br>3012 | ssift 1<br>2<br>3<br>4  | Shift rotation speed   | Set spindle speed for gear shifting with gears 00, 01, 10, 11.<br>(Note) Setting too large value may cause a gear nicks when changing<br>gears.                                                                        | 0 to 32767<br>(r/min)   |
| 3013<br>3014<br>3015<br>3016 | stap 1<br>2<br>3<br>4   | Tap rotation speed     | Set maximum spindle rotation speed during tap cycle with gears 00, 01, 10, 11.                                                                                                                                         | 0 to 99999<br>(r/min)   |
| 3017<br>3018<br>3019<br>3020 | stapt 1<br>2<br>3<br>4  | Tap time constant      | Set time constants for constant inclination synchronous tap cycles for gears 00, 01, 10, 11 (linear acceleration/deceleration pattern).                                                                                | 1 to 5000 (ms)          |


#### <Relation of spindle limit rotation speed and spindle maximum rotation speed>

The spindle rotation speed which can be attained at the spindle motor's maximum rotation speed is set for the limit rotation speed (slimt). This value is obtained by multiplying the gear ratio on the spindle motor maximum rotation speed (SP017). Set the maximum rotation speed (smax) when the rotation speed is to be limited according to the machine specifications, such as the spindle gear specifications. Up to four value can be set for gear changeover.



## <Relation of tap time constant and actual acceleration/deceleration time constant> (For constant inclination synchronous tap cycle)

Set the acceleration time up to the tap rotation speed (stap) in the tap time constant (stapt). Acceleration/deceleration is carried out at the same inclination for all speed commands. Up to four values can be set for gear changeover.



| M60S<br>Series<br>No. | Abbrev.   | Parameter name                                                            | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Setting range<br>(Unit)              |
|-----------------------|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 3021                  | sori      | Orientation<br>rotation speed                                             | Set the spindle orientation rotation speed.<br>Set the rotation speed for when the spindle rotates at the constant<br>rotation speed.                                                                                                                                                                                                                                                                                                                                                                                            | 0 to 32767<br>(r/min)                |
| 3022                  | sgear     | Encoder gear ratio                                                        | Set the gear ratio of the spindle to the spindle end detector when the spindle end detector feed back is directly input to NC.                                                                                                                                                                                                                                                                                                                                                                                                   | 0: 1/1<br>1: 1/2<br>2: 1/4<br>3: 1/8 |
| 3023                  | smini     | Minimum rotation speed                                                    | Set the minimum rotation speed of the spindle.<br>If an S command instructs the rotation speed below this setting, the<br>spindle rotates at the minimum rotation speed set by this parameter.                                                                                                                                                                                                                                                                                                                                   | 0 to 32767<br>(r/min)                |
| 3024                  | sout*     | Spindle connection                                                        | Set the type of the spindle to be connected.<br>0: No connection with the spindle<br>1: Serial connection (bus)<br>2 to 5: Analog output                                                                                                                                                                                                                                                                                                                                                                                         | 0 to 5                               |
| 3025                  | enc-on    | Spindle end detector                                                      | Set the spindle end detector connection destination.<br>0: No connection<br>1: NC<br>2: Drive unit                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 to 2                               |
| 3026                  | cs_ori    | Selection of coil in<br>orientation mode                                  | <ol> <li>Perform orientation using the coil selected when the orientation<br/>command is issued.</li> <li>Use coil L whenever the orientation command is issued.</li> </ol>                                                                                                                                                                                                                                                                                                                                                      | 0/1                                  |
| 3027                  | cs_syn    | Selection of coil in<br>spindle<br>synchronous<br>mode                    | <ul> <li>0: The coil H/L is selected by the actual spindle motor rotation speed (calculated from commanded rotation speed) when spindle synchronous control starts. (The coil is not switched during synchronous control. The control is carried out with the coil selected at start.)</li> <li>If the actual spindle motor rotation speed is less than SP020, the coil L is selected, and if more than the value, the coil H is selected.</li> <li>1: Use coil H whenever the spindle synchronous command is issued.</li> </ul> | 0/1                                  |
| 3028                  | sprcmm    | L system tap cycle<br>spindle forward<br>run/<br>reverse run M<br>command | Set the M code of the spindle forward run/reverse run command.         High-order three digits:       The spindle forward run command's M code is set.         Low-order three digits:       The spindle reverse run command's M code is set.                                                                                                                                                                                                                                                                                    | 0 to 999999                          |
| 3029                  | tapsel    | Asynchronous tap<br>gear selection                                        | Specify whether to use the tap rotation speed or maximum rotation<br>speed for the gear that is selected when an asynchronous tap command<br>is issued.<br>0: Tap rotation speed<br>1: Maximum rotation speed<br>This parameter is valid only when the M-function synchronous tap cycle<br>enable parameter (#1272 ext08/bit1) is ON.                                                                                                                                                                                            | 0/1                                  |
| 3030                  |           |                                                                           | Not used. Set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    |
| 3031                  | smcp_no * | Drive unit I/F<br>channel No.<br>(spindle)                                | Using a 4-digit number, set the drive unit interface channel No. and<br>which axis in that channel is to be used when connecting a spindle drive<br>unit.<br>High-order two digits : Drive unit interface channel No.<br>Low-order two digits : Axis No.<br>When using the conventional fixed layout, set all axes to "0000".<br>Set "0000" when using an analog spindle.                                                                                                                                                        | 0000<br>0101 to 0107<br>0201 to 0207 |
| 3032                  |           |                                                                           | Not used. Set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                    |

| M60S<br>Series<br>No.        | Abbrev.                                                | Parameter name                                                                                                                                                                                                                                 | Details                                                                                                                                                                                                                                                                                     | Setting range<br>(Unit)                            |
|------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 3037<br>3038<br>3039<br>3040 | taps 21<br>22<br>23<br>24                              | Synchronous tap<br>switching spindle<br>speed 2                                                                                                                                                                                                | Set the spindle rotation speed at which the step-2<br>acceleration/deceleration time constant is to be switched at gear 00, 01,<br>10, or 11.                                                                                                                                               | 0 to 99999<br>(r/min)                              |
| 3041<br>3042<br>3043<br>3044 | tapt 21<br>22<br>23<br>24                              | Synchronous tap<br>switching time<br>constant 2                                                                                                                                                                                                | Set the time constant to reach synchronous tap switching spindle rotation speed 2 (taps 21 to 24) at gear 00, 01, 10, or 11.                                                                                                                                                                | 1 to 5000 (ms)                                     |
| 3045<br>3046<br>3047<br>3048 | tapt 31<br>32<br>33<br>34                              | Synchronous tap<br>switching time<br>constant 3                                                                                                                                                                                                | Set the time constant to reach the maximum rotation speed (smax 1 to 4) at gear 00, 01, 10, or 11.                                                                                                                                                                                          | 1 to 5000 (ms)                                     |
| 3049                         | spt                                                    | Spindle<br>synchronization/<br>acceleration//<br>deceleration/ time<br>constantSet the acceleration/deceleration time constant for when the spindle<br>synchronization command's rotation speed changes during spindle<br>synchronous control. |                                                                                                                                                                                                                                                                                             | 0 to 9999 (ms)                                     |
| 3050                         | sprlv                                                  | Spindle synchro-<br>nization rotation<br>speed attainment<br>level                                                                                                                                                                             | The spindle rotation speed synchronization complete signal will turn ON when the difference of the reference spindle and synchronous spindle actual rotation speeds is less than the level set for the synchronous spindle rotation speed command value during spindle synchronous control. | 0 to 4095<br>(pulse)<br>(1 pulse =<br>0.088°)      |
| 3051                         | spplv                                                  | Spindle phase<br>synchronization<br>attainment level                                                                                                                                                                                           | The spindle phase synchronization complete signal will turn ON when<br>the phase difference of the reference spindle and synchronous spindle is<br>less than the set level during spindle phase synchronization control.                                                                    | 0 to 4095<br>(pulse)<br>(1 pulse =<br>0.088°)      |
| 3052                         | 52 spplr Spindle motor<br>spindle relative<br>polarity |                                                                                                                                                                                                                                                | Set the spindle motor and spindle's relative polarity.<br>Spindle CW rotation at motor CW rotation: Positive polarity Spindle CCW<br>rotation at motor CW rotation: Negative polarity                                                                                                       | 0: Positive<br>polarity<br>1: Negative<br>polarity |
| 3053                         | sppst                                                  | Spindle end<br>detector<br>Z -phase position                                                                                                                                                                                                   | Set the deviation amount from the spindle's reference position to the spindle end detector's Z phase.<br>The deviation amount is obtained using the clockwise direction looking from the front of the spindle as the positive direction.                                                    | 0 to 359999<br>(1/1000°)                           |
| 3054                         | sptc1                                                  | Spindle synchro-<br>nization multi-step<br>acceleration/<br>deceleration<br>changeover<br>speed 1                                                                                                                                              | Set the spindle speed for changing the 1st step's acceleration/deceleration time constant.                                                                                                                                                                                                  | 0 to 99999<br>(r/min)                              |
| 3055                         | sptc2                                                  | Spindle synchro-<br>nization multi-step<br>acceleration/<br>deceleration<br>changeover<br>speed 2                                                                                                                                              | Set the spindle speed for changing the 2nd step's acceleration/deceleration time constant.                                                                                                                                                                                                  | 0 to 99999<br>(r/min)                              |
| 3056                         | sptc3                                                  | Spindle synchro-<br>nization multi-step<br>acceleration/<br>deceleration<br>changeover<br>speed 3                                                                                                                                              | Set the spindle speed for changing the 3rd step's acceleration/deceleration time constant.                                                                                                                                                                                                  | 0 to 99999<br>(r/min)                              |
| 3057                         | sptc4                                                  | Spindle synchro-<br>nization multi-step<br>acceleration/<br>deceleration<br>changeover<br>speed 4                                                                                                                                              | Set the spindle speed for changing the 4th step's acceleration/deceleration time constant.                                                                                                                                                                                                  | 0 to 99999<br>(r/min)                              |
| 3058                         | sptc5                                                  | Spindle synchro-<br>nization multi-step<br>acceleration/<br>deceleration<br>changeover<br>speed 5                                                                                                                                              | Set the spindle speed for changing the 5th step's acceleration/deceleration time constant.                                                                                                                                                                                                  | 0 to 99999<br>(r/min)                              |

| M60S<br>Series<br>No. | Abbrev. | Parameter name                                                                                    | Details                                                                                                                                                                                                                                                                                                                                                                        | Setting range<br>(Unit) |
|-----------------------|---------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 3059                  | sptc6   | Spindle synchro-<br>nization multi-step<br>acceleration/<br>deceleration<br>changeover<br>speed 6 | Set the spindle speed for changing the 6th step's acceleration/deceleration time constant.                                                                                                                                                                                                                                                                                     | 0 to 99999<br>(r/min)   |
| 3060                  | sptc7   | Spindle synchro-<br>nization multi-step<br>acceleration/<br>deceleration<br>changeover<br>speed 7 | Set the spindle speed for changing the 7th step's acceleration/deceleration time constant.                                                                                                                                                                                                                                                                                     | 0 to 99999<br>(r/min)   |
| 3061                  | spdiv1  | Magnification for<br>time constant<br>changeover<br>speed 1                                       | Set the acceleration/deceleration time constant between the spindle<br>synchronization multi-step acceleration/deceleration changeover speed<br>1 (sptc1) to the spindle synchronization multi-step acceleration/<br>deceleration changeover speed 2 (sptc2) as a magnification in respect to<br>the spindle synchronization acceleration/deceleration time constant<br>(spt). | 0 to 127                |
| 3062                  | spdiv2  | Magnification for<br>time constant<br>changeover<br>speed 2                                       | Set the acceleration/deceleration time constant between the spindle<br>synchronization multi-step acceleration/deceleration changeover speed<br>2 (sptc2) to the spindle synchronization multi-step<br>acceleration/deceleration changeover speed 3 (sptc3) as a<br>magnification in respect to the spindle synchronization<br>acceleration/deceleration time constant (spt).  | 0 to 127                |
| 3063                  | spdiv3  | Magnification for<br>time constant<br>changeover<br>speed 3                                       | Set the acceleration/deceleration time constant between the spindle<br>synchronization multi-step acceleration/deceleration changeover speed<br>3 (sptc3) to the spindle synchronization multi-step<br>acceleration/deceleration changeover speed 4 (sptc4) as a<br>magnification in respect to the spindle synchronization<br>acceleration/deceleration time constant (spt).  | 0 to 127                |
| 3064                  | spdiv4  | Magnification for<br>time constant<br>changeover<br>speed 4                                       | Set the acceleration/deceleration time constant between the spindle<br>synchronization multi-step acceleration/deceleration changeover speed<br>4 (sptc4) to the spindle synchronization multi-step<br>acceleration/deceleration changeover speed 5 (sptc5) as a<br>magnification in respect to the spindle synchronization<br>acceleration/deceleration time constant (spt).  | 0 to 127                |
| 3065                  | spdiv5  | Magnification for<br>time constant<br>changeover<br>speed 5                                       | Set the acceleration/deceleration time constant between the spindle<br>synchronization multi-step acceleration/deceleration changeover speed<br>5 (sptc5) to the spindle synchronization multi-step<br>acceleration/deceleration changeover speed 6 (sptc6) as a<br>magnification in respect to the spindle synchronization<br>acceleration/deceleration time constant (spt).  | 0 to 127                |
| 3066                  | spdiv6  | Magnification for<br>time constant<br>changeover<br>speed 6                                       | Set the acceleration/deceleration time constant between the spindle<br>synchronization multi-step acceleration/deceleration changeover speed<br>6 (sptc6) to the spindle synchronization multi-step<br>acceleration/deceleration changeover speed 7 (sptc7) as a<br>magnification in respect to the spindle synchronization<br>acceleration/deceleration time constant (spt).  | 0 to 127                |
| 3067                  | spdiv7  | Magnification for<br>time constant<br>changeover<br>speed 7                                       | Set the acceleration/deceleration time constant for the spindle<br>synchronization multi-step acceleration/<br>deceleration changeover speed 7 (sptc7) and higher as a magnification<br>in respect to the spindle synchronization acceleration/deceleration time<br>constant (spt).                                                                                            | 0 to 127                |
| 3068                  | symtm1  | Phase<br>synchronization<br>start confirmation<br>time                                            | Set the time to confirm that synchronization is attained before phase<br>synchronization control is started.<br>When "0" is set, the time will be 2 seconds. When "100" or less is set,<br>the time will be 100ms.                                                                                                                                                             | 0 to 9999 (ms)          |
| 3069                  | symtm2  | Phase<br>synchronization<br>end confirmation<br>time                                              | Set the time to wait for phase synchronization control to end as the time for the rotation speed to reach the attainment range.<br>When "0" is set, the time will be 2 seconds. When "100" or less is set, the time will be 100ms.                                                                                                                                             | 0 to 9999 (ms)          |
| 3070                  | syprt   | Phase<br>synchronization<br>speed                                                                 | Set the fluctuation amount to change the synchronous spindle rotation<br>speed during phase synchronization control as the command speed and<br>rate.<br>When "0" is set, the amount will be 100%.                                                                                                                                                                             | 0 to 100 (%)            |
| 3071                  |         | (Not used.)                                                                                       | Not used. Set to "0".                                                                                                                                                                                                                                                                                                                                                          | 0                       |
| 3072                  |         | (Not used.)                                                                                       | Not used. Set to "0".                                                                                                                                                                                                                                                                                                                                                          | 0                       |

# 3-5-2 List of spindle parameters

These parameters are sent to the spindle drive unit when the NC power is turned ON. The standard parameters are designated with the "Spindle parameter setting list" enclosed when the spindle motor is delivered. There may be cases when the machine specifications are unclear, so the parameters determined by the machine specifications should be confirmed by the user.

| No.   | Abbr.                  | Parameter name                                                                                                                                                                                                                                   | Details                                                                                                                                                                                                                                                   | Setting range<br>(Unit)                | Standard setting |
|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|
| SP001 | PGM                    | Magnetic sensor, motor<br>PLG orientation position<br>loop gain                                                                                                                                                                                  | <for mds-c1-sp="" sph="" spm=""><br/>The orientation time will be shorter when the value is<br/>increased, and the servo rigidity will increase. On the<br/>other hand, the vibration will increase, and the machine<br/>will sway easily.</for>          | 0 to 1000<br>(0.1 rad/s)               | 100              |
|       |                        |                                                                                                                                                                                                                                                  | <for mds-c1-spx="" sphx=""><br/>Not used. Set "0".</for>                                                                                                                                                                                                  | 0                                      | 0                |
| SP002 | Encoder orientation ot | <for mds-c1-sp="" sph="" spm=""><br/>The orientation time will be shorter when the value is<br/>increased, and the servo rigidity will increase. On the<br/>other hand, the vibration will increase, and the machine<br/>will sway easily.</for> | 0 to 1000<br>(0.1 rad/s)                                                                                                                                                                                                                                  | 100                                    |                  |
|       |                        |                                                                                                                                                                                                                                                  | <for mds-c1-spx="" sphx=""><br/>Set the position loop gain for spindle end PLG<br/>orientation.</for>                                                                                                                                                     |                                        |                  |
| SP003 | PGC                    | Position gain during<br>C-axis non-cutting                                                                                                                                                                                                       | Set the position loop gain for the C-axis non-cutting mode.<br>During non-cutting (rapid traverse, etc.) with the C axis<br>control, this position loop gain setting is valid.                                                                            |                                        | 15               |
| SP004 | OINP                   | Orientation in-position width                                                                                                                                                                                                                    | Set the position error range in which an orientation completion signal is output.                                                                                                                                                                         | 1 to 2880<br>(1/16°)                   | 16               |
| SP005 | OSP*                   | Orientation mode<br>speed clamp value                                                                                                                                                                                                            | Set the motor speed limit value to be used when the<br>speed loop is changed to the position loop in orientation<br>mode.<br>When this parameter is set to "0", SP017 (TSP) becomes<br>the limit value.                                                   | 0 to 32767<br>(r/min)                  | 0                |
| SP006 | CSP                    | Orientation mode deceleration rate                                                                                                                                                                                                               | As the set value is larger, the orientation time becomes<br>shorter. However, the machine becomes likely to<br>overshoot.                                                                                                                                 | 1 to 1000                              | 20               |
| SP007 | OPST                   | Position shift amount for<br>orientation                                                                                                                                                                                                         | <ul> <li>Set the stop position for orientation.</li> <li>(1) Motor PLG and spindle end detector<br/>Set a value obtained by dividing 360° by 4096.</li> <li>(2) Magnetic sensor orientation<br/>Divide -5°C to +5° by 1024, and set 0° as "0".</li> </ul> | (1)<br>0 to 4095<br>(2)<br>-512 to 512 | 0                |
| SP008 |                        |                                                                                                                                                                                                                                                  | Not used. Set "0".                                                                                                                                                                                                                                        | 0                                      | 0                |
| SP009 | PGT                    | Synchronous tap<br>position loop gain                                                                                                                                                                                                            | Set the spindle position loop gain for synchronous tapping.                                                                                                                                                                                               | 1 to 100<br>(rad/s)                    | 15               |
| SP010 | PGS                    | Spindle synchronization position loop gain                                                                                                                                                                                                       | Set the spindle position loop gain for spindle synchronization.                                                                                                                                                                                           | 1 to 100<br>(rad/s)                    | 15               |
| SP011 |                        |                                                                                                                                                                                                                                                  | Not used. Set "0".                                                                                                                                                                                                                                        | 0                                      | 0                |
| SP012 |                        |                                                                                                                                                                                                                                                  | Not used. Set "0".                                                                                                                                                                                                                                        | 0                                      | 0                |
| SP013 |                        |                                                                                                                                                                                                                                                  | Not used. Set "0".                                                                                                                                                                                                                                        | 0                                      | 0                |
| SP014 |                        |                                                                                                                                                                                                                                                  | Not used. Set "0".                                                                                                                                                                                                                                        | 0                                      | 0                |
| SP015 |                        |                                                                                                                                                                                                                                                  | Not used. Set "0".                                                                                                                                                                                                                                        | 0                                      | 0                |
| SP016 |                        |                                                                                                                                                                                                                                                  | Not used. Set "0".                                                                                                                                                                                                                                        | 0                                      | 0                |

| No.   | Abbr.  | Parameter name                                              | Details                                                                                                                                                      | Setting range<br>(Unit) | Standard setting |
|-------|--------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
| SP017 | TSP*   | Maximum motor speed                                         | Set the maximum spindle motor speed.                                                                                                                         | 1 to 32767<br>(r/min)   | 6000             |
| SP018 | ZSP*   | Motor zero speed                                            | Set the motor speed for which zero-speed output is performed.                                                                                                | 1 to 1000<br>(r/min)    | 50               |
| SP019 | CSN1*  | Speed cushion 1                                             | Set the time constant for a speed command from "0" to<br>the maximum speed.<br>(This parameter is invalid during position loop control.)                     | 1 to 32767<br>(10 ms)   | 30               |
| SP020 | SDTS*  | Speed detection set value                                   | Set the motor speed for which speed detection output is performed.<br>Usually, the setting value is 10% of SP017 (TSP).                                      | 0 to 32767<br>(r/min)   | 600              |
| SP021 | TLM1   | Torque limit 1                                              | Set the torque limit rate for torque limit signal 001.                                                                                                       | 0 to 120 (%)            | 10               |
| SP022 | VGNP1* | Speed loop gain<br>proportional term under<br>speed control | Set the speed loop proportional gain in speed control<br>mode. When the gain is increased, response is<br>improved but vibration and sound become larger.    | 0 to 1000               | 63               |
| SP023 | VGNI1* | Speed loop gain integral term under speed control           | Set the speed loop integral gain in speed control mode.<br>Normally, this is set so that the ratio in respect to SP022<br>(VGNP1) is approximately constant. | 0 to 1000               | 60               |
| SP024 |        |                                                             | Not used. Set "0".                                                                                                                                           | 0                       | 0                |
| SP025 | GRA1*  | Spindle gear teeth count 1                                  | Set the number of gear teeth of the spindle corresponding to gear 000.                                                                                       | 1 to 32767              | 1                |
| SP026 | GRA2*  | Spindle gear teeth count 2                                  | Set the number of gear teeth of the spindle corresponding to gear 001.                                                                                       | 1 to 32767              | 1                |
| SP027 | GRA3*  | Spindle gear teeth count 3                                  | Set the number of gear teeth of the spindle corresponding to gear 010.                                                                                       | 1 to 32767              | 1                |
| SP028 | GRA4*  | Spindle gear teeth count 4                                  | Set the number of gear teeth of the spindle corresponding to gear 011.                                                                                       | 1 to 32767              | 1                |
| SP029 | GRB1*  | Motor shaft gear teeth<br>count 1                           | Set the number of gear teeth of the motor shaft corresponding to gear 000.                                                                                   | 1 to 32767              | 1                |
| SP030 | GRB2*  | Motor shaft gear teeth count 2                              | Set the number of gear teeth of the motor shaft corresponding to gear 001.                                                                                   | 1 to 32767              | 1                |
| SP031 | GRB3*  | Motor shaft gear teeth count 3                              | Set the number of gear teeth of the motor shaft corresponding to gear 010.                                                                                   | 1 to 32767              | 1                |
| SP032 | GRB4*  | Motor shaft gear teeth count 4                              | Set the number of gear teeth of the motor shaft corresponding to gear 011.                                                                                   | 1 to 32767              | 1                |

| о.       | Abbr.  | Parameter name     |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |                                                                                    |                                                                                                   |                                              |                                       |                       | Deta                           | ails                                                                |                                             |                                                       |                                           |                             |       |      |                                                                                                        |
|----------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------|--------------------------------|---------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------|-------|------|--------------------------------------------------------------------------------------------------------|
|          |        |                    | <fo< th=""><th>r MD</th><th>S-C1-S</th><th>P/SP</th><th>H&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fo<>                                                                                                                                                                                                                                  | r MD                                                                             | S-C1-S                                                                             | P/SP                                                                                              | H>                                           |                                       |                       |                                |                                                                     |                                             |                                                       |                                           |                             |       |      |                                                                                                        |
|          |        |                    | F                                                                                                                                                                                                                                                                                                                                                                                                            | =   E                                                                            | D                                                                                  | С                                                                                                 | В                                            | A                                     | 9                     | 8                              | 7                                                                   | 6                                           | 5                                                     | 4                                         | 3                           | 2     | 1    | 0                                                                                                      |
|          |        |                    | p                                                                                                                                                                                                                                                                                                                                                                                                            | off hz                                                                           | s                                                                                  | ront                                                                                              |                                              |                                       | pycal                 | pychg                          | pyst                                                                | ovoff                                       | -                                                     |                                           | -                           | sftk  | dfl  | t 1a2m                                                                                                 |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | 1                                                                                  | Maan                                                                                              |                                              | :<br>                                 | -1.1.2                |                                |                                                                     | Maa                                         |                                                       | :<br>                                     |                             | :     |      | Oten den                                                                                               |
|          |        |                    | 0                                                                                                                                                                                                                                                                                                                                                                                                            | bit<br>1a2n                                                                      | 1 driv                                                                             |                                                                                                   | -                                            |                                       | et to 0               |                                | 1 driv                                                              |                                             |                                                       | when<br>otor fu                           |                             |       |      | Standar<br>0                                                                                           |
|          |        |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                            | dflt                                                                             |                                                                                    | ilt moto                                                                                          |                                              |                                       |                       | Ivalio                         |                                                                     |                                             | otor: S                                               |                                           | Inclio                      | n. va | iu . | 0                                                                                                      |
|          |        |                    | 2                                                                                                                                                                                                                                                                                                                                                                                                            | sftk                                                                             |                                                                                    | ut SF-                                                                                            |                                              |                                       |                       |                                |                                                                     |                                             | K car                                                 |                                           |                             |       |      | 0                                                                                                      |
|          |        |                    | 3                                                                                                                                                                                                                                                                                                                                                                                                            | Sitt                                                                             | witho                                                                              |                                                                                                   |                                              |                                       |                       |                                | vvitii                                                              |                                             | it call                                               | u                                         |                             |       |      | 0                                                                                                      |
|          |        |                    | 4                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                    |                                                                                                   |                                              |                                       |                       |                                |                                                                     |                                             |                                                       |                                           |                             |       |      | 0                                                                                                      |
|          |        |                    | 5                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                    |                                                                                                   |                                              |                                       |                       |                                |                                                                     |                                             |                                                       |                                           |                             |       | -    | 0                                                                                                      |
|          |        |                    | 6                                                                                                                                                                                                                                                                                                                                                                                                            | pyof                                                                             |                                                                                    |                                                                                                   |                                              |                                       |                       |                                | .1                                                                  |                                             |                                                       |                                           |                             |       |      | 0                                                                                                      |
|          |        |                    | 7                                                                                                                                                                                                                                                                                                                                                                                                            | pyst                                                                             |                                                                                    | s used                                                                                            | by Mi                                        | itsubis                               | shi. Set              | to "0"                         | unles                                                               | s par                                       | ticula                                                | rly des                                   | signat                      | ed.   | ŀ    | 0                                                                                                      |
|          |        |                    | 8                                                                                                                                                                                                                                                                                                                                                                                                            | pych                                                                             | 1                                                                                  |                                                                                                   |                                              |                                       |                       |                                |                                                                     |                                             |                                                       |                                           |                             |       | F    | 0                                                                                                      |
|          |        |                    | 9                                                                                                                                                                                                                                                                                                                                                                                                            | руса                                                                             | (Conv                                                                              | rention                                                                                           | al spe                                       | ecificat                              | tions)                |                                |                                                                     |                                             |                                                       | e dece<br>r minir                         |                             |       | tion | 0                                                                                                      |
|          |        |                    | A                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                    |                                                                                                   |                                              |                                       |                       |                                |                                                                     |                                             |                                                       |                                           |                             |       |      | 0                                                                                                      |
|          |        |                    | в                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                    |                                                                                                   |                                              |                                       |                       |                                | 1                                                                   |                                             |                                                       |                                           |                             |       | - t  | 0                                                                                                      |
|          |        |                    | С                                                                                                                                                                                                                                                                                                                                                                                                            | ront                                                                             | Norma                                                                              | al read                                                                                           | ly ON                                        |                                       |                       |                                | High                                                                | spee                                        | d rea                                                 | dy ON                                     | I                           |       |      | 0                                                                                                      |
|          |        |                    | D                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                    |                                                                                                   |                                              |                                       |                       |                                |                                                                     |                                             |                                                       |                                           |                             |       |      | 0                                                                                                      |
|          |        |                    | E                                                                                                                                                                                                                                                                                                                                                                                                            | hzs                                                                              | invalio                                                                            | 1                                                                                                 |                                              | -                                     | zero s                |                                | valid                                                               |                                             |                                                       | gh-cyc                                    |                             |       |      | 0                                                                                                      |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | Conta                                                                              | ictor he                                                                                          | old at                                       | NC po                                 | ower O                | FF                             |                                                                     | actor                                       | hold a                                                | at NC                                     | powe                        | r OF  | -    | 0                                                                                                      |
| S        | SFNC1* | Spindle function 1 | (N                                                                                                                                                                                                                                                                                                                                                                                                           | ote 2)                                                                           | bits<br>Set 0                                                                      | 0, 1 a<br>0 if the                                                                                | ere is                                       | no p                                  |                       |                                |                                                                     | tion                                        | for th                                                | ie bit.                                   |                             |       |      |                                                                                                        |
|          | SFNC1* | Spindle function 1 | (N<br>(N<br><fo< th=""><th>ote 1)<br/>ote 2)</th><th>bits<br/>Set (<br/>S-C1-S</th><th>0, 1 a<br/>0 if the</th><th>ere is</th><th>no p</th><th>articu<br/>9</th><th>ar ex<br/>8</th><th>PH.<br/>plana</th><th>6</th><th>for th</th><th>ie bit.</th><th>3</th><th>2</th><th>1</th><th>0</th></fo<>                                                                                                            | ote 1)<br>ote 2)                                                                 | bits<br>Set (<br>S-C1-S                                                            | 0, 1 a<br>0 if the                                                                                | ere is                                       | no p                                  | articu<br>9           | ar ex<br>8                     | PH.<br>plana                                                        | 6                                           | for th                                                | ie bit.                                   | 3                           | 2     | 1    | 0                                                                                                      |
| SFI      | NC1*   | Spindle function 1 | (N<br>(N<br><fo< th=""><th>ote 1)<br/>ote 2)<br/>r MD</th><th>invalio<br/>bits<br/>Set 0<br/>S-C1-S</th><th>0, 1 a<br/>0 if the<br/><b>PX/S</b></th><th>ere is<br/>PHX&gt;</th><th>; no p</th><th>articu</th><th>ar ex<br/>8</th><th>PH.<br/>plana</th><th>6</th><th></th><th></th><th>1</th><th>2</th><th>1</th><th>0</th></fo<>                                                                            | ote 1)<br>ote 2)<br>r MD                                                         | invalio<br>bits<br>Set 0<br>S-C1-S                                                 | 0, 1 a<br>0 if the<br><b>PX/S</b>                                                                 | ere is<br>PHX>                               | ; no p                                | articu                | ar ex<br>8                     | PH.<br>plana                                                        | 6                                           |                                                       |                                           | 1                           | 2     | 1    | 0                                                                                                      |
| SFNG     | C1*    | Spindle function 1 | (N<br>(N<br><fo< td=""><td>ote 1)<br/>ote 2)<br/>r MD:<br/>= E</td><td>invalio<br/>bits<br/>Set 0<br/>S-C1-S</td><td>0, 1 a<br/>0 if the<br/><b>PX/S</b><br/>C<br/>ront</td><td>ere is<br/>PHX&gt;<br/>B</td><td>&gt; no p</td><td>articu<br/>9</td><td>ar ex<br/>8<br/><sup>pychg</sup></td><td>PH.<br/>plana</td><td>6<br/>oyoff</td><td>5</td><td></td><td>3</td><td></td><td></td><td></td></fo<>        | ote 1)<br>ote 2)<br>r MD:<br>= E                                                 | invalio<br>bits<br>Set 0<br>S-C1-S                                                 | 0, 1 a<br>0 if the<br><b>PX/S</b><br>C<br>ront                                                    | ere is<br>PHX><br>B                          | > no p                                | articu<br>9           | ar ex<br>8<br><sup>pychg</sup> | PH.<br>plana                                                        | 6<br>oyoff                                  | 5                                                     |                                           | 3                           |       |      |                                                                                                        |
| SFNC1    | *      | Spindle function 1 | (N<br>(N<br><fo< td=""><td>ote 1)<br/>ote 2)<br/>r MD:<br/>= E</td><td>invalio<br/>bits<br/>Set 0<br/>S-C1-S</td><td>0, 1 a<br/>0 if the<br/><b>PX/S</b><br/>C<br/>ront</td><td>ere is<br/>PHX&gt;<br/>B</td><td>&gt; no p</td><td>9<br/>pycal</td><td>ar ex<br/>8<br/><sup>pychg</sup></td><td>PH.<br/>plana</td><td>6<br/>oyoff</td><td>5</td><td>4</td><td>3</td><td></td><td></td><td></td></fo<>        | ote 1)<br>ote 2)<br>r MD:<br>= E                                                 | invalio<br>bits<br>Set 0<br>S-C1-S                                                 | 0, 1 a<br>0 if the<br><b>PX/S</b><br>C<br>ront                                                    | ere is<br>PHX><br>B                          | > no p                                | 9<br>pycal            | ar ex<br>8<br><sup>pychg</sup> | PH.<br>plana                                                        | 6<br>oyoff                                  | 5                                                     | 4                                         | 3                           |       |      |                                                                                                        |
| SFNC1*   |        | Spindle function 1 | (N<br>(N<br><fo< td=""><td>ote 1)<br/>ote 2)<br/>r MD:<br/>= E</td><td>invalio<br/>bits<br/>Set 0<br/>S-C1-S</td><td>0, 1 a<br/>0 if the<br/><b>PX/S</b><br/>C<br/>ront</td><td>ere is<br/>PHX&gt;<br/>B</td><td>&gt; no p</td><td>9<br/>pycal</td><td>ar ex<br/>8<br/><sup>pychg</sup></td><td>PH.<br/>plana</td><td>6<br/>oyoff</td><td>5</td><td>4</td><td>3</td><td></td><td></td><td>Standa</td></fo<>  | ote 1)<br>ote 2)<br>r MD:<br>= E                                                 | invalio<br>bits<br>Set 0<br>S-C1-S                                                 | 0, 1 a<br>0 if the<br><b>PX/S</b><br>C<br>ront                                                    | ere is<br>PHX><br>B                          | > no p                                | 9<br>pycal            | ar ex<br>8<br><sup>pychg</sup> | PH.<br>plana                                                        | 6<br>oyoff                                  | 5                                                     | 4                                         | 3                           |       |      | Standa                                                                                                 |
| SFNC1* S | S      | Spindle function 1 | (N<br>(N<br><fo< td=""><td>ote 1)<br/>ote 2)<br/>r MD:<br/>= E</td><td>invalio<br/>bits<br/>Set 0<br/>S-C1-S</td><td>0, 1 a<br/>0 if the<br/><b>PX/S</b><br/>C<br/>ront</td><td>ere is<br/>PHX&gt;<br/>B</td><td>no p</td><td>9<br/>pycal</td><td>ar ex<br/>8<br/><sup>pychg</sup></td><td>PH.<br/>plana</td><td>6<br/>oyoff</td><td>5</td><td>4</td><td>3</td><td></td><td></td><td>Standa<br/>0</td></fo<> | ote 1)<br>ote 2)<br>r MD:<br>= E                                                 | invalio<br>bits<br>Set 0<br>S-C1-S                                                 | 0, 1 a<br>0 if the<br><b>PX/S</b><br>C<br>ront                                                    | ere is<br>PHX><br>B                          | no p                                  | 9<br>pycal            | ar ex<br>8<br><sup>pychg</sup> | PH.<br>plana                                                        | 6<br>oyoff                                  | 5                                                     | 4                                         | 3                           |       |      | Standa<br>0                                                                                            |
| SFNC1* S | S      | pindle function 1  | (N<br>(N<br>Fo<br>0<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                           | ote 1)<br>ote 2)<br>r MD:<br>= E                                                 | invalio<br>bits<br>Set 0<br>S-C1-S                                                 | 0, 1 a<br>0 if the<br><b>PX/S</b><br>C<br>ront                                                    | ere is<br>PHX><br>B                          | no p                                  | 9<br>pycal            | ar ex<br>8<br><sup>pychg</sup> | PH.<br>plana                                                        | 6<br>oyoff                                  | 5                                                     | 4                                         | 3                           |       |      | <b>Standa</b> 0 0 0 0 0 0 0                                                                            |
| SFNC1* S | S      | pindle function 1  | (N<br>(N<br><fo<br>0<br/>1<br/>2<br/>3<br/>4</fo<br>                                                                                                                                                                                                                                                                                                                                                         | ote 1)<br>ote 2)<br>r MD:<br>= E                                                 | invalio<br>bits<br>Set 0<br>S-C1-S                                                 | 0, 1 a<br>0 if the<br><b>PX/S</b><br>C<br>ront                                                    | ere is<br>PHX><br>B                          | no p                                  | 9<br>pycal            | ar ex<br>8<br><sup>pychg</sup> | PH.<br>plana                                                        | 6<br>oyoff                                  | 5                                                     | 4                                         | 3                           |       |      | Standa<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                              |
| SFNC1* S | s      | pindle function 1  | (N<br>(N<br><fo<br>0<br/>1<br/>2<br/>3<br/>4<br/>5</fo<br>                                                                                                                                                                                                                                                                                                                                                   | r MD:<br>r MD:<br>E E<br>bit                                                     | S-C1-S                                                                             | 0, 1 a<br>0 if the<br><b>PX/S</b><br>C<br>ront                                                    | ere is<br>PHX><br>B                          | no p                                  | 9<br>pycal            | ar ex<br>8<br><sup>pychg</sup> | PH.<br>plana                                                        | 6<br>oyoff                                  | 5                                                     | 4                                         | 3                           |       |      | Standa<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                         |
| SFNC1* S | St     | bindle function 1  | (N<br>(N<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N))<br>(N))<br>(N)                                                                                                                                                                                                                                                                                                                                  | r MD:<br>r MD:<br>r E E<br>bit bit                                               | invalic<br>bits<br>Set (<br>S-C1-S<br>D<br>s sfnc1                                 | 0, 1 a<br>0 if the<br>PX/S<br>C<br>ront<br>Mean                                                   | PHX>                                         | hen s                                 | 9<br>pycal<br>et to 0 | 8<br>pychg                     | 7<br>pyst                                                           | 6<br>Dyoff<br>Mez                           | 5<br>ning                                             | 4<br>when                                 | 3<br>set t                  | o 1   |      | Standa<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                    |
| SFNC1* S | S      | Spindle function 1 | (N<br>(N<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N))<br>(N)                                                                                                                                                                                                                                                                                                                               | r MD:<br>r MD:<br>r MD:<br>bit<br>bit<br>pyof                                    | invalic<br>bits<br>Set (<br>S-C1-S<br>S sfnc1                                      | 0, 1 a<br>0 if the<br>PX/S<br>C<br>ront<br>Mean                                                   | PHX>                                         | hen s                                 | 9<br>pycal            | 8<br>pychg                     | 7<br>pyst                                                           | 6<br>Dyoff<br>Mez                           | 5<br>ning                                             | 4<br>when                                 | 3<br>set t                  | o 1   |      | Standa<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                          |
| SFNC     | 1*     | Spindle function 1 | (N<br>(N<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N))<br>(N))<br>(N)                                                                                                                                                                                                                                                                                                                                  | r MD:<br>r MD:<br>r MD:<br>pyoff hz<br>pyoff<br>pyst                             | invalic<br>bits<br>Set (<br>S-C1-S<br>s sfnc1                                      | 0, 1 a<br>0 if the<br>PX/S<br>C<br>ront<br>Mean                                                   | PHX2<br>B<br>ing w                           | hen s                                 | 9<br>pycal<br>et to 0 | 8<br>pychg                     | 7<br>plana<br>7<br>pyst                                             | 6<br>pyoff<br>Mea                           | 5<br>nning<br>ticular                                 | 4<br>when                                 | 3<br>set t                  | ed.   |      | Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              |
| SFNC1    | *      | Spindle function 1 | (N<br>(N<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N))<br>(N)                                                                                                                                                                                                                                                                                                                               | r MD:<br>r MD:<br>r MD:<br>pyoff hz<br>pyoff<br>pyst                             | invalic<br>bits<br>Set (<br>S-C1-S<br>S sfnc1                                      | 0, 1 a<br>0 if the<br>PX/S<br>C<br>ront<br>Mean                                                   | PHX2<br>B<br>ing w                           | hen s                                 | 9<br>pycal<br>et to 0 | 8<br>pychg                     | 7<br>plana<br>7<br>pyst                                             | 6<br>pyoff<br>Mea                           | 5<br>nning<br>ticular                                 | 4<br>when                                 | 3<br>set t                  | ed.   |      | Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| SFNC1    | *      | Spindle function 1 | (N<br>(N<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N))<br>(N)                                                                                                                                                                                                                                                                                                                               | r MD:<br>r MD:<br>r MD:<br>pyoff hz<br>pyoff<br>pyst                             | invalic<br>bits<br>Set (<br>S-C1-S<br>s sfnc1                                      | 0, 1 a<br>0 if the<br>PX/S<br>C<br>ront<br>Mean                                                   | PHX2<br>B<br>ing w                           | hen s                                 | 9<br>pycal<br>et to 0 | 8<br>pychg                     | 7<br>pyst<br>unles                                                  | 6<br>pyoff<br>Mea                           | 5<br>nning<br>ticular                                 | 4<br>when                                 | 3<br>set t                  | ed.   |      | Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC1*   | -      | Spindle function 1 | (N<br>(N<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N))<br>(N)                                                                                                                                                                                                                                                                                                                               | r MD:<br>r MD:<br>r MD:<br>bit<br>bit<br>pycof<br>pyst<br>pycch                  | invalid<br>bits (<br>Set (<br>S-C1-S<br>s sfnc1                                    | 0, 1 a<br>0 if the<br>PX/S<br>C<br>ront<br>Mean<br>s used<br>rention                              | ere is PHX: B ing w by Mi al spe             | A A A A A A A A A A A A A A A A A A A | 9<br>pycal<br>et to 0 | 8<br>pychg                     | 7<br>pyst<br>unles                                                  | 6<br>Mea<br>s par                           | 5<br>nning<br>ticular                                 | 4<br>when<br>rly des<br>e decee           | 3<br>set t                  | ed.   |      | Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC1*   |        | Spindle function 1 | (N<br>(N<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N))<br>(N)                                                                                                                                                                                                                                                                                                                               | r MD:<br>r MD:<br>r MD:<br>r MD:<br>pyoff hz<br>pyoff<br>pysoft<br>pycht<br>pyca | invalic<br>bits<br>Set (<br>S-C1-S<br>s sfnc1<br>D<br>s sfnc1<br>This is<br>(Conv  | 0, 1 a<br>0 if the<br>PX/S<br>C<br>ront<br>Mean<br>s used<br>rention                              | ere is PHX: B ing w by Mi al spe             | A A A A A A A A A A A A A A A A A A A | 9<br>pycal<br>et to 0 | 8<br>pychg<br>to "0"           | PH.<br>plana<br>7<br>pyst<br>unles<br>High-<br>rate                 | 6<br>pyoff<br>Mez<br>s par<br>spee<br>od vz | 5<br>nning<br>ticular<br>d rate<br>lid for            | 4<br>when<br>rly des<br>e dece<br>r minir | 3<br>set t                  | ed.   |      | Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               |
| SFNC     | 1*     | Spindle function 1 | (N<br>(N<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N<br>)<br>(N))<br>(N)                                                                                                                                                                                                                                                                                                                               | r MD:<br>r MD:<br>r MD:<br>bit<br>bit<br>pycof<br>pyst<br>pycch                  | invalic<br>bits<br>Set (<br>S-C1-S<br>s sfnc1<br>This is<br>(Conv<br>Norma<br>MDS- | 0, 1 a<br>0 if the<br>PX/S<br>C<br>ront<br>Mean<br>s used<br>rention<br>al reac<br>B-PJE<br>OFF b | ere is PHX: B ing w by Mi al spe dy ON X con | A A A A A A A A A A A A A A A A A A A | 9<br>pycal<br>et to 0 | 8 pychg to "0" id              | PH.<br>plana<br>7<br>pyst<br>unles<br>High-<br>rate<br>High-<br>MDS | 6<br>Mez<br>s par<br>spee<br>od vz          | 5<br>nning<br>ticular<br>d rate<br>llid for<br>d rear | 4<br>when<br>rly des<br>e decee           | 3<br>set t<br>leration<br>l | ed.   | tion | Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               |

| No.   | Abbr.  | Parameter name     |                                                                                                                                                                                     |      |      |                  |         |          |        |         | Det    | tails        |        |        |       |       |       |   |        |
|-------|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------------------|---------|----------|--------|---------|--------|--------------|--------|--------|-------|-------|-------|---|--------|
|       |        |                    | <fo< th=""><th>or N</th><th>IDS-</th><th>C1-S</th><th>PM&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fo<> | or N | IDS- | C1-S             | PM>     |          |        |         |        |              |        |        |       |       |       |   |        |
|       |        |                    |                                                                                                                                                                                     | F    | Е    | D                | С       | В        | А      | 9       | 8      | 7            | 6      | 5      | 4     | 3     | 2     | 1 | 0      |
|       |        |                    | р                                                                                                                                                                                   | off  |      |                  | ront    |          |        |         |        |              |        |        |       |       |       |   |        |
|       |        |                    |                                                                                                                                                                                     | bi   | t    |                  | Mean    | ing wl   | nen se | et to ( | 0      |              | Me     | aning  | wher  | set t | o 1   | S | andard |
|       |        |                    | 0                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | 1                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | 2                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | 3                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
| SP033 | SFNC1* | Spindle function 1 | 4                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | 5                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | 6                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | 7                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | 8                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | 9                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | A                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | В                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | С                                                                                                                                                                                   |      | ont  | Norma            | al read | y ON     |        |         |        | Hig          | n-spee | ed rea | dy ON | 1     |       |   | 0      |
|       |        |                    | D                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | E                                                                                                                                                                                   |      |      |                  |         |          |        |         |        |              |        |        |       |       |       |   | 0      |
|       |        |                    | F                                                                                                                                                                                   | p    | off  | Conta<br>invalid | ctor ho | old at I | VC po  | wer C   | DFF    | Cor<br>valio | tactor | hold   | at NC | powe  | r OFF |   | 0      |
|       |        |                    | (N                                                                                                                                                                                  | ote  | e) S | et 0 if          | there   | e is no  | part   | icula   | r expl | lanati       | on fo  | r the  | bit.  |       |       |   |        |

|           | Abbr. | Parameter name     |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                                  |                                                            |                                             |                                       |                         | De     | tails                               |                                       |                                                     |                          |                                                           |                  |     |      |                                                                                             |
|-----------|-------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|---------------------------------------------|---------------------------------------|-------------------------|--------|-------------------------------------|---------------------------------------|-----------------------------------------------------|--------------------------|-----------------------------------------------------------|------------------|-----|------|---------------------------------------------------------------------------------------------|
| T         |       |                    | <fc< th=""><th>or N</th><th>MDS</th><th>-C1-S</th><th>P/SP</th><th>H/SP</th><th>X/SP</th><th>HX&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fc<> | or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MDS                                            | -C1-S                                            | P/SP                                                       | H/SP                                        | X/SP                                  | HX>                     |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      |                                                                                             |
|           |       |                    |                                                                                                                                                                                                          | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                                              | D                                                | С                                                          | В                                           | Α                                     | 9                       | 8      | 7                                   | 6                                     | 5                                                   | 4                        | 3                                                         | 2                | 2   | 1    | 0                                                                                           |
| l         |       |                    |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          | mkc2                                                      | mk               | ch  | invm | n mtsl                                                                                      |
|           |       |                    |                                                                                                                                                                                                          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | it                                             |                                                  | Mean                                                       | ning w                                      | hen s                                 | et to (                 | )      |                                     | Mea                                   | aning                                               | when                     | set t                                                     | o 1              |     | S    | Standa                                                                                      |
|           |       |                    | 0                                                                                                                                                                                                        | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mtsl                                           | Speci                                            |                                                            | -                                           |                                       |                         |        | Spe                                 | cial m                                | -                                                   |                          |                                                           |                  | val |      | 0                                                                                           |
|           |       |                    | 1                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nvm                                            |                                                  | eral-p                                                     | ourpos                                      |                                       |                         |        |                                     | eneral                                |                                                     |                          |                                                           | -                |     |      | 0                                                                                           |
|           |       |                    | 2                                                                                                                                                                                                        | 2 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nkch                                           |                                                  |                                                            | functic                                     | n inva                                | lid                     |        |                                     | switc                                 | h func                                              | tion v                   | alid                                                      |                  |     |      | 0                                                                                           |
|           |       |                    | 3                                                                                                                                                                                                        | 3 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nkc2                                           | Coil s                                           | witch                                                      | functic                                     | n 2 in                                | valid                   |        |                                     | switc                                 |                                                     |                          |                                                           | with             | bit | 2)   | 0                                                                                           |
|           |       |                    | 4                                                                                                                                                                                                        | Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                  |                                                            |                                             |                                       |                         |        | (                                   |                                       |                                                     |                          | , uo. j                                                   |                  |     | _/   | 0                                                                                           |
|           | l     |                    | 5                                                                                                                                                                                                        | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
|           |       |                    | 6                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     | -    | 0                                                                                           |
|           | ļ     |                    | 7                                                                                                                                                                                                        | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
|           |       |                    | 8                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
|           |       |                    | 9                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
|           |       |                    | A                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
|           |       |                    | В                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
|           |       |                    | С                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
|           |       |                    | D                                                                                                                                                                                                        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
|           |       |                    |                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                  |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      |                                                                                             |
| SE        | NC2*  | Snindle function 2 | -                                                                                                                                                                                                        | lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | To v<br>Set (                                    |                                                            |                                             |                                       |                         |        |                                     |                                       |                                                     |                          |                                                           |                  |     |      | 0                                                                                           |
| SFN       | IC2*  | Spindle function 2 | F<br>(N<br>(N                                                                                                                                                                                            | lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e 2)                                           |                                                  | 0 if th                                                    | iere is                                     |                                       |                         |        |                                     |                                       |                                                     |                          | 3                                                         | 2                | 2   | 1    |                                                                                             |
| SFN       | IC2*  | Spindle function 2 | F<br>(N<br>(N                                                                                                                                                                                            | lote<br>lote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e 2)<br>MDS                                    | Set (                                            | 0 if th<br>• <b>PM&gt;</b>                                 | iere is                                     | no p                                  | articu                  | ılar e | xplan                               | ation                                 | for th                                              | ne bit.                  | 3                                                         | +                | -   |      | 0                                                                                           |
| SFNC2*    |       | Spindle function 2 | F<br>(N<br>(N                                                                                                                                                                                            | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e 2)<br>MDS                                    | Set (                                            | 0 if th<br>PM><br>C                                        | iere is                                     | A A                                   | articu<br>9             | llar e | xplan                               | eation<br>6                           | for th                                              | e bit.                   | 3<br>mkc2                                                 | mk               | -   | mk3c | 0<br>0<br>c mtsl                                                                            |
| SFNC2     | 2*    | Spindle function 2 | F<br>(N<br>(N                                                                                                                                                                                            | lote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e 2)<br>MDS                                    | Set (                                            | 0 if th<br>PM><br>C<br>Mean                                | B<br>hing w                                 | A hen s                               | 9<br>et to (            | llar e | xplan<br>7                          | eation<br>6                           | for th                                              | 4 wher                   | 3<br>mkc2<br>set t                                        | mk               | ch  | mk3c | 0<br>0<br>c mts                                                                             |
| SFNC2     | *     | Spindle function 2 |                                                                                                                                                                                                          | lote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e 2)<br>MDS<br>E<br>it<br>mtsl                 | Set (                                            | 0 if th<br>PM><br>C<br>Mean                                | B<br>ing w                                  | A A                                   | 9<br>et to 0            | llar e | xplan<br>7<br>Spe<br>3-st           | 6<br>Mea<br>ccial m<br>ep coi         | for the                                             | 4<br>when<br>onsta       | 3<br>mkc2<br>set t<br>nt sett                             | mk<br><b>o 1</b> | val | mk3c | 0<br>  0<br>  mts<br>  5tanc<br>  0                                                         |
| SFNC2'    |       | Spindle function 2 | F<br>(N<br>(N                                                                                                                                                                                            | F<br>bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e 2)<br>MDS<br>E<br>it<br>mtsl                 | Set (<br>-C1-S<br>D<br>Speci                     | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>o coil s          | B<br>ing w<br>tor cor                       | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | xplan<br>7<br>Spe<br>3-st<br>Coi    | 6<br>Mea<br>ecial m<br>ep coi         | for th<br>5<br>aning<br>otor c<br>I switc<br>h func | when<br>onsta<br>tion v  | 3<br>mkc2<br>set t<br>nt sett                             | mk<br><b>o 1</b> | val | mk3c | 0<br>0<br>c mts<br>Stand                                                                    |
| SFNC2*    |       | Spindle function 2 | F<br>(N<br>(N<br>-Fc<br>0<br>1<br>2<br>3                                                                                                                                                                 | F<br>b<br>r<br>b<br>r<br>b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step           | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>ccial m<br>ep coi         | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| SFNC2* S  | S     | spindle function 2 | F (N (N (N (N ) ) ) ) ) ) (N ) ) (N ) ) ) )                                                                                                                                                              | F<br>bi<br>r<br>bi<br>r<br>bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| SFNC2* Sp | Sp    | aindle function 2  | F (N                                                                                                                                                                 | Note<br>Note<br>F<br>bi<br>n<br>2 n<br>3 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC2* Sp | Sp    | aindle function 2  | F<br>(N<br>(N<br>(N<br>(N<br>(N<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| SFNC2* S  | S     | pindle function 2  | F<br>(N<br>(N<br>(N<br>(N<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)                                                                                                                               | Jote<br>Jot M<br>F<br>bi<br>0 r<br>2 n<br>2 n<br>3 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC2*    |       | Spindle function 2 | F<br>(N<br>(N<br>(N<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N                                                                                                                               | Jote           Jote           Jor M           F           b           n           3           n           j           j           j           j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| SFNC2*    |       | Spindle function 2 | F<br>(N<br>(N<br>(N<br>(N<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)                                                                                                                               | Note       Note <td>e 2)<br/>MDS<br/>E<br/>it<br/>mtsl<br/>nk3c<br/>nkch</td> <td>Set (<br/>-C1-S<br/>D<br/>Speci<br/>3-step<br/>Coil s</td> <td>0 if th<br/>PM&gt;<br/>C<br/>Mean<br/>al mot<br/>b coil s<br/>witch</td> <td>B<br/>bing w<br/>tor cor<br/>switch<br/>functio</td> <td>A A A A A A A A A A A A A A A A A A A</td> <td>9<br/>et to (<br/>invalid</td> <td>llar e</td> <td>7<br/>7<br/>Spe<br/>3-st<br/>Coi<br/>Coi</td> <td>6<br/>Mea<br/>cial m<br/>ep coi<br/>switc</td> <td>for the 5</td> <td>when<br/>onsta<br/>tion vi</td> <td>3<br/>mkc2<br/>set t<br/>nt sett<br/>ction v<br/>alid<br/>valid</td> <td>ting<br/>/alid</td> <td>val</td> <td>mk3c</td> <td>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              |
| SFNC2*    |       | Spindle function 2 | F<br>(N<br>(N<br>(N<br>(N<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)                                                                                                                               | bi<br>bi<br>pr M<br>F<br>bi<br>p r<br>bi<br>p r bi<br>p r<br>bi<br>p r bi<br>p r bi | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| SFNC2     | *     | Spindle function 2 | F<br>(N<br>(N<br>(N<br>(N<br>(N<br>(N))<br>(N))<br>(N))<br>(N))<br>(N)                                                                                                                                   | Note           Iote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| SFNC2*    |       | Spindle function 2 | F<br>(N<br>(N<br>(N<br>(N<br>(N<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)                                                                                                                                | Iote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| SFNC2     | *     | Spindle function 2 | F<br>(N<br>(N<br>(N<br>(N<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)<br>(N)                                                                                                                               | Jote       Jote       Jote       Jorn       F       Jone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 2)<br>MDS<br>E<br>it<br>mtsl<br>nk3c<br>nkch | Set (<br>-C1-S<br>D<br>Speci<br>3-step<br>Coil s | 0 if th<br>PM><br>C<br>Mean<br>al mot<br>b coil s<br>witch | B<br>bing w<br>tor cor<br>switch<br>functio | A A A A A A A A A A A A A A A A A A A | 9<br>et to (<br>invalid | llar e | 7<br>7<br>Spe<br>3-st<br>Coi<br>Coi | 6<br>Mea<br>cial m<br>ep coi<br>switc | for the 5                                           | when<br>onsta<br>tion vi | 3<br>mkc2<br>set t<br>nt sett<br>ction v<br>alid<br>valid | ting<br>/alid    | val | mk3c | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |

| •          | Abbr.  | Parameter name       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                       |                                                           |                                                    |                       |                         | Det       | ails                                   |                                                 |                                                  |                    |                 |                    |        |                                                                                                                           |
|------------|--------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-----------------------|-------------------------|-----------|----------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------|-----------------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------|
|            |        |                      | <fc< th=""><th>or I</th><th>MDS</th><th>-C1-S</th><th>P/SP</th><th>H/SP</th><th>X/SP</th><th>HX&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fc<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MDS                     | -C1-S                                                 | P/SP                                                      | H/SP                                               | X/SP                  | HX>                     |           |                                        |                                                 |                                                  |                    |                 |                    |        |                                                                                                                           |
|            |        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                       | D                                                     | C                                                         | В                                                  | Α                     | 9                       | 8         | 7                                      | 6                                               | 5                                                | 4                  | 3               | 2                  | 1      | 0                                                                                                                         |
|            |        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    | lbsd            | hbso               | d Iwi  | d hwid                                                                                                                    |
|            |        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oit                     |                                                       | Mean                                                      | ing w                                              | hen se                | et to 0                 |           | 1                                      | Mea                                             | anina                                            | when               | set t           | o 1                |        | Standa                                                                                                                    |
|            |        |                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hwid                    |                                                       | wide-                                                     | range                                              |                       |                         |           | H-co<br>valid                          | oil wid                                         |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lwid                    |                                                       | wide-r                                                    | range                                              | consta                | ant out                 | put       |                                        | il wide                                         | e-rang                                           | le con             | stant           | outpu              | t      | 0                                                                                                                         |
|            |        |                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hbsd                    | H-coil                                                |                                                           | slide i                                            | nvalid                |                         |           |                                        | ,<br>bil bas                                    | e slide                                          | e valio            | 1               |                    |        | 0                                                                                                                         |
|            |        |                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lbsd                    | L-coil                                                |                                                           |                                                    |                       |                         |           |                                        | il base                                         |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    | - t    | 0                                                                                                                         |
|            |        |                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            | 1      |                      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            |        |                      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                       |                                                           |                                                    |                       |                         |           |                                        |                                                 |                                                  |                    |                 |                    |        | 0                                                                                                                         |
|            | SFNC3' | * Spindle function 3 | ۲<br>(N<br>حFc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MDS                     | Set 0 if                                              | PM>                                                       | 1                                                  |                       |                         |           |                                        |                                                 | 1                                                | =                  |                 |                    |        | 0                                                                                                                         |
| SFNC       | 23,    | * Spindle function 3 | ۲<br>(N<br>حFc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | -C1-S                                                 |                                                           | e is no                                            | o part                | icular<br>9             | expl<br>8 | anatio                                 | on for                                          | the                                              | bit.               | 3               | 2<br>mwi           | 1<br>1 | 0                                                                                                                         |
| SFNC3*     | *      | Spindle function 3   | ۲<br>(N<br>حFc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MDS<br>E                | -C1-S                                                 | <b>РМ&gt;</b><br>С                                        | В                                                  | A                     | 9                       | 8         |                                        | 6                                               | 5                                                | 4                  |                 | mwi                | l lwi  | 0<br>0<br>d hwid                                                                                                          |
| SFNC3*     | *      | Spindle function 3   | <fc< td=""><td>F</td><td>MDS<br/>E</td><td>-C1-S<br/>D<br/>H coi</td><td>PM&gt;<br/>C<br/>Mean</td><td>B<br/>ing w</td><td>A<br/>hen se</td><td>9<br/>et to 0</td><td>8</td><td>7<br/>H c</td><td>6<br/>Mea</td><td>5<br/>aning<br/>tput c</td><td>4<br/>when</td><td>set t</td><td>mwio<br/>o 1</td><td>l lwi</td><td>0<br/>0<br/>d hwid<br/>Standa</td></fc<>                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MDS<br>E                | -C1-S<br>D<br>H coi                                   | PM><br>C<br>Mean                                          | B<br>ing w                                         | A<br>hen se           | 9<br>et to 0            | 8         | 7<br>H c                               | 6<br>Mea                                        | 5<br>aning<br>tput c                             | 4<br>when          | set t           | mwio<br>o 1        | l lwi  | 0<br>0<br>d hwid<br>Standa                                                                                                |
| SFNC3* S   | * 3    | Spindle function 3   | F<br>(N<br><fc< td=""><td>F</td><td>MDS<br/>E<br/>bit</td><td>-C1-S</td><td>PM&gt;<br/>C<br/>Mean<br/>I outp<br/>ge inv</td><td>B<br/>ing w<br/>out ch<br/>valid<br/>ut cha</td><td>A<br/>hen so<br/>aracto</td><td>9<br/>et to 0<br/>eristic</td><td>8</td><td>7<br/>H co<br/>cha<br/>L co</td><td>6<br/>Mea<br/>oil ou<br/>nge v</td><td>5<br/>aning<br/>tput c<br/>valid</td><td>4<br/>when<br/>chara</td><td>set t</td><td>mwi<br/>o 1<br/>stic</td><td>l lwi</td><td>0<br/>d hwid<br/>Standa</td></fc<>                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MDS<br>E<br>bit         | -C1-S                                                 | PM><br>C<br>Mean<br>I outp<br>ge inv                      | B<br>ing w<br>out ch<br>valid<br>ut cha            | A<br>hen so<br>aracto | 9<br>et to 0<br>eristic | 8         | 7<br>H co<br>cha<br>L co               | 6<br>Mea<br>oil ou<br>nge v                     | 5<br>aning<br>tput c<br>valid                    | 4<br>when<br>chara | set t           | mwi<br>o 1<br>stic | l lwi  | 0<br>d hwid<br>Standa                                                                                                     |
| SFNC3*     | A.     | Spindle function 3   | <fc< td=""><td>F</td><td>MDS<br/>E</td><td>-C1-S<br/>D<br/>H coi<br/>chan<br/>L coil<br/>chan</td><td>PM&gt;<br/>C<br/>Mean<br/>I outp<br/>ge inv<br/>outp<br/>ge inv</td><td>B<br/>ing w<br/>out ch<br/>valid<br/>ut cha<br/>valid</td><td>A<br/>hen se<br/>aracte</td><td>9<br/>et to 0<br/>eristic</td><td>8</td><td>7<br/>H cu<br/>cha<br/>L cu<br/>cha</td><td>6<br/>Mea<br/>oil ou<br/>nge v<br/>oil out</td><td>5<br/>aning<br/>tput c<br/>valid<br/>tput c<br/>valid</td><td>4<br/>when<br/>chara</td><td>set t<br/>cteris</td><td>o 1<br/>stic</td><td>l lwi</td><td>0<br/>0<br/>d hwid<br/>Standa</td></fc<>                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MDS<br>E                | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan         | PM><br>C<br>Mean<br>I outp<br>ge inv<br>outp<br>ge inv    | B<br>ing w<br>out ch<br>valid<br>ut cha<br>valid   | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha        | 6<br>Mea<br>oil ou<br>nge v<br>oil out          | 5<br>aning<br>tput c<br>valid<br>tput c<br>valid | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>d hwid<br>Standa                                                                                                |
| SFNC3* S   | * S    | pindle function 3    | F<br>(N<br><fc< td=""><td>F</td><td>MDS<br/>E<br/>bit</td><td>-C1-S</td><td>PM&gt;<br/>C<br/>Mean<br/>I outp<br/>ge inv<br/>ge inv<br/>il outp</td><td>B<br/>but ch<br/>valid<br/>ut cha<br/>valid<br/>out cha</td><td>A<br/>hen se<br/>aracte</td><td>9<br/>et to 0<br/>eristic</td><td>8</td><td>7<br/>H cu<br/>cha<br/>L cu<br/>cha<br/>M c</td><td>6<br/>Mea<br/>oil ou<br/>nge v</td><td>5<br/>tput c<br/>valid<br/>tput c<br/>valid</td><td>4<br/>when<br/>chara</td><td>set t<br/>cteris</td><td>o 1<br/>stic</td><td>l lwi</td><td>0<br/>d hwid<br/>Standa</td></fc<>                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MDS<br>E<br>bit         | -C1-S                                                 | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v                     | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>d hwid<br>Standa                                                                                                     |
| SFNC3* SI  | * SI   | pindle function 3    | F<br>(N<br><fc< td=""><td>=  <br/>Not<br/>F  <br/>b<br/> <br/> </td><td>MDS<br/>E<br/>bit<br/>hwid</td><td>-C1-S<br/>D<br/>H coi<br/>chan<br/>L coil<br/>chan<br/>M co</td><td>PM&gt;<br/>C<br/>Mean<br/>I outp<br/>ge inv<br/>ge inv<br/>il outp</td><td>B<br/>but ch<br/>valid<br/>ut cha<br/>valid<br/>out cha</td><td>A<br/>hen se<br/>aracte</td><td>9<br/>et to 0<br/>eristic</td><td>8</td><td>7<br/>H cu<br/>cha<br/>L cu<br/>cha<br/>M c</td><td>6<br/>Mea<br/>oil ou<br/>nge v<br/>oil out<br/>nge v</td><td>5<br/>tput c<br/>valid<br/>tput c<br/>valid</td><td>4<br/>when<br/>chara</td><td>set t<br/>cteris</td><td>o 1<br/>stic</td><td>l lwi</td><td>0<br/>d hwice<br/>Standa<br/>0<br/>0</td></fc<> | =  <br>Not<br>F  <br>b<br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>d hwice<br>Standa<br>0<br>0                                                                                          |
| SFNC3* Sp  | * Sp   | indle function 3     | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>d hwid<br>Stand<br>0<br>0                                                                                            |
| SFNC3* Spi | * Spi  | indle function 3     | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>d hwid<br>Stand<br>0<br>0<br>0                                                                                       |
| SFNC3* S   | * S    | pindle function 3    | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>d hwid<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  |
| SFNC3* S   | * 0    | Spindle function 3   | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             |
| SFNC3*     | *      | Spindle function 3   | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7<br/>8</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>d hwic<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           |
| SFNC3*     | *      | Spindle function 3   | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7<br/>8<br/>9</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Image: style | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>d hwid<br>5tanda<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC3*     | *      | Spindle function 3   | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7<br/>8<br/>9<br/>A</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: style | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>d hwid<br>5tanda<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC3*     | *      | Spindle function 3   | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7<br/>8<br/>9<br/>A<br/>B</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Not<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        |
| SFNC3*     | *      | Spindle function 3   | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7<br/>8<br/>9<br/>A<br/>B<br/>C</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>d hwid<br>5tanda<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC3*     | *      | Spindle function 3   | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7<br/>8<br/>9<br/>A<br/>B<br/>C<br/>D</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>d hwid<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           |
| SFNC3      |        | * Spindle function 3 | F<br>(N<br><fc<br>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7<br/>8<br/>9<br/>A<br/>B<br/>C</fc<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: state | MDS<br>E<br>bit<br>hwid | -C1-S<br>D<br>H coi<br>chan<br>L coil<br>chan<br>M co | PM><br>C<br>Mean<br>I outp<br>ge inv<br>ge inv<br>il outp | B<br>but ch<br>valid<br>ut cha<br>valid<br>out cha | A<br>hen se<br>aracte | 9<br>et to 0<br>eristic | 8         | 7<br>H cu<br>cha<br>L cu<br>cha<br>M c | 6<br>Mea<br>oil ou<br>nge v<br>oil out<br>nge v | 5<br>tput c<br>valid<br>tput c<br>valid          | 4<br>when<br>chara | set t<br>cteris | o 1<br>stic        | l lwi  | 0<br>0<br>d hwid<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           |

| No.       | Abbr.  | Parameter name     |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |          |          |             |           |           |                     | Det  | ails   |             |         |         |       |      |      |                                                                                |
|-----------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|----------|-------------|-----------|-----------|---------------------|------|--------|-------------|---------|---------|-------|------|------|--------------------------------------------------------------------------------|
|           |        |                    | <f< th=""><th>or</th><th>MDS</th><th>-C1-S</th><th>P&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></f<>                                                                                                                                                                                                             | or                                                                                               | MDS      | -C1-S    | P>          |           |           |                     |      |        |             |         |         |       |      |      |                                                                                |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | F                                                                                                | E        | D        | С           | В         | Α         | 9                   | 8    | 7      | 6           | 5       | 4       | 3     | 2    | 1    | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |          |          |             |           |           | dslm                | dssm |        |             | enc2    | enc1    | mag2  | mag1 | plg2 | 2 plg1                                                                         |
|           |        |                    | ΙΓ                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | bit      |          | Mean        | ing w     | hen s     | et to 0             |      |        | Меа         | ning    | when    | set t | o 1  | 5    | Standard                                                                       |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                | plg1     | PLG c    |             |           |           |                     |      | PLG    |             | otor 1  |         |       |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                | plg2     | PLG c    | of moto     | or 2 va   | alid      |                     |      | PLG    | of mo       | otor 2  | invalio | b     |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                | mag1     | MAG      | of mot      | or 1 va   | alid      |                     |      | MAC    | G of m      | otor 1  | invali  | d     |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                | mag2     | MAG      | of mot      | or 2 va   | alid      |                     |      | MAC    | G of m      | otor 2  | invali  | d     |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                | enc1     | ENC o    | of moto     | or 1 va   | alid      |                     |      | ENC    | of m        | otor 1  | invali  | d     |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                | enc2     | ENC o    | of moto     | or 2 va   | alid      |                     |      | ENC    | c of m      | otor 2  | invali  | d     |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                |          |          |             |           |           |                     |      |        |             |         |         |       |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                |          | -        |             |           |           |                     |      |        |             |         |         |       |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                |          | Speed    |             |           |           |                     |      |        |             | eter ou |         |       |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | 9<br>A                                                                                           | dslm     | Load I   | meter       | outpu     |           |                     |      | Load   | a mete      | er outp | out inv | alid  |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | В                                                                                                |          |          |             |           |           |                     |      |        |             |         |         |       |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                                                |          |          |             |           |           |                     |      |        |             |         |         |       |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | D                                                                                                |          |          |             |           |           |                     |      |        |             |         |         |       |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            | Е                                                                                                |          |          |             |           |           |                     |      |        |             |         |         |       |      |      | 0                                                                              |
|           |        |                    |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |          |          |             |           |           |                     |      |        |             |         |         |       |      |      |                                                                                |
| 6         | SFNC4* | Spindle function 4 | (1                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                                |          | Get 0 if |             |           |           |                     |      | anatio | on foi      | the I   | oit.    |       |      |      | 0                                                                              |
| c,        | SFNC4* | Spindle function 4 | (1                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                                |          | Get 0 if |             |           |           |                     |      | anatio | on foi<br>6 | the t   | oit.    | 3     | 2    | 1    | 0                                                                              |
| SFI       | NC4*   | Spindle function 4 | (1                                                                                                                                                                                                                                                                                                                                                                                         | F<br>No<br>F<br>F                                                                                | MDS      | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | SPM>                | 8    |        | 6           |         | 4       |       |      |      | 0                                                                              |
| SFNC      | 4*     | Spindle function 4 | ( <br><f< td=""><td>F<br/>No<br/>F<br/>F</td><td>MDS<br/>E</td><td>-C1-S</td><td><b>РН/S</b></td><td>PX/S<br/>B</td><td>PHX/<br/>A</td><td>'<b>SPM</b>&gt;<br/>9</td><td>8</td><td></td><td>6</td><td>5</td><td>4</td><td></td><td></td><td></td><td>0</td></f<>                                                                                                                           | F<br>No<br>F<br>F                                                                                | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0                                                                              |
| SFNC4*    |        | Spindle function 4 | <[                                                                                                                                                                                                                                                                                                                                                                                         | F<br>No<br>F<br>F                                                                                | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standar                                                                   |
| SFNC4* Sp | Sp     | indle function 4   | <f< td=""><td>F<br/>No<br/>For<br/>F<br/>0<br/>1<br/>2</td><td>MDS<br/>E</td><td>-C1-S</td><td><b>РН/S</b></td><td>PX/S<br/>B</td><td>PHX/<br/>A</td><td>'<b>SPM</b>&gt;<br/>9</td><td>8</td><td></td><td>6</td><td>5</td><td>4</td><td></td><td></td><td></td><td>0<br/>Standar<br/>0<br/>0<br/>0</td></f<>                                                                               | F<br>No<br>For<br>F<br>0<br>1<br>2                                                               | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standar<br>0<br>0<br>0                                                    |
| SFNC4* Sp | Sp     | indle function 4   | <f< td=""><td>F<br/>No<br/>F<br/>T<br/>0<br/>1<br/>2<br/>3</td><td>MDS<br/>E</td><td>-C1-S</td><td><b>РН/S</b></td><td>PX/S<br/>B</td><td>PHX/<br/>A</td><td>'<b>SPM</b>&gt;<br/>9</td><td>8</td><td></td><td>6</td><td>5</td><td>4</td><td></td><td></td><td></td><td>0<br/>Standar<br/>0<br/>0<br/>0<br/>0</td></f<>                                                                     | F<br>No<br>F<br>T<br>0<br>1<br>2<br>3                                                            | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standar<br>0<br>0<br>0<br>0                                               |
| SFNC4* S  | S      | pindle function 4  | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                | F<br>No<br>F<br>or<br>F<br>0<br>1<br>2<br>3<br>4                                                 | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                |
| SFNC4* S  | SI     | pindle function 4  | <pre></pre> <pre></pre> <pre></pre>                                                                                                                                                                                                                                                                                                                                                        | F<br>No<br>For<br>F<br>0<br>1<br>2<br>3<br>4<br>5                                                | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC4* \$ |        | Spindle function 4 | <f< td=""><td>F<br/>For<br/>F<br/>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6</td><td>MDS<br/>E</td><td>-C1-S</td><td><b>РН/S</b></td><td>PX/S<br/>B</td><td>PHX/<br/>A</td><td>'<b>SPM</b>&gt;<br/>9</td><td>8</td><td></td><td>6</td><td>5</td><td>4</td><td></td><td></td><td></td><td>0<br/>Standard<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td></f<> | F<br>For<br>F<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                 | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC4* S  |        | Spindle function 4 | F                                                                                                                                                                                                                                                                                                                                                                                          | F<br>F<br>F<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                              | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  |
| SFNC4*    |        | Spindle function 4 | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                | F<br>For<br>F<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                       | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC4*    |        | Spindle function 4 | <f<br>(1)<br/>(1)<br/>(1)<br/>(1)<br/>(1)<br/>(1)<br/>(1)<br/>(1)<br/>(1)<br/>(1)</f<br>                                                                                                                                                                                                                                                                                                   | F<br>F<br>F<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                              | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC4*    |        | Spindle function 4 | <f<br><f<br></f<br></f<br>                                                                                                                                                                                                                                                                                                                                                                 | F<br>F<br>F<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                    | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC4* Sp | St     | oindle function 4  |                                                                                                                                                                                                                                                                                                                                                                                            | F<br>F<br>F<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>A                               | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC4* \$ | ×,     | Spindle function 4 |                                                                                                                                                                                                                                                                                                                                                                                            | F<br>F<br>F<br>C<br>C<br>F<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFN       | C4*    | Spindle function 4 |                                                                                                                                                                                                                                                                                                                                                                                            | F<br>No<br>F<br>or<br>F<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>A<br>B<br>C         | MDS<br>E | -C1-S    | <b>РН/S</b> | PX/S<br>B | PHX/<br>A | ' <b>SPM</b> ><br>9 | 8    |        | 6           | 5       | 4       |       |      |      | 0<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

| No.   | Abbr.  | Parameter name     |                                                                                                                                                                                |                  |                  |           |         |         |         | Det     | ails    |       |         |                   |         |                   |      |          |
|-------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------|---------|---------|---------|---------|---------|-------|---------|-------------------|---------|-------------------|------|----------|
|       |        |                    | <fc< th=""><th>r MDS</th><th>-C1-S</th><th>P/SP</th><th>H&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fc<>    | r MDS            | -C1-S            | P/SP      | H>      |         |         |         |         |       |         |                   |         |                   |      |          |
|       |        |                    |                                                                                                                                                                                | FE               | D                | С         | В       | A       | 9       | 8       | 7       | 6     | 5       | 4                 | 3       | 2                 | 1    | 0        |
|       |        |                    | s                                                                                                                                                                              | olg dpl          | g ospcl          |           |         | noplg   | nsno    | nosg    |         |       |         |                   |         | plgo              | ) ma | go enco  |
|       |        |                    |                                                                                                                                                                                | bit              |                  | Mean      | ing w   | hen s   | et to ( | )       |         | Ме    | aning   | g whe             | n set   | to 1              |      | Standard |
|       |        |                    | 0                                                                                                                                                                              | enco             | Encod            | er orie   | entatio | on inva | lid     |         | Enco    | oder  | orient  | ation             | valid   |                   |      | 0        |
|       |        |                    | 1                                                                                                                                                                              | mago             | Magne            | etic se   | nsor o  | orienta | tion in | valid   | Mag     | netic | sens    | or orie           | entatio | on valio          | ł    | 0        |
|       |        |                    | 2                                                                                                                                                                              |                  | PLG o            | rienta    | tion in | valid   |         |         | PLG     | orie  | ntatio  | n valio           | 1       |                   |      | 0        |
|       |        |                    | 3                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 4                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 5<br>6                                                                                                                                                                         |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 7                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 8                                                                                                                                                                              | nosg             | No-sig<br>(Alway |           |         |         |         |         |         |       |         |                   |         | only in<br>n-mode |      | 0        |
|       |        |                    | 9                                                                                                                                                                              | nsno             | No-sig           |           |         |         | ł       |         | · · ·   |       | · ·     | ction i           |         |                   |      | 0        |
|       |        |                    | A                                                                                                                                                                              | noplg            | Const            | ant mo    | onitor  |         |         | ase     | Con     | stant |         |                   |         | Z phas            | e    | 0        |
|       |        |                    | в                                                                                                                                                                              |                  |                  | -         |         |         |         |         |         | 5     |         |                   |         |                   |      | 0        |
|       |        |                    | С                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | D                                                                                                                                                                              | ospcl            | Orient<br>motor  |           |         |         | )       |         |         |       |         | ed cla<br>setting |         |                   |      | 0        |
|       |        |                    | E                                                                                                                                                                              | dplg             | This is          | used      | by Mi   | tsubis  | hi. Se  | t to "0 | ' unles | ss pa | rticula | arly de           | signa   | ated.             |      | 0        |
|       |        |                    | F                                                                                                                                                                              | splg             |                  |           | -       |         |         |         |         |       |         | -                 |         |                   |      | 0        |
|       |        |                    | -                                                                                                                                                                              | ote 1)           |                  |           |         |         |         |         |         |       |         |                   | he sa   | ame tii           | me.  |          |
|       |        |                    |                                                                                                                                                                                | ote 2)<br>ote 3) |                  |           |         | -       |         |         |         |       |         |                   | ŀ       |                   |      |          |
| SP037 | SFNC5* | Spindle function 5 | (IN                                                                                                                                                                            | 018 3)           | Sert             | / 11 (11) |         | ΠΟΡ     | articu  |         | piand   |       |         |                   | ι.      |                   |      |          |
|       |        |                    | <fo< th=""><th>r MDS</th><th>-C1-S</th><th>PX/S</th><th>PHX&gt;</th><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fo<> | r MDS            | -C1-S            | PX/S      | PHX>    | •       |         |         |         |       |         |                   |         |                   |      |          |
|       |        |                    |                                                                                                                                                                                | FE               | D                | С         | В       | Α       | 9       | 8       | 7       | 6     | 5       | 4                 | 3       | 2                 | 1    | 0        |
|       |        |                    |                                                                                                                                                                                |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | enco     |
|       |        |                    |                                                                                                                                                                                | bit              |                  | Mean      | ing w   | hen s   | et to ( | )       |         | Ме    | aning   | g whe             | n set   | to 1              |      | Standard |
|       |        |                    | 0                                                                                                                                                                              | enco             | Spindl           | e end     | PLG     | orienta | ation i | nvalid  | Spin    | dle e | nd Pl   | .G ori            | entati  | on vali           | d    | 0        |
|       |        |                    | 1                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 2                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 3                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 4<br>5                                                                                                                                                                         |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 6                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 7                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 8                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | 9                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | A                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | В                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | C                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | D                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
|       |        |                    | E                                                                                                                                                                              |                  |                  |           |         |         |         |         |         |       |         |                   |         |                   |      | 0        |
| 1     | 1      | 1                  | 111                                                                                                                                                                            | 1                | 1                |           |         |         |         |         |         |       |         |                   |         |                   |      | . ~      |

| No.   | Abbr.  | Parameter name     |   |     |                |       |                    |          |        |         | Det  | ails |        |                 |         |        |         | . <u> </u> |          |
|-------|--------|--------------------|---|-----|----------------|-------|--------------------|----------|--------|---------|------|------|--------|-----------------|---------|--------|---------|------------|----------|
|       |        |                    | < | For | MDS            | -C1-S | SPM>               |          |        |         |      |      |        |                 |         |        |         |            |          |
|       |        |                    |   | F   | E              | D     | С                  | В        | Α      | 9       | 8    | 7    | 6      | 5               | 4       | 3      | 2       | 1          | 0        |
|       |        |                    |   |     |                |       |                    |          |        | nsno    | nosg |      |        |                 |         |        | plgo    |            | enco     |
|       |        |                    |   |     | bit            |       | Mean               | ina w    | hen s  | et to ( | )    |      | Me     | aning           | when    | set t  | o 1     | ę          | Standard |
|       |        |                    |   | 0   | enco           | Enco  | der ori            | <u> </u> |        |         |      | Enco |        | orienta         |         |        |         |            | 0        |
|       |        |                    |   | 1   |                |       |                    |          |        |         |      |      |        |                 |         |        |         | _          | 0        |
|       |        |                    |   | 2   | plgo           | PLG   | orienta            | tion in  | valid  |         |      | PLG  | orier  | ntation         | valid   |        |         |            | 0        |
|       |        |                    |   | 3   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | 4   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
| SP037 | SFNC5* | Spindle function 5 |   | 5   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | 6   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | 7   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | 8   | nosg           |       | gnal de<br>ys mo   |          |        | Э       |      |      |        | g only<br>n-mod |         | sition | loop or |            | 0        |
|       |        |                    |   | 9   | nsno           | No-si | gnal de            | etectio  | n vali | d       |      | No-s | signal | detec           | tion in | valid  |         |            | 0        |
|       |        |                    |   | А   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | В   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | С   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | D   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | Е   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | F   |                |       |                    |          |        |         |      |      |        |                 |         |        |         |            | 0        |
|       |        |                    |   | •   | te 1)<br>te 2) |       | bit0 to<br>0 if th | -        |        |         |      |      |        |                 |         |        | me tirr | ıe.        |          |

| о.       | Abbr.  | Parameter name     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                             | Deta                                                     | ails                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                            |                                        |      |                                                                                                                      |
|----------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|------|----------------------------------------------------------------------------------------------------------------------|
|          |        |                    | <f< th=""><th>or</th><th>MDS</th><th>-C1-S</th><th>P/SP</th><th>H&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or                                                                                         | MDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C1-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P/SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                             |                                                          |                                                                                                     |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                            |                                        |      |                                                                                                                      |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                          | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Α                                                                    | 9                                                                                           | 8                                                        | 7                                                                                                   | 6                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                    | 3                                                                          | 2                                      | 1    | 0                                                                                                                    |
|          |        |                    | ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oplp                                                                                       | o Imx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iqsv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XFzs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dcsn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Imnp                                                                 | pl80                                                                                        | sdt2                                                     | vfbs                                                                                                | orm                                                                                                    | adin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      | plg2                                                                       | pftn                                   | ו    | alty                                                                                                                 |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ                                                                                          | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hen se                                                               | et to O                                                                                     |                                                          |                                                                                                     | Меа                                                                                                    | aning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wher                                                                                                 | ı set t                                                                    | o 1                                    |      | Standard                                                                                                             |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                          | alty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Decele<br>alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eratior<br>invalio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | during                                                               | g spec                                                                                      | ial                                                      |                                                                                                     | elerat<br>m vali                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | op dur                                                                                               | ing sp                                                                     | pecial                                 |      | 0                                                                                                                    |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                             |                                                          |                                                                                                     |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                            |                                        |      | 0                                                                                                                    |
|          |        |                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                          | pftm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Encod<br>comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ler fee<br>unicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | l                                                                                           |                                                          |                                                                                                     | oder f                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | rial                                                                       |                                        |      | 0                                                                                                                    |
|          |        |                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                          | plg2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Semi-<br>invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e outpi                                                              | ut sign                                                                                     | al ×2                                                    | Sen<br>valio                                                                                        | ni-clos<br>d                                                                                           | ed pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lse ou                                                                                               | itput s                                                                    | ignal                                  | ×2   | 0                                                                                                                    |
|          |        |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                             |                                                          |                                                                                                     |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                            |                                        |      | 0                                                                                                                    |
|          |        |                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                          | adin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Interpo<br>invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | durin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g thre                                                               | ad cut                                                                                      | ting                                                     | Inte<br>valio                                                                                       | rpolati<br>d                                                                                           | ion du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ring th                                                                                              | nread                                                                      | cuttin                                 | g    | 0                                                                                                                    |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                          | orm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Orient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ation s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | start n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nemo i                                                               | nvalid                                                                                      |                                                          | Orie                                                                                                | entatio                                                                                                | n star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t merr                                                                                               | io vali                                                                    | d                                      |      | 0                                                                                                                    |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                          | vfbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | This is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | by Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tsubis                                                               | hi. Se                                                                                      | t to "0"                                                 | unle                                                                                                | ss pa                                                                                                  | ticula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rly des                                                                                              | signat                                                                     | ed.                                    |      | 0                                                                                                                    |
|          |        |                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                          | sdt2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Follov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ws SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 038/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | itC set                                                              | ting)                                                                                       |                                                          | Set<br>outp                                                                                         | outpu<br>out                                                                                           | t 2 to 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2nd sp                                                                                               | beed                                                                       | detec                                  | tion | 0                                                                                                                    |
|          |        |                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                          | pl80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MHE9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0K de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 's 180                                                               | wave                                                                                        | PLG                                                      | 180                                                                                                 | wave                                                                                                   | PLG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | other                                                                                                | than M                                                                     | NHES                                   | 0K   | 0                                                                                                                    |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                          | Imnp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                             | t to "0"                                                 | · · · · · · · · · · · · · · · · · · ·                                                               |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                            |                                        |      | 0                                                                                                                    |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | в                                                                                          | dcsn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | decele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | valid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                    |                                                                                             |                                                          |                                                                                                     | il cush<br>elerati                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | accele                                                                     | ratior                                 | 1/   | 0                                                                                                                    |
|          |        |                    | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | с                                                                                          | XFzs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Set ou<br>speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tput 2<br>mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>o</sup> scale                                                   | e low (                                                                                     | L)                                                       | Set                                                                                                 | outpu                                                                                                  | t 2 to :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | zero s                                                                                               | peed                                                                       | outpu                                  | ut   | 0                                                                                                                    |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                          | lqsv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | This is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | by Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tsubis                                                               | hi. Se                                                                                      | t to "0"                                                 | unle                                                                                                | ss pai                                                                                                 | rticula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rly des                                                                                              | signat                                                                     | ed                                     |      | 0                                                                                                                    |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                          | lmx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                             |                                                          |                                                                                                     |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                            |                                        |      | 0                                                                                                                    |
|          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                          | alao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | loop o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | perati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on inv                                                               | alid                                                                                        |                                                          | Ope                                                                                                 | en loor                                                                                                | o oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation                                                                                                | valid                                                                      |                                        |      | 0                                                                                                                    |
| 8        | SFNC6* | Spindle function 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                          | oplp<br>te) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Open<br>et 0 if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                             | expla                                                    | <u> </u>                                                                                            | en loop<br>on fo                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | valid                                                                      |                                        |      | 0                                                                                                                    |
|          | SFNC6* | Spindle function 6 | ( <br><f< td=""><td>F<br/>No</td><td>te) S<br/>MDS</td><td>et 0 if<br/>-C1-S</td><td>there</td><td>e is no<br/>PHX&gt;<br/>B</td><td>o part</td><td></td><td>expla<br/>8<br/>sdt2</td><td><u> </u></td><td></td><td></td><td></td><td>3</td><td>2<br/>pftn</td><td>1</td><td></td></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F<br>No                                                                                    | te) S<br>MDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | et 0 if<br>-C1-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | there                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e is no<br>PHX><br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o part                                                               |                                                                                             | expla<br>8<br>sdt2                                       | <u> </u>                                                                                            |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | 3                                                                          | 2<br>pftn                              | 1    |                                                                                                                      |
| SFN      | C6*    | Spindle function 6 | ( <br><f< td=""><td>F<br/>No<br/>F<br/>F</td><td>te) S<br/>MDS<br/>E<br/>b Imx</td><td>et 0 if<br/>-C1-S<br/>D<br/>iqsv</td><td>there<br/>PX/S<br/>C<br/>XFzs</td><td>e is no<br/>PHX&gt;<br/>B<br/>dcsn</td><td>A part</td><td>icular<br/>9</td><td>8<br/>sdt2</td><td>anati</td><td>on fo</td><td>r the</td><td>bit.</td><td>3<br/>plg2</td><td>pftn</td><td>-</td><td>0<br/>alty</td></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F<br>No<br>F<br>F                                                                          | te) S<br>MDS<br>E<br>b Imx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | et 0 if<br>-C1-S<br>D<br>iqsv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | there<br>PX/S<br>C<br>XFzs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e is no<br>PHX><br>B<br>dcsn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A part                                                               | icular<br>9                                                                                 | 8<br>sdt2                                                | anati                                                                                               | on fo                                                                                                  | r the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit.                                                                                                 | 3<br>plg2                                                                  | pftn                                   | -    | 0<br>alty                                                                                                            |
| SFNC     | 6*     | Spindle function 6 | ( <br><f< td=""><td>F<br/>No<br/>F<br/>F</td><td>te) S<br/>MDS</td><td>C1-S</td><td>there<br/>PX/SI<br/>C<br/>XFzs<br/>Mean</td><td>B<br/>dcsn<br/>ing w</td><td>A hen se</td><td>9<br/>et to 0</td><td>8<br/>sdt2</td><td>7<br/>vfbs<br/>Dec</td><td>on fo</td><td>r the 5</td><td>bit.<br/>4<br/>wher</td><td>3<br/>plg2<br/>set t</td><td>pftm</td><td>וו</td><td>0</td></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F<br>No<br>F<br>F                                                                          | te) S<br>MDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | there<br>PX/SI<br>C<br>XFzs<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B<br>dcsn<br>ing w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A hen se                                                             | 9<br>et to 0                                                                                | 8<br>sdt2                                                | 7<br>vfbs<br>Dec                                                                                    | on fo                                                                                                  | r the 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit.<br>4<br>wher                                                                                    | 3<br>plg2<br>set t                                                         | pftm                                   | וו   | 0                                                                                                                    |
| SFNC6    | )*     | Spindle function 6 | (I<br><f< td=""><td>F<br/>No<br/>F<br/>oplr</td><td>te) S<br/>MDS<br/>E<br/>b Imx<br/>bit</td><td>et 0 if<br/>-C1-S<br/>D<br/>iqsv</td><td>there<br/>PX/SI<br/>C<br/>XFzs<br/>Mean</td><td>B<br/>dcsn<br/>ing w</td><td>A hen se</td><td>9<br/>et to 0</td><td>8<br/>sdt2</td><td>7<br/>vfbs<br/>Dec</td><td>on fo</td><td>r the 5</td><td>bit.<br/>4<br/>wher</td><td>3<br/>plg2<br/>set t</td><td>pftm</td><td>וו</td><td>0<br/>alty<br/>Standar</td></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F<br>No<br>F<br>oplr                                                                       | te) S<br>MDS<br>E<br>b Imx<br>bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | et 0 if<br>-C1-S<br>D<br>iqsv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | there<br>PX/SI<br>C<br>XFzs<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B<br>dcsn<br>ing w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A hen se                                                             | 9<br>et to 0                                                                                | 8<br>sdt2                                                | 7<br>vfbs<br>Dec                                                                                    | on fo                                                                                                  | r the 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit.<br>4<br>wher                                                                                    | 3<br>plg2<br>set t                                                         | pftm                                   | וו   | 0<br>alty<br>Standar                                                                                                 |
| SFNC6*   |        | Spindle function 6 | (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F<br>No<br>F<br>opl<br>I<br>0<br>1                                                         | te) S<br>MDS<br>E<br>b Imx<br>bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | et 0 if<br>-C1-S<br>D<br>iqsv<br>Decele<br>alarm<br>Encod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | there<br><b>PX/SI</b><br>C<br>XFzs<br>Mean<br>invalic<br>ler fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B<br>dcsn<br>ing w<br>dback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A A A A A A A A A A A A A A A A A A A                                | 9<br>9<br>et to 0<br>3 spec                                                                 | 8<br>sdt2                                                | 7<br>vfbs<br>Dec<br>alar<br>Enc                                                                     | on fo                                                                                                  | r the 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br>when<br>op dur                                                                                  | 3<br>plg2<br>set t<br>ing sp                                               | pftm                                   | וו   | 0<br>alty<br>Standar<br>0                                                                                            |
| SFNC6*   |        | Spindle function 6 | (()<br><f< td=""><td>F<br/>No<br/>F<br/>opl<br/>I<br/>0<br/>1</td><td>te) S<br/>MDS<br/>E<br/>b Imx<br/>bit<br/>alty</td><td>C1-S<br/>D<br/>iqsv<br/>Decele<br/>alarm<br/>Encod<br/>comm</td><td>There<br/><b>PX/S</b><br/><b>C</b><br/>XFzs<br/><b>Mean</b><br/>eratior<br/>invalic<br/>ler fee<br/>unicat<br/>closed</td><td>B<br/>dcsn<br/>ing w<br/>dback</td><td>A<br/>A<br/>hen so<br/>during<br/>valid</td><td>9<br/>et to 0<br/>spec</td><td>8<br/>sdt2<br/>ial</td><td>7<br/>vfbs<br/>Dec<br/>alar<br/>Enc<br/>corr<br/>Sen</td><td>on fo<br/>6<br/>Mea<br/>selerat<br/>m vali</td><td>5<br/>aning<br/>ion sto<br/>d<br/>eedba<br/>cation</td><td>4<br/>wher<br/>op dur<br/>ack se<br/>valid</td><td>3<br/>plg2<br/>set t<br/>ing sp</td><td>pftn</td><td></td><td>0<br/>alty<br/>Standard<br/>0<br/>0</td></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F<br>No<br>F<br>opl<br>I<br>0<br>1                                                         | te) S<br>MDS<br>E<br>b Imx<br>bit<br>alty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1-S<br>D<br>iqsv<br>Decele<br>alarm<br>Encod<br>comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | There<br><b>PX/S</b><br><b>C</b><br>XFzs<br><b>Mean</b><br>eratior<br>invalic<br>ler fee<br>unicat<br>closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>dcsn<br>ing w<br>dback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A<br>A<br>hen so<br>during<br>valid                                  | 9<br>et to 0<br>spec                                                                        | 8<br>sdt2<br>ial                                         | 7<br>vfbs<br>Dec<br>alar<br>Enc<br>corr<br>Sen                                                      | on fo<br>6<br>Mea<br>selerat<br>m vali                                                                 | 5<br>aning<br>ion sto<br>d<br>eedba<br>cation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>wher<br>op dur<br>ack se<br>valid                                                               | 3<br>plg2<br>set t<br>ing sp                                               | pftn                                   |      | 0<br>alty<br>Standard<br>0<br>0                                                                                      |
| SFNC6* S |        | Spindle function 6 | <pre></pre> <pre></pre> <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F<br>No<br>F<br>oplr<br>0<br>1<br>2<br>3                                                   | te) S<br>MDS<br>E<br>bit<br>alty<br>pftm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | et 0 if<br>-C1-S<br>D<br>iqsv<br>Decele<br>alarm<br>Encod<br>comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | There<br><b>PX/S</b><br><b>C</b><br>XFzs<br><b>Mean</b><br>eratior<br>invalic<br>ler fee<br>unicat<br>closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>dcsn<br>ing w<br>dback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A<br>A<br>hen so<br>during<br>valid                                  | 9<br>et to 0<br>spec                                                                        | 8<br>sdt2<br>ial                                         | 7<br>vfbs<br>Dec<br>alar<br>Enc<br>corr                                                             | on fo<br>6<br>Mea<br>selerat<br>m vali                                                                 | 5<br>aning<br>ion sto<br>d<br>eedba<br>cation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>wher<br>op dur<br>ack se<br>valid                                                               | 3<br>plg2<br>set t<br>ing sp                                               | pftn                                   |      | 0<br>alty<br>Standar<br>0<br>0<br>0<br>0                                                                             |
| SFNC6*   |        | Spindle function 6 | (()<br><f< td=""><td>F<br/>No<br/>F<br/>opl<br/>0<br/>1<br/>2</td><td>te) S<br/>MDS<br/>E<br/>bit<br/>alty<br/>pftm</td><td>C1-S<br/>D<br/>iqsv<br/>Decele<br/>alarm<br/>Encod<br/>comm</td><td>There<br/><b>PX/S</b><br/><b>C</b><br/>XFzs<br/><b>Mean</b><br/>eratior<br/>invalic<br/>ler fee<br/>unicat<br/>closed</td><td>B<br/>dcsn<br/>ing w<br/>dback</td><td>A<br/>A<br/>hen so<br/>during<br/>valid</td><td>9<br/>et to 0<br/>spec</td><td>8<br/>sdt2<br/>ial</td><td>7<br/>vfbs<br/>Dec<br/>alar<br/>Enc<br/>corr<br/>Sen</td><td>on fo<br/>6<br/>Mea<br/>selerat<br/>m vali</td><td>5<br/>aning<br/>ion sto<br/>d<br/>eedba<br/>cation</td><td>4<br/>wher<br/>op dur<br/>ack se<br/>valid</td><td>3<br/>plg2<br/>set t<br/>ing sp</td><td>pftn</td><td></td><td>0<br/>alty<br/>Standar<br/>0<br/>0<br/>0</td></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F<br>No<br>F<br>opl<br>0<br>1<br>2                                                         | te) S<br>MDS<br>E<br>bit<br>alty<br>pftm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1-S<br>D<br>iqsv<br>Decele<br>alarm<br>Encod<br>comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | There<br><b>PX/S</b><br><b>C</b><br>XFzs<br><b>Mean</b><br>eratior<br>invalic<br>ler fee<br>unicat<br>closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>dcsn<br>ing w<br>dback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A<br>A<br>hen so<br>during<br>valid                                  | 9<br>et to 0<br>spec                                                                        | 8<br>sdt2<br>ial                                         | 7<br>vfbs<br>Dec<br>alar<br>Enc<br>corr<br>Sen                                                      | on fo<br>6<br>Mea<br>selerat<br>m vali                                                                 | 5<br>aning<br>ion sto<br>d<br>eedba<br>cation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>wher<br>op dur<br>ack se<br>valid                                                               | 3<br>plg2<br>set t<br>ing sp                                               | pftn                                   |      | 0<br>alty<br>Standar<br>0<br>0<br>0                                                                                  |
| SFNC6*   |        | Spindle function 6 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F<br>No<br>F<br>oplr<br>0<br>1<br>2<br>3<br>4                                              | te) S<br>MDS<br>E<br>bit<br>alty<br>pftm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1-S<br>D<br>iqsv<br>Decele<br>alarm<br>Encod<br>comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | There<br><b>PX/S</b><br><b>C</b><br>XFzs<br><b>Mean</b><br>eratior<br>invalic<br>ler fee<br>unicat<br>closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>dcsn<br>ing w<br>dback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A<br>A<br>hen so<br>during<br>valid                                  | 9<br>et to 0<br>spec                                                                        | 8<br>sdt2<br>ial                                         | 7<br>vfbs<br>Dec<br>alar<br>Enc<br>corr<br>Sen                                                      | on fo<br>6<br>Mea<br>selerat<br>m vali                                                                 | 5<br>aning<br>ion sto<br>d<br>eedba<br>cation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>wher<br>op dur<br>ack se<br>valid                                                               | 3<br>plg2<br>set t<br>ing sp                                               | pftn                                   |      | 0<br>alty<br>Standar<br>0<br>0<br>0<br>0<br>0                                                                        |
| SFNC     | )*     | Spindle function 6 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F<br>No<br>F<br>oplr<br>0<br>1<br>2<br>3<br>4<br>5                                         | te) S<br>MDS<br>E<br>bit<br>alty<br>pftm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1-S<br>D<br>Iqsv<br>Decele<br>alarm<br>Encod<br>comm<br>Semi-<br>invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | there<br>PX/SI<br>C<br>XFzs<br>Meani<br>invalic<br>ler fee<br>unicat<br>closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHX><br>B<br>dcsn<br>ing w<br>h stop<br>dback<br>ion in∩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>A<br>hen se<br>during<br>valid<br>e outpu                       | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                          | 8<br>sdt2<br>ial                                         | 7<br>vfbs<br>Dec<br>alar<br>Enc<br>com<br>Sen<br>valid                                              | on fo                                                                                                  | r the 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit.<br>4<br>wher<br>op dur<br>ack se<br>valid<br>Ise ou                                             | 3<br>plg2<br>set t<br>ing sp<br>rial                                       | pftn<br>o 1<br>becial                  |      | 0<br>alty<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0                                                                   |
| SFNC6    | *      | Spindle function 6 | <f< p=""></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F<br>No<br>F<br>oplr<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                    | http://www.second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1-S<br>D<br>Iqsv<br>Decele<br>alarm<br>Encod<br>comm<br>Semi-<br>invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | there<br>PX/SI<br>C<br>XFzs<br>Meanineration<br>invalice<br>ler fee<br>unicat<br>closed<br>s used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B<br>dcsn<br>ing w<br>h stop<br>dback<br>ion in<br>l pulse<br>by Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A A A A A A A A A A A A A A A A A A A                                | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 8<br>sdt2<br>)<br>ial<br>al ×2                           | 7<br>vfbs<br>Decalar<br>Sen<br>valid                                                                | on fo<br>6<br>Mez<br>elerat<br>m vali<br>oder f<br>mmunid<br>ni-clos<br>d<br>ss par<br>outpu           | r the 5 aning ion sto d eedba cation rticula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bit.<br>4<br>wher<br>pp dur<br>ack se<br>valid<br>Ise ou                                             | 3<br>plg2<br>set t<br>ing sp<br>rial<br>tput s                             | ignal<br>ed.                           | ×2   | 0<br>alty<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                               |
| SFNC     | 6*     | Spindle function 6 | (I)<br><f< td=""><td>F<br/>F<br/>oplf<br/>0<br/>1<br/>2<br/>3<br/>4<br/>5<br/>6<br/>7</td><td>http://www.secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity</td><td>C1-S<br/>D<br/>I iqsv<br/>Decelaalarm<br/>Encod<br/>comm<br/>Semi-invalid</td><td>there<br/>PX/SI<br/>C<br/>XFzs<br/>Meanineration<br/>invalice<br/>ler fee<br/>unicat<br/>closed<br/>s used</td><td>B<br/>dcsn<br/>ing w<br/>h stop<br/>dback<br/>ion in<br/>l pulse<br/>by Mi</td><td>A A A A A A A A A A A A A A A A A A A</td><td>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9</td><td>8<br/>sdt2<br/>)<br/>ial<br/>al ×2</td><td>7<br/>vfbs<br/>Dec<br/>alar<br/>Enc<br/>com<br/>Sen<br/>valid</td><td>on fo<br/>6<br/>Mez<br/>elerat<br/>m vali<br/>oder f<br/>mmunid<br/>ni-clos<br/>d<br/>ss par<br/>outpu</td><td>r the 5 aning ion sto d eedba cation rticula</td><td>bit.<br/>4<br/>wher<br/>pp dur<br/>ack se<br/>valid<br/>Ise ou</td><td>3<br/>plg2<br/>set t<br/>ing sp<br/>rial<br/>tput s</td><td>ignal<br/>ed.</td><td>×2</td><td>0<br/>alty<br/>Standar<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td></f<> | F<br>F<br>oplf<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                     | http://www.secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity | C1-S<br>D<br>I iqsv<br>Decelaalarm<br>Encod<br>comm<br>Semi-invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | there<br>PX/SI<br>C<br>XFzs<br>Meanineration<br>invalice<br>ler fee<br>unicat<br>closed<br>s used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B<br>dcsn<br>ing w<br>h stop<br>dback<br>ion in<br>l pulse<br>by Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A A A A A A A A A A A A A A A A A A A                                | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 8<br>sdt2<br>)<br>ial<br>al ×2                           | 7<br>vfbs<br>Dec<br>alar<br>Enc<br>com<br>Sen<br>valid                                              | on fo<br>6<br>Mez<br>elerat<br>m vali<br>oder f<br>mmunid<br>ni-clos<br>d<br>ss par<br>outpu           | r the 5 aning ion sto d eedba cation rticula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bit.<br>4<br>wher<br>pp dur<br>ack se<br>valid<br>Ise ou                                             | 3<br>plg2<br>set t<br>ing sp<br>rial<br>tput s                             | ignal<br>ed.                           | ×2   | 0<br>alty<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  |
| SFN      | C6*    | Spindle function 6 | <f< p=""></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F<br>NO<br>F<br>O<br>O<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                             | http://www.secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity | C1-S<br>D<br>iqsv<br>Decelaalarm<br>Encod<br>comm<br>Semi-invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | there<br>PX/S<br>C<br>XFzs<br>Meani<br>eratior<br>invalic<br>ler fee<br>unicat<br>closed<br>s used<br>ws SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e is no<br>PHX×<br>B<br>dcsn<br>ing w<br>1 stop<br>dback<br>ion in'<br>1 pulse<br>by Mi<br>038/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A A A A A A A A A A A A A A A A A A A                                | 9<br>9<br>g spec<br>ut sign<br>hi. Se                                                       | 8<br>sdt2<br>)<br>ial<br>al ×2<br>t to "0"               | 7<br>vfbs<br>Dec<br>alar<br>Enc<br>corr<br>Sen<br>valid                                             | on fo                                                                                                  | r the 5<br>aning ion stord d<br>eeedbacation tricular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit.<br>4<br>wher<br>pp dur<br>ack se<br>valid<br>Ise ou<br>rly des<br>2nd sp                        | 3<br>plg2<br>set t<br>ing sp<br>rial<br>tput s<br>signat                   | o 1<br>pecial<br>ignal<br>ed.          | ×2   | 0<br>alty<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0             |
| SFN      | C6*    | Spindle function 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F<br>No<br>F<br>oplr<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>A                | http://www.secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity.com/secondensity | C1-S<br>C1-S<br>D<br>iqsv<br>Deceled<br>Deceled<br>Comm<br>Semi-<br>invalid<br>Comm<br>Semi-<br>invalid<br>Comm<br>Semi-<br>invalid<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Comm<br>Com | there<br>PX/SI<br>C<br>XFzs<br>Meanin<br>eration<br>invalic<br>ler fee<br>unicat<br>closed<br>ws SP<br>cushion<br>eration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ⇒ is not performed by the performance of the pe    | A<br>A<br>hen so<br>during<br>valid<br>e output<br>tsubis<br>itC set | 9<br>9<br>g spec<br>ut sign<br>hi. Set<br>ting)                                             | 8<br>sdt2<br>)<br>al ×2<br>t to "0"                      | 7<br>vfbs<br>Deccalar<br>Enccorr<br>Sen<br>valid                                                    | on fo<br>6<br>Mez<br>elerat<br>m vali<br>oder f<br>mmunid<br>ni-clos<br>d<br>ss par<br>outpu           | r the 5<br>aning 0<br>ion stord d<br>eedbaation<br>eed pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bit.<br>4<br>wher<br>pp dur<br>ack se<br>valid<br>Ise ou<br>rly des<br>2nd sp<br>uring a             | 3<br>plg2<br>set t<br>ing sp<br>rial<br>tput s<br>signat                   | o 1<br>pecial<br>ignal<br>ed.          | ×2   | 0<br>alty<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC     | ·6*    | Spindle function 6 | <f< p=""></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F<br>No<br>F<br>oplf<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>A<br>B      | hte) S<br>MDS<br>E<br>bit<br>alty<br>pftm<br>plg2<br>vfbs<br>sdt2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1-S<br>C1-S<br>D<br>iqsv<br>Decele<br>alarm<br>Encod<br>comm<br>Semi-invalid<br>This is<br>(Follow<br>Dual c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | there<br>PX/SI<br>C<br>XFzs<br>Meani<br>eration<br>invalic<br>ler fee<br>unicat<br>s used<br>ws SP<br>cushion<br>eration<br>utput 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B B dcsn dcsn dtack dback ion stop dback ion intro ion stop dback ion intro ion stop dback ion intro ion stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A<br>A<br>hen so<br>during<br>valid<br>e output<br>tsubis<br>itC set | 9<br>9<br>g spec<br>ut sign<br>hi. Set<br>ting)                                             | 8<br>sdt2<br>)<br>al ×2<br>t to "0"                      | 7<br>vfbs<br>Decalar<br>Enccom<br>Sen<br>valid<br>Set<br>outp<br>Dua<br>deco                        | on fo<br>6<br>Mea<br>elerat<br>m vali<br>oder f<br>munic<br>ini-closs<br>d<br>ss par<br>outpu<br>outpu | r the 5<br>aning ion stord d<br>eedbacation the cation the cation the cation into the cation of the cation | bit.<br>4<br>wher<br>op dur<br>ack se<br>valid<br>Ise ou<br>rly des<br>2nd sp<br>uring a<br>raid     | 3<br>plg2<br>a set t<br>ing sp<br>rial<br>tput s<br>signat<br>beed d       | o 1<br>pecial<br>ignal<br>ed.<br>detec | ×2   | 0<br>alty<br>5tandard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC     | ÷6*    | Spindle function 6 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F<br>No<br>F<br>oplif<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>A<br>B          | http://www.second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1-S<br>C1-S<br>D<br>iqsv<br>Decele<br>alarm<br>Decele<br>alarm<br>Encod<br>comm<br>Semi<br>invalid<br>This is<br>(Follow<br>Dual cd<br>decele<br>Set ou<br>speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | there<br>PX/SI<br>C<br>XFzs<br>Meanin<br>eration<br>invalic<br>ler fee<br>unicat<br>closed<br>s used<br>ws SP<br>cushion<br>eration<br>intput 2<br>mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B<br>dcsn<br>ing w<br>n stop<br>dback<br>ion inn<br>i pulse<br>by Mi<br>038/b<br>n durin<br>valid<br>to MF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A A A A A A A A A A A A A A A A A A A                                | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 8<br>sdt2<br>)<br>ial<br>al ×2<br>t to "0"<br>ion/<br>L) | 7<br>vfbs<br>Decalar<br>Enccom<br>Sen<br>valid<br>Set<br>outp<br>Dua<br>deco                        | on fo<br>Mea<br>elerati<br>m vali<br>oder f<br>munio<br>ni-clos<br>d<br>ss pau<br>outpu<br>outpu       | r the 5<br>aning ion stord d<br>eeedbacation<br>red pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit.<br>4<br>wher<br>pp dur<br>ack se<br>valid<br>Ise ou<br>rly des<br>2nd sp<br>uring a<br>zero s   | 3<br>plg2<br>a set t<br>ing sp<br>rial<br>tput s<br>signat<br>beed d       | ed.<br>etc.                            | ×2   | 0<br>alty<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SFNC     | 26*    | Spindle function 6 | <f< p=""></f<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F<br>No<br>F<br>oplr<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>A<br>B<br>C<br>C | te) S<br>MDS-<br>E<br>bit<br>alty<br>pftm<br>plg2<br>vfbs<br>sdt2<br>dcsn<br>XFzs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1-S<br>C1-S<br>D<br>iqsv<br>Decele<br>alarm<br>Decele<br>alarm<br>Encod<br>comm<br>Semi<br>invalid<br>This is<br>(Follow<br>Dual cd<br>decele<br>Set ou<br>speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | there     t | by Million Market State | A A A A A A A A A A A A A A A A A A A                                | 9<br>9<br>g spec<br>ut sign<br>hi. Se<br>ting)<br>elerati                                   | 8<br>sdt2<br>)<br>al ×2<br>t to "0"                      | 7<br>vfbs<br>Dec<br>alar<br>Enc<br>com<br>Sen<br>valid<br>Unle<br>Set<br>Oua<br>decc<br>Set<br>unle | on fo<br>Mea<br>elerati<br>m vali<br>oder f<br>munio<br>ni-clos<br>d<br>ss pau<br>outpu<br>outpu       | r the 5<br>aning ion stored decation stored pure to the store of the stor    | bit.<br>4<br>wher<br>pp dur<br>pp dur<br>lse ou<br>rly des<br>2nd sp<br>rring a<br>zero s<br>rly des | 3<br>plg2<br>set t<br>ing sp<br>rial<br>tput s<br>signat<br>accele<br>peed | ed.<br>etc.                            | ×2   | 0<br>alty<br>Standard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

| No.   | Abbr.  | Parameter name     |                                                                                                                                                                                     |      |      |                 |         |         |         |        | Det      | ails         |         |          |                 |         |          |   |        |
|-------|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------------|---------|---------|---------|--------|----------|--------------|---------|----------|-----------------|---------|----------|---|--------|
|       |        |                    | <fo< th=""><th>r MC</th><th>)S-(</th><th>C1-S</th><th>PM&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fo<> | r MC | )S-( | C1-S            | PM>     |         |         |        |          |              |         |          |                 |         |          |   |        |
|       |        |                    |                                                                                                                                                                                     | F    | E    | D               | С       | В       | Α       | 9      | 8        | 7            | 6       | 5        | 4               | 3       | 2        | 1 | 0      |
|       |        |                    |                                                                                                                                                                                     |      |      |                 | XFzs    |         |         | pl80   | ) sdt2   | vfbs         | orm     |          | tdn             | plg2    | pftm     |   | alty   |
|       |        |                    |                                                                                                                                                                                     | bit  | T    |                 | Meani   | ina w   | hen s   | et to  | 0        | 1            | Mea     | anina    | when            | set t   | o 1      | s | tandar |
|       |        |                    | 0                                                                                                                                                                                   | alt  |      | Decele<br>alarm | eratior | stop    |         |        |          |              |         | ion sto  | op dur          |         |          |   | 0      |
|       |        |                    | 1                                                                                                                                                                                   |      |      |                 |         |         |         |        |          |              |         |          |                 |         |          |   | 0      |
|       |        |                    | 2                                                                                                                                                                                   | pftr |      | Encod<br>comm   |         |         |         | I      |          |              | oder fo |          | ack se<br>valid | rial    |          |   | 0      |
|       |        |                    | 3                                                                                                                                                                                   | plg  |      | Semi-<br>nvalid | closed  | pulse   | outp    | ut sig | nal ×2   | Sen<br>valio |         | ed pu    | lse ou          | tput s  | ignal ×2 | 2 | 0      |
| SP038 | SFNC6* | Spindle function 6 | 4                                                                                                                                                                                   | tdr  | ٦    | This is         | used    | by Mi   | tsubis  | hi. S  | et to "0 | " unle       | ss par  | ticula   | rly des         | signate | ed.      |   | 0      |
|       |        |                    | 5                                                                                                                                                                                   |      |      |                 |         |         |         |        |          |              |         |          |                 |         |          |   | 0      |
|       |        |                    | 6                                                                                                                                                                                   | orn  | n (  | Orient          | ation s | start m | iemo    | invali | d        | Orie         | ntatio  | n star   | t mem           | io vali | b        |   | 0      |
|       |        |                    | 7                                                                                                                                                                                   | vfb  | s 1  | This is         | used    | by Mi   | tsubis  | hi. S  | et to "0 | " unle       | ss par  | ticula   | rly des         | signate | ed.      |   | 0      |
|       |        |                    | 8                                                                                                                                                                                   | sdt  | 2 (  | (Follov         | vs SP   | 038/bi  | tC set  | tting) |          | Set<br>outp  |         | t 2 to   | 2nd sp          | beed o  | letectio | n | 0      |
|       |        |                    | 9                                                                                                                                                                                   | pl8  | 0 1  | MHE9            | 0K de   | tector  | s 180   | wav    | e PLG    | 180          | wave    | PLG      | other           | than N  | 1HE90    | К | 0      |
|       |        |                    | A                                                                                                                                                                                   |      |      |                 |         |         |         |        |          |              |         |          |                 |         |          |   | 0      |
|       |        |                    | В                                                                                                                                                                                   |      |      |                 |         |         |         |        |          |              |         |          |                 |         |          |   | 0      |
|       |        |                    | С                                                                                                                                                                                   | XFz  |      | Set ou<br>speed |         |         | o scale | e low  | (L)      | Set          | output  | t 2 to : | zero s          | peed    | output   |   | 0      |
|       |        |                    | D                                                                                                                                                                                   |      |      |                 |         |         |         |        |          |              |         |          |                 |         |          |   | 0      |
|       |        |                    | E                                                                                                                                                                                   |      |      |                 |         |         |         |        |          |              |         |          |                 |         |          |   | 0      |
|       |        |                    | F                                                                                                                                                                                   |      |      |                 |         |         |         |        |          |              |         |          |                 |         |          |   | 0      |

| No.   | Abbr. | Parameter name  |                                                                                                              |                                                                                                           | Details                                             |                                                                                   | Se               | tting range<br>(Unit) | Standard setting |
|-------|-------|-----------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|------------------|-----------------------|------------------|
|       |       |                 | Set the spi                                                                                                  | indle drive un                                                                                            | it's capacity                                       | v type.<br>(HEX setti                                                             | ing)             | (0)                   |                  |
|       |       |                 | Setting                                                                                                      | Unit capa                                                                                                 | city Sett                                           |                                                                                   | -                |                       |                  |
|       |       |                 | 0000                                                                                                         |                                                                                                           | 00                                                  |                                                                                   |                  |                       |                  |
|       |       |                 | 0001                                                                                                         | MDS-C1-SP                                                                                                 | -075 001                                            | 1                                                                                 |                  |                       |                  |
|       |       |                 | 0002                                                                                                         | MDS-C1-SP                                                                                                 | -15 001                                             | 12                                                                                |                  |                       |                  |
|       |       |                 | 0003                                                                                                         | MDS-C1-SP                                                                                                 |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 0004                                                                                                         | MDS-C1-SP                                                                                                 |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 0005                                                                                                         | MDS-C1-SP                                                                                                 |                                                     |                                                                                   |                  |                       |                  |
| SP039 | ATYP* | Drive unit type | 0006                                                                                                         | MDS-C1-SP                                                                                                 |                                                     |                                                                                   | 00               | 00 to FFFF            | 0000             |
|       |       |                 | 0007                                                                                                         | MDS-C1-SP                                                                                                 |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 0008                                                                                                         | MDS-C1-SP<br>MDS-C1-SP                                                                                    |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 0009<br>000A                                                                                                 | MDS-C1-SP                                                                                                 |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000A                                                                                                         | MDS-C1-SP                                                                                                 |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000D                                                                                                         | MDS-C1-SP                                                                                                 |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000D                                                                                                         | MDS-B-SP-3                                                                                                |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000E                                                                                                         | MDS-B-SP-4                                                                                                |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000F                                                                                                         | MDS-C1-SP                                                                                                 |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 |                                                                                                              |                                                                                                           |                                                     | •                                                                                 |                  |                       |                  |
|       |       |                 | to "0". (Old<br>Set the ap<br>motors list                                                                    | I type of moto<br>propriate mot<br>ed below.                                                              | or number                                           | 4 (SFNC2)/bit0 is<br>from the standard<br>(HEX setti<br>n Correspondir            | ng)              |                       |                  |
|       |       |                 | Setting                                                                                                      | Motor name                                                                                                | Maximur                                             | drive unit                                                                        | ig               |                       |                  |
|       |       |                 | 0000                                                                                                         |                                                                                                           | speed                                               |                                                                                   |                  |                       |                  |
|       |       |                 | 0000                                                                                                         | SJ-2.2A                                                                                                   | 10000 r/m                                           | n MDS-C1-SP-22                                                                    | 2                |                       |                  |
|       |       |                 | 0002                                                                                                         | SJ-3.7A                                                                                                   |                                                     | n MDS-C1-SP-3                                                                     |                  |                       |                  |
|       |       |                 | 0003                                                                                                         | SJ-5.5A                                                                                                   |                                                     | n MDS-C1-SP-5                                                                     |                  |                       |                  |
|       |       |                 | 0004                                                                                                         | SJ-7.5A                                                                                                   |                                                     | n MDS-C1-SP-7                                                                     |                  |                       |                  |
|       |       |                 | 0005                                                                                                         | SJ-11A                                                                                                    | 6000 r/m                                            | n MDS-C1-SP-1                                                                     | 10               |                       |                  |
|       |       |                 | 0006                                                                                                         | SJ-15A                                                                                                    | 6000 r/m                                            | n MDS-C1-SP-1                                                                     | 50               |                       |                  |
|       |       |                 | 0007                                                                                                         | SJ-18.5A                                                                                                  |                                                     | n MDS-C1-SP-18                                                                    |                  |                       |                  |
|       |       |                 | 0008                                                                                                         | SJ-22A                                                                                                    |                                                     | n MDS-C1-SP-22                                                                    |                  |                       |                  |
|       |       |                 | 0009                                                                                                         | SJ-26A                                                                                                    |                                                     | n MDS-C1-SP-20                                                                    |                  |                       |                  |
| SP040 | MTYP* | Motor type      | 000A                                                                                                         | SJ-30A                                                                                                    | 4500 r/m                                            | n MDS-C1-SP-30                                                                    | 00 00            | 00 to FFFF            | 0000             |
|       |       |                 | 000B                                                                                                         |                                                                                                           |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000C<br>000D                                                                                                 |                                                                                                           |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000D                                                                                                         |                                                                                                           |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 |                                                                                                              |                                                                                                           |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000F                                                                                                         |                                                                                                           |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 000F                                                                                                         |                                                                                                           |                                                     |                                                                                   |                  |                       |                  |
|       |       |                 | 0010                                                                                                         |                                                                                                           |                                                     |                                                                                   | 75               |                       |                  |
|       |       |                 |                                                                                                              | <br>SJ-N0.75A                                                                                             | <br>10000 r/mi                                      | <br>n MDS-C1-SP-0                                                                 |                  |                       |                  |
|       |       |                 | 0010<br>0011                                                                                                 |                                                                                                           |                                                     | <br>n MDS-C1-SP-0<br>n MDS-C1-SP-1                                                | 5                |                       |                  |
|       |       |                 | 0010<br>0011<br>0012                                                                                         | <br>SJ-N0.75A<br>SJ-N1.5A                                                                                 | <br>10000 r/m<br>10000 r/m                          | <br>n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2                               | 5<br>2           |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013                                                                                 | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A                                                                     | <br>10000 r/m<br>10000 r/m<br>10000 r/m             | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3                  | 5<br>2<br>7      |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014                                                                         | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N3.7A                                                         | <br>10000 r/m<br>10000 r/m<br>10000 r/m             | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014<br>0015<br>0016<br>0017                                                 | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N3.7A<br>SJ-N5.5A                                             | <br>10000 r/m<br>10000 r/m<br>10000 r/m<br>8000 r/m | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014<br>0015<br>0016<br>0017<br>0018                                         | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N3.7A<br>SJ-N5.5A<br>SJ-N7.5A<br>                             | <br>10000 r/m<br>10000 r/m<br>10000 r/m<br>8000 r/m | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014<br>0015<br>0016<br>0017<br>0018<br>0019                                 | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N3.7A<br>SJ-N5.5A<br>SJ-N7.5A<br>                             | <br>10000 r/m<br>10000 r/m<br>10000 r/m<br>8000 r/m | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014<br>0015<br>0016<br>0017<br>0018<br>0019<br>001A                         | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N3.7A<br>SJ-N5.5A<br>SJ-N7.5A<br><br><br>                     | <br>10000 r/m<br>10000 r/m<br>10000 r/m<br>8000 r/m | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014<br>0015<br>0016<br>0017<br>0018<br>0019<br>001A<br>001B                 | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N3.7A<br>SJ-N5.5A<br>SJ-N7.5A<br><br><br><br>                 | <br>10000 r/m<br>10000 r/m<br>10000 r/m<br>8000 r/m | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014<br>0015<br>0016<br>0017<br>0018<br>0019<br>001A<br>001B<br>001C         | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N3.7A<br>SJ-N5.5A<br>SJ-N7.5A<br><br><br><br><br><br>         | <br>10000 r/m<br>10000 r/m<br>10000 r/m<br>8000 r/m | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014<br>0015<br>0016<br>0017<br>0018<br>0019<br>001A<br>001B<br>001C<br>001D | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N3.7A<br>SJ-N5.5A<br>SJ-N7.5A<br><br><br><br><br><br><br><br> | <br>10000 r/m<br>10000 r/m<br>10000 r/m<br>8000 r/m | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |
|       |       |                 | 0010<br>0011<br>0012<br>0013<br>0014<br>0015<br>0016<br>0017<br>0018<br>0019<br>001A<br>001B<br>001C         | <br>SJ-N0.75A<br>SJ-N1.5A<br>SJ-N2.2A<br>SJ-N5.5A<br>SJ-N5.5A<br>SJ-N7.5A<br><br><br><br><br><br>         | <br>10000 r/m<br>10000 r/m<br>10000 r/m<br>8000 r/m | n MDS-C1-SP-0<br>n MDS-C1-SP-1<br>n MDS-C1-SP-2<br>n MDS-C1-SP-3<br>n MDS-C1-SP-3 | 5<br>2<br>7<br>5 |                       |                  |

| No.   | Abbr. | Parameter name                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Det                                                                                                             | ails                                                    |                                                                                                                              |                                                                              |                                                   | Setting<br>(Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Standard setting                                                             |
|-------|-------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------|
|       |       |                                                               | F E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                                                                                               | A 9<br>rtyp                                             | 8                                                                                                                            | 7 (                                                                          | 8 5                                               | 4 styp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 2         | 1 0                                                                          |
| SP041 | ΡΤΥΡ* | Power supply type                                             | bit           0         1           2         3           4         5           6         7           7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | When th<br>connecte<br>To valida<br><u>Setting</u><br>x0<br>x1<br>x2<br>x3<br>x4<br>x5<br>x6<br>x7<br>x8<br>x9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x<br>Not used<br>CV-37<br>CV-55<br>CV-75<br>egenerat                                                           | ive resi<br>generati<br>-CV (S<br>W260H<br>W200H<br>1   | r of the<br>/ is necd<br>emerge<br>2x<br>CV-220<br>CV-220<br>CV-260<br>stor typ<br>ve resist<br>etting w<br>HMJ (No<br>HMJ×2 | essary.<br>ncy sto<br>3x<br>CV-300<br>CV-370<br>cv-370<br>or mode<br>then us | nit and t<br>p functio<br>4x<br>MDS-B-<br>CVE-450 | he powe in, add 4 5x 5x MDS-B- CVE-550 CVE-550 CVE-550 complexed c | 0h.<br>6x 7 | x 8x<br>CR-10<br>CR-15<br>CR-22<br>CR-37<br>CR-55<br>CR-75<br>CR-75<br>CR-90 |
| SP042 | CRNG* | C-axis detector range                                         | <pre>     E     F     (Note) W     r     for MDS This paran     Set "0" f     "2" is us     </pre> <pre>     </pre> <pre>  <pre>  <pre>  <pre>  <pre>    <pre>  <pre>  <pre>     <!--</td--><td>Always s<br/>of this parent of this pare</td><td>S-B-SP-3<br/>on type is<br/><b>PH/SPM</b><br/>sed to se<br/>rameter.<br/>subishi fo<br/><b>/SPHX&gt;</b><br/>ulses for</td><td>70, 450<br/>s applie<br/>t the C-<br/>or testin<br/>the spi</td><td>ed.<br/>axis de<br/>lg.<br/>ndle en</td><td>tector r</td><td>ange.</td><td></td><td></td><td></td></pre></pre></pre></pre></pre></pre></pre></pre> | Always s<br>of this parent of this pare | S-B-SP-3<br>on type is<br><b>PH/SPM</b><br>sed to se<br>rameter.<br>subishi fo<br><b>/SPHX&gt;</b><br>ulses for | 70, 450<br>s applie<br>t the C-<br>or testin<br>the spi | ed.<br>axis de<br>lg.<br>ndle en                                                                                             | tector r                                                                     | ange.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |
| SP043 | TRNG* | Synchronous tapping,<br>spindle synchronous<br>detector range | This paran<br>spindle syr<br>Set "0" for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | neter is us<br>nchronous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sed to se<br>s detecto                                                                                          | t the sy                                                | nchron                                                                                                                       |                                                                              | ping or                                           | 0 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o 7         | 0                                                                            |

| No.   | Abbr.  | Parameter name                                        | Details                                                                                                                                                                                                                                                                                                                                                  | Setting range<br>(Unit) | Standard setting                   |
|-------|--------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|
| SP044 | TRANS* | NC communication<br>frequency                         | Set a frequency of data communication with NC.                                                                                                                                                                                                                                                                                                           | 0 to 32767              | Standard:<br>0<br>Special:<br>1028 |
| SP045 | CSNT   | Dual cushion timer                                    | Set the cycle to add the increment values in the dual<br>cushion process.<br>When this setting value is increased, the dual cushion will<br>increase, and the changes in the speed during<br>acceleration/deceleration will become gradual.                                                                                                              | 0 to 1000 (ms)          | 0                                  |
| SP046 | CSN2*  | Speed command dual cushion                            | For an acceleration/deceleration time constant defined in<br>SP019 (CSN1), this parameter is used to provide smooth<br>movement only at the start of acceleration/deceleration.<br>As the value of this parameter is smaller, it moves<br>smoother but the acceleration/deceleration time becomes<br>longer.<br>To make this parameter invalid, set "0". | 0 to 1000               | 0                                  |
| SP047 | SDTR*  | Speed detection reset value                           | Set the reset hysteresis width for a speed detection set value defined in SP020 (SDTS).                                                                                                                                                                                                                                                                  | 0 to 1000<br>(r/min)    | 30                                 |
| SP048 | SUT*   | Speed reach range                                     | Set the speed deviation rate with respect to the commanded speed for output of the speed reach signal.                                                                                                                                                                                                                                                   | 0 to 100 (%)            | 15                                 |
| SP049 | TLM2   | Torque limit 2                                        | Set the torque limit rate for the torque limit signal 010.                                                                                                                                                                                                                                                                                               | 0 to 120 (%)            | 20                                 |
| SP050 | TLM3   | Torque limit 3                                        | Set the torque limit rate for the torque limit signal 011.                                                                                                                                                                                                                                                                                               | 0 to 120 (%)            | 30                                 |
| SP051 | TLM4   | Torque limit 4                                        | Set the torque limit rate for the torque limit signal 100.                                                                                                                                                                                                                                                                                               | 0 to 120 (%)            | 40                                 |
| SP052 | TLM5   | Torque limit 5                                        | Set the torque limit rate for the torque limit signal 101.                                                                                                                                                                                                                                                                                               | 0 to 120 (%)            | 50                                 |
| SP053 | TLM6   | Torque limit 6                                        | Set the torque limit rate for the torque limit signal 110.                                                                                                                                                                                                                                                                                               | 0 to 120 (%)            | 60                                 |
| SP054 | TLM7   | Torque limit 7                                        | Set the torque limit rate for the torque limit signal 111.                                                                                                                                                                                                                                                                                               | 0 to 120 (%)            | 70                                 |
| SP055 | SETM*  | Excessive speed deviation timer                       | Set the timer value until the excessive speed deviation<br>alarm is output.<br>The value of this parameter should be longer than the<br>acceleration/deceleration time.                                                                                                                                                                                  | 0 to 160 (s)            | 12                                 |
| SP056 | PYVR   | Variable excitation<br>(min value)                    | Set the minimum value of the variable excitation rate.<br>Select a smaller value when gear noise is too high.                                                                                                                                                                                                                                            | 0 to 100 (%)            | 50                                 |
| SP057 | STOD*  | Constant → transition<br>judgment value               | Set the value for judging when changing the speed<br>command from a constant to acceleration/deceleration.<br>When "0" is set, judge the speed with 12 r/min.                                                                                                                                                                                            | 0 to 50 (r/min)         | 0                                  |
| SP058 | SDT2*  | Speed detection setting value 2                       | Set the motor speed for carry out speed detection 2 output.                                                                                                                                                                                                                                                                                              | 0 to 32767<br>(r/min)   | 0                                  |
| SP059 | MKT*   | Winding changeover<br>base shut-off timer             | Set the base shut-off time for contactor switching at coil<br>changeover.<br>Note that the contactor may be damaged with burning if<br>the value of this parameter is too small.                                                                                                                                                                         | 50 to 10000<br>(ms)     | 150                                |
| SP060 | MKT2*  | Current limit timer after coil changeover             | Set the current limit time to be taken after completion of contactor switching at coil changeover.                                                                                                                                                                                                                                                       | 0 to 10000<br>(ms)      | 500                                |
| SP061 | MKIL*  | Current limit value after<br>coil changeover          | Set the current limit value during a period defined in SP060 (MKT2) after completion of contactor switching at coil changeover.                                                                                                                                                                                                                          | 0 to 120 (%)            | 75                                 |
| SP062 |        |                                                       | Not used. Set to "0".                                                                                                                                                                                                                                                                                                                                    | 0                       | 0                                  |
| SP063 | OLT*   | Overload alarm detection time                         | Set the time constant for detection of the motor overload<br>alarm.<br>(For machine tool builder adjustment)                                                                                                                                                                                                                                             | 0 to 1000 (s)           | 60                                 |
| SP064 | OLL*   | Overload alarm detection level                        | Set the detection level of the motor overload alarm.<br>(For machine tool builder adjustment)                                                                                                                                                                                                                                                            | 0 to 120 (%)            | 110                                |
| SP065 | VCGN1* | Target value of variable speed loop proportional gain | Set the magnification of speed loop proportional gain with respect to SP022 (VGNP1) at the maximum motor speed defined in SP017 (TSP).                                                                                                                                                                                                                   | 0 to 100 (%)            | 100                                |

| No.   | Abbr.  | Parameter name                                         |                                                 |                                                                                             | Detail                                                    | S                                                                                                  |                            | Setting range<br>(Unit)   | Standard setting |
|-------|--------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------|---------------------------|------------------|
|       |        | Change starting speed of                               | change s                                        |                                                                                             | n the speed                                               |                                                                                                    | ional gain                 | 0.4- 00707                |                  |
| SP066 | VCSN1* | variable speed loop<br>proportional gain               |                                                 | SP0<br>(Sl                                                                                  | SP022                                                     | Speed<br>SP017                                                                                     |                            | 0 to 32767<br>(r/min)     | 0                |
| SP067 | VIGWA* | Change starting speed of<br>variable current loop gain | Set the s                                       | peed whe                                                                                    | re the currer                                             | it loop gain o                                                                                     | change starts              | 0 to 32767<br>(r/min)     | 0                |
| SP068 | VIGWB* | Change ending speed of<br>variable current loop gain   | Set the s                                       | peed whe                                                                                    | re the currer                                             | it loop gain o                                                                                     | change ends.               | 0 to 32767<br>(r/min)     | 0                |
| SP069 | VIGN*  | Target value of variable<br>current loop gain          | compone<br>ending sp<br>When thi<br>SP01<br>Max | ent and exc<br>beed defin<br>s paramet<br>spoese<br>Spoese<br>17 (TSP)<br>ximum<br>br speed | (1/16)-fold<br>1-fold<br>SP067<br>(VIGWA)<br>0            | sponent) for a<br>(VIGWB).<br>D", the magr<br>Spoce SP017<br>Setting valu<br>SP068<br>(VIGWB)<br>0 | ed<br>SP069<br>(VIGN)<br>0 | 0 to 32767<br>(1/16-fold) | 0                |
|       |        |                                                        |                                                 | o 8000<br>or more                                                                           | 5000<br>5000                                              | 8000<br>10000                                                                                      | 45<br>64                   |                           |                  |
| SP070 | FHz    | Machine resonance<br>suppression filter<br>frequency   | control, s<br>suppress<br>Note that             | et the freq                                                                                 | ration occurs<br>juency of the<br>f 100Hz or n<br>t used. |                                                                                                    | 0 to 3000 (Hz)             | 0                         |                  |
| SP071 | VR2WA* | Fixed control constant                                 | Set by M                                        | itsubishi. S                                                                                | Set "0" unles                                             | s designate                                                                                        | d in particular            | . 0                       | 0                |
| SP072 | VR2WB* | Fixed control constant                                 | Set by M                                        | itsubishi. S                                                                                | Set "0" unles                                             | s designate                                                                                        | d in particular            | . 0                       | 0                |
| SP073 | VR2GN* | Fixed control constant                                 | -                                               |                                                                                             |                                                           | -                                                                                                  | d in particular            |                           | 0                |
| SP074 | IGDEC* | Fixed control constant                                 | Set by M                                        | itsubishi. S                                                                                | Set "0" unles                                             | s designate                                                                                        | d in particular            | . 0                       | 0                |

| No.   | Abbr. | Parameter name                                             |                                                                            |                                            |                                 | D                               | etails                          | 5              |                         |                               |                               |                      |                     |        | Set       | ting r<br>(Unit  |            |           | andard<br>etting |
|-------|-------|------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------|-------------------------|-------------------------------|-------------------------------|----------------------|---------------------|--------|-----------|------------------|------------|-----------|------------------|
|       |       |                                                            | FE                                                                         | D                                          | С                               | В                               | A                               | r.             | 9<br>2iro               | 8<br>r2iı                     | _                             | 7                    | 6                   | 5      | 4<br>r2am | 3<br>r2lm        | 2<br>r2dm  | 1<br>no51 | 0<br>r2ch        |
|       |       |                                                            | bit                                                                        | 1                                          | Mean                            | ing wl                          | nen se                          | et             | to 0                    | )                             |                               |                      | Me                  | aning  | y when    | set to           | <b>5</b> 1 | s         | tandard          |
|       |       |                                                            | 0 r2ch<br>1 no51                                                           |                                            |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        | -         |                  |            |           | 0                |
|       |       |                                                            | 2 r2dm<br>3 r2lm<br>4 r2am                                                 |                                            | / Mits                          | SUDISI                          | n. Se                           | et             | "0" i                   | unle                          | ess c                         | les                  | igna                | ted II | n parti   | cular.           |            |           | 0 0 0 0          |
| SP075 | R2KWS | Fixed control constant                                     | 5                                                                          |                                            |                                 |                                 |                                 |                |                         |                               | Γ                             |                      |                     |        |           |                  |            |           | 0                |
|       |       |                                                            | 6                                                                          |                                            |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        |           |                  |            |           | 0                |
|       |       |                                                            | 7<br>8 r2ini                                                               | Set by                                     | / Mits                          | subisł                          | ni. Se                          | et             | "0" ı                   | unle                          | ess c                         | les                  | igna                | ted ir | n parti   | cular.           |            |           | 0                |
|       |       |                                                            | 9 r2iro                                                                    | Set by                                     | / Mits                          | subisł                          | ni. Se                          | et             | "0" ı                   | unle                          | ess c                         | les                  | igna                | ted ir | n parti   | cular.           |            |           | 0                |
|       |       |                                                            | A                                                                          |                                            |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        |           |                  |            | _         | 0                |
|       |       |                                                            | В                                                                          |                                            |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        |           |                  |            |           | 0                |
|       |       |                                                            | C<br>D                                                                     |                                            |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        |           |                  |            |           | 0                |
|       |       |                                                            | E                                                                          |                                            |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        |           |                  |            |           | 0                |
|       |       |                                                            | F                                                                          |                                            |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        |           |                  |            | _         | 0                |
| SP076 | FONS  | Machine resonance<br>suppression filter<br>operation speed | (Note)<br>When the<br>orientation<br>filter is op<br>suppressi<br>When set | vibratic<br>stop)<br>erated b<br>on filter | on inc<br>when<br>by SF<br>at a | rease<br>the r<br>2070,<br>spee | es in<br>nach<br>oper<br>d of t | m<br>nin<br>ra | notor<br>ne vi<br>te th | r sto<br>ibra<br>ne n<br>arar | op (e<br>tion<br>nach<br>nete | ex. i<br>sup<br>nine | in<br>opre<br>e vib | ssion  | 0         | to 327<br>(r/mir |            |           | 0                |
| SP077 | TDSL* | Fixed control constant                                     | Set by Mi<br>Set "14" u                                                    |                                            |                                 | nated                           | in pa                           | art            | ticul                   | ar.                           |                               |                      |                     |        |           | 14               |            |           | 14               |
| SP078 | FPWM* | Fixed control constant                                     | Set by Mi                                                                  | subishi                                    | . Set                           | "0" u                           | nless                           | 5 C            | desi                    | gna                           | ted i                         | in p                 | artio               | cular. |           | 0                |            |           | 0                |
| SP079 | ILMT* | Fixed control constant                                     | Set by Mi                                                                  | subishi                                    | Set                             | "0" u                           | nless                           | s c            | desi                    | gna                           | ted i                         | in p                 | artio               | cular. |           | 0                |            |           | 0                |
| SP080 |       |                                                            | Not used.                                                                  | Set "0"                                    |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        |           | 0                |            |           | 0                |
| SP081 | LMCA  | Fixed control constant                                     | Set by Mi<br>Set "14" u                                                    |                                            |                                 | nated                           | in pa                           | art            | ticul                   | ar.                           |                               |                      |                     |        |           | 14               |            |           | 14               |
| SP082 | LMCB  | Fixed control constant                                     | Set by Mi                                                                  | subishi                                    | . Set                           | "0" u                           | nless                           | s c            | desi                    | gna                           | ted i                         | in p                 | artio               | cular. |           | 0                |            |           | 0                |
| SP083 |       | Fixed control constant                                     | Set by Mi                                                                  | subishi                                    | . Set                           | "0" u                           | nless                           | S (            | desi                    | gna                           | ted i                         | in p                 | artio               | cular. |           | 0                |            |           | 0                |
| SP084 |       |                                                            | Not used.                                                                  | Set "0"                                    |                                 |                                 |                                 |                |                         |                               |                               |                      |                     |        |           | 0                |            |           | 0                |

| No.   | Abbr. | Parameter name                                                                            | Details                                                                                                                                                                                                                                                                                | Setting range<br>(Unit) | Standard setting |
|-------|-------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
| SP085 | AIQM* | 1 0                                                                                       | < For MDS-C1-SPH><br>Set the minimum value of variable torque limit at acceleration.                                                                                                                                                                                                   | 0 to 150<br>(%)         | 0                |
|       |       | at acceleration                                                                           | < For MDS-C1-SP/SPX/SPHX/SPM ><br>Not used. Set "0".                                                                                                                                                                                                                                   | 0                       | 0                |
| SP086 | AIQN* | Speed for starting<br>change of variable<br>torque limit magnification<br>at acceleration | <for mds-c1-sph=""><br/>Set the speed where the torque limit value at acceleration<br/>starts to change.           100%         Torque limit           100%         Inversely proportional to speed           SP085         SP086           SP086         SP017</for>                  | 0 to 32767<br>(r/min)   | 0                |
|       |       |                                                                                           | < For MDS-C1-SP/SPX/SPHX/SPM><br>Not used. Set "0".                                                                                                                                                                                                                                    | 0                       | 0                |
| SP087 | DIQM* | Target value of variable torque limit magnification at deceleration                       | Set the minimum value of variable torque limit at deceleration.                                                                                                                                                                                                                        | 0 to 150 (%)            | 75               |
| SP088 | DIQN* | Speed for starting<br>change of variable<br>torque limit magnification<br>at deceleration | Set the speed where the torque limit value at deceleration starts to change.                                                                                                                                                                                                           | 0 to 32767<br>(r/min)   | 3000             |
| SP089 |       |                                                                                           | Not used. Set "0".                                                                                                                                                                                                                                                                     | 0                       | 0                |
| SP090 |       |                                                                                           | Not used. Set "0".                                                                                                                                                                                                                                                                     | 0                       | 0                |
| SP091 | OFSN  | Offset compensation<br>during motor PLG<br>forward run                                    | Set the PLG offset for forward run.<br>Normally "0" is set.                                                                                                                                                                                                                            | -2048 to 2047<br>(-1mV) | 0                |
| SP092 | OFSI  | Offset compensation<br>during motor PLG<br>reverse run                                    | Set the PLG offset for reverse run.<br>Normally "0" is set.                                                                                                                                                                                                                            | -2048 to 2047<br>(-1mV) | 0                |
| SP093 | ORE*  | Tolerable pulse check error                                                               | Set this when detecting the pulse detector's pulse mistakes. (Valid only for full close control.)                                                                                                                                                                                      | 0 to 32767              | 0                |
| SP094 | LMAV* | Load meter output filter                                                                  | Set the filter time constant of load meter output.<br>When "0" is set, a filter time constant is set to 100ms.                                                                                                                                                                         | 0 to 32767<br>(2ms)     | 0                |
| SP095 | VFAV* | Fixed control constant                                                                    | Set by Mitsubishi. Set "0" unless designated in particular.                                                                                                                                                                                                                            | 0                       | 0                |
| SP096 | EGAR* | Encoder gear ratio                                                                        | Set the gear ratio between the spindle end and the<br>detector end (except for the motor PLG) as indicated<br>below.Setting<br>valueGear ratio<br>(deceleration)Setting<br>valueGear ratio<br>(acceleration)01 : 1 $-1$ 1 : 211 : 1/2 $-2$ 1 : 421 : 1/4 $-3$ 1 : 331 : 1/8 $-3$ 1 : 3 | -3 to 4                 | 0                |

| No.    | Abbr.  | Parameter name            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | etails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                      | Set                                                                                                                                         | ting<br>(Un                                                                                                       |                                                                                                                                                   | nge                                       | Standard<br>setting                                                                          |
|--------|--------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|
|        |        |                           | ~Fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15-                                                                                           | -C1-SP>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   |                                           | J                                                                                            |
|        |        |                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Б                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                     | 0                                                                                           | 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    | 5                                                                                                                                                    | 1                                                                                                                                           | 2                                                                                                                 | -                                                                                                                                                 | 2                                         | 1 0                                                                                          |
|        |        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r<br>stpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                               | D C<br>ksft gchg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>ips2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>zdir                                                                                                                                             | 8                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6<br>x mdir                                                                                                                                                        | 5<br>fdir                                                                                                                                            | 4<br>oscl                                                                                                                                   | 3                                                                                                                 | v d                                                                                                                                               | 2                                         | 1 0<br>odi2 odi1                                                                             |
|        |        |                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sthlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ize                                                                                           | 1 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             | vyo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                                      | -                                                                                                                                           |                                                                                                                   |                                                                                                                                                   | - 1                                       | -                                                                                            |
|        |        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hen s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                      | when                                                                                                                                        |                                                                                                                   |                                                                                                                                                   | 1                                         | Standar                                                                                      |
|        |        |                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                             | Orientation direction (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rotatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n direo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ction,<br>SPHX                                                                                                                                        | C-ax<br>ဂ                                                                                   | is co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ntrol 2                                                                                                                                                            | zero                                                                                                                                                 | point i                                                                                                                                     | retur                                                                                                             | 'n                                                                                                                                                |                                           | 0                                                                                            |
|        |        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | 00: Previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s (the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | directi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on in v                                                                                                                                               | which                                                                                       | the n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | notor h                                                                                                                                                            | nas so                                                                                                                                               | far rot                                                                                                                                     | tated                                                                                                             | uno                                                                                                                                               | der                                       | · · · · ·                                                                                    |
|        |        |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | speed co<br>01: Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   |                                           | 0                                                                                            |
|        |        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | 10: Backwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                    | : Pro                                                                                       | hibite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   |                                           | Ŭ                                                                                            |
|        |        |                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dmi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               | Orientation<br>invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | etion a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | advano                                                                                                                                                | ce                                                                                          | Ori<br>val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | entatio                                                                                                                                                            | on con                                                                                                                                               | npletio                                                                                                                                     | n adv                                                                                                             | van                                                                                                                                               | се                                        | 0                                                                                            |
|        |        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | Excitation m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nin (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )%) di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | irina                                                                                                                                                 |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | citation                                                                                                                                                           | n min                                                                                                                                                | (50%)                                                                                                                                       | durir                                                                                                             | na                                                                                                                                                |                                           |                                                                                              |
|        |        |                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B pyf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | orientation s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | entatio                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   |                                           | 0                                                                                            |
|        |        |                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                                                                             | Indexing sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eed cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | amp ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | valid                                                                                                                                                 |                                                                                             | Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | exing                                                                                                                                                              | speed                                                                                                                                                | l clamp                                                                                                                                     | o vali                                                                                                            | d                                                                                                                                                 |                                           | 0                                                                                            |
|        |        |                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | Spindle end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       | +                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | indle e                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   | -                                         | 0                                                                                            |
|        |        |                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 md                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               | Magnetic se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       | 11                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gnetic                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   | 11                                        | 0                                                                                            |
|        |        |                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vg8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               | Speed gain valid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ^1/8 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orque                                                                                                                                                 | imit                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eed ga<br>alid                                                                                                                                                     | ain ~1/                                                                                                                                              | 8 aurir                                                                                                                                     | ig tor                                                                                                            | que                                                                                                                                               | e iimit                                   | 0                                                                                            |
|        |        |                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               | Valia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ana                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   |                                           | 0                                                                                            |
|        |        |                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r                                                                                             | This is used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | by M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | itsubis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hi. Se                                                                                                                                                | t to "(                                                                                     | )" unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ess pa                                                                                                                                                             | rticula                                                                                                                                              | rly des                                                                                                                                     | signa                                                                                                             | ted                                                                                                                                               |                                           | 0                                                                                            |
|        |        |                           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | 2nd orientat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ion co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mpleti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on inv                                                                                                                                                | alid                                                                                        | 2nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d orien                                                                                                                                                            | tation                                                                                                                                               | comp                                                                                                                                        | letion                                                                                                            | ı va                                                                                                                                              | lid                                       | 0                                                                                            |
|        |        |                           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   |                                           | 0                                                                                            |
|        |        |                           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c gch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | Gain change<br>invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | orien                                                                                                                                                 | tatior                                                                                      | i Ga<br>val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in chai<br>id                                                                                                                                                      | ngeov                                                                                                                                                | er dur                                                                                                                                      | ing o                                                                                                             | rien                                                                                                                                              | ntatior                                   | <sup>1</sup> 0                                                                               |
|        |        |                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) kst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ť                                                                                             | Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | virtual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | shift                                                                                                                                                 | invali                                                                                      | d Ori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | entatic                                                                                                                                                            | on virti                                                                                                                                             | ual tar                                                                                                                                     | get sl                                                                                                            | hift                                                                                                                                              | valid                                     | 0                                                                                            |
|        |        |                           | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | This is used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   |                                           | 0                                                                                            |
|        |        |                           | F ostp Set to "0" unless particularly designated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                             |                                                                                                                   |                                                                                                                                                   |                                           |                                                                                              |
|        |        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jote 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    | for t                                                                                                                                                | he hit                                                                                                                                      |                                                                                                                   |                                                                                                                                                   |                                           | 0                                                                                            |
| SP097  | SPECO* | Orientation specification | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>.</i>                                                                                      | Set 0 if th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                     | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    | for t                                                                                                                                                | ne bit.                                                                                                                                     |                                                                                                                   |                                                                                                                                                   |                                           | 0                                                                                            |
| SP097  | SPECO* | Orientation specification | <fc< td=""><td>or ME</td><td><i>.</i></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>for tl</td><td>ne bit.</td><td>3</td><td></td><td>2</td><td>1 0</td></fc<>                                                                                                                                                                                                                                                                                                                                       | or ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>.</i>                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                     | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    | for tl                                                                                                                                               | ne bit.                                                                                                                                     | 3                                                                                                                 |                                                                                                                                                   | 2                                         | 1 0                                                                                          |
| SP097  | SPECO* | Orientation specification | <fc< td=""><td>or ME</td><td>ÍS-</td><td>-C1-SPH&gt;<br/>D C</td><td>ere is<br/>B</td><td>no p</td><td>articu<br/>9</td><td>lar e</td><td>xplai</td><td>nation</td><td>5</td><td>4</td><td>3</td><td>_</td><td></td><td></td></fc<>                                                                                                                                                                                                                                                                                             | or ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÍS-                                                                                           | -C1-SPH><br>D C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ere is<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | articu<br>9                                                                                                                                           | lar e                                                                                       | xplai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nation                                                                                                                                                             | 5                                                                                                                                                    | 4                                                                                                                                           | 3                                                                                                                 | _                                                                                                                                                 |                                           |                                                                                              |
| SP097  | SPECO* | Orientation specification | <fc< td=""><td>F<br/>stpo</td><td>ÍS-</td><td>C1-SPH&gt;<br/>DC<br/>ksft gchg</td><td>ere is<br/>B<br/>tImp</td><td>A<br/>ips2</td><td>9<br/>zdir</td><td>lar e<br/>8<br/>tlet</td><td>xplai</td><td>nation<br/>6<br/>x mdir</td><td>5<br/>fdir</td><td>4<br/>oscl</td><td>3<br/>pyfx</td><td>x d</td><td>min</td><td>1 0<br/>odi2 odi1</td></fc<>                                                                                                                                                                              | F<br>stpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ÍS-                                                                                           | C1-SPH><br>DC<br>ksft gchg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ere is<br>B<br>tImp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A<br>ips2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>zdir                                                                                                                                             | lar e<br>8<br>tlet                                                                          | xplai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nation<br>6<br>x mdir                                                                                                                                              | 5<br>fdir                                                                                                                                            | 4<br>oscl                                                                                                                                   | 3<br>pyfx                                                                                                         | x d                                                                                                                                               | min                                       | 1 0<br>odi2 odi1                                                                             |
| SP097  | SPECO* | Orientation specification | <fc< td=""><td>or MC</td><td>S-<br/>E<br/>rze</td><td>C1-SPH&gt;<br/>DC<br/>ksft gchg</td><td>ere is<br/>B<br/>tImp<br/>ing w</td><td>A<br/>ips2<br/>hen so</td><td>9<br/>zdir</td><td>lar e<br/>8<br/>tlet</td><td>xplai</td><td>nation<br/>6<br/>x mdir</td><td>5<br/>fdir</td><td>4</td><td>3<br/>pyfx</td><td>x d</td><td>min</td><td>1 0</td></fc<>                                                                                                                                                                        | or MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-<br>E<br>rze                                                                                | C1-SPH><br>DC<br>ksft gchg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ere is<br>B<br>tImp<br>ing w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A<br>ips2<br>hen so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9<br>zdir                                                                                                                                             | lar e<br>8<br>tlet                                                                          | xplai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nation<br>6<br>x mdir                                                                                                                                              | 5<br>fdir                                                                                                                                            | 4                                                                                                                                           | 3<br>pyfx                                                                                                         | x d                                                                                                                                               | min                                       | 1 0                                                                                          |
| SP097  | SPECO* | Orientation specification | <fc< td=""><td>F<br/>stpo<br/>bit</td><td>)<b>S</b>-<br/>E<br/>rze</td><td>C1-SPH&gt;<br/>D C<br/>ksft gchg<br/>Orientation<br/>00: Previous<br/>speed ct</td><td>B<br/>tImp<br/>ing w<br/>rotatios<br/>(the<br/>pontrol)</td><td>A<br/>ips2<br/>hen so<br/>direction</td><td>9<br/>zdir<br/>et to (</td><td>lar e</td><td>xplar<br/>7<br/>vg8:</td><td>nation<br/>6<br/>x mdir<br/>Me</td><td>5<br/>fdir<br/>aning</td><td>4<br/>oscl</td><td>3<br/>pyfx</td><td>to '</td><td>min (<br/>1</td><td>1 0<br/>odi2 odi1</td></fc<> | F<br>stpo<br>bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) <b>S</b> -<br>E<br>rze                                                                      | C1-SPH><br>D C<br>ksft gchg<br>Orientation<br>00: Previous<br>speed ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B<br>tImp<br>ing w<br>rotatios<br>(the<br>pontrol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A<br>ips2<br>hen so<br>direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>zdir<br>et to (                                                                                                                                  | lar e                                                                                       | xplar<br>7<br>vg8:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nation<br>6<br>x mdir<br>Me                                                                                                                                        | 5<br>fdir<br>aning                                                                                                                                   | 4<br>oscl                                                                                                                                   | 3<br>pyfx                                                                                                         | to '                                                                                                                                              | min (<br>1                                | 1 0<br>odi2 odi1                                                                             |
| SP097  | SPECO* | Orientation specification | < <b>F</b> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F o<br>stp o<br>bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) <b>S-</b><br>E<br>rze                                                                       | C1-SPH><br>D C<br>ksft gchg<br>Orientation<br>00: Previous<br>speed c<br>01: Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B<br>tlmp<br>ing w<br>rotatio<br>s (the<br>ontrol)<br>rotati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A<br>ips2<br>hen so<br>direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>zdir<br>et to (<br>ction<br>on in v                                                                                                              | lar e                                                                                       | xplar<br>7<br>vg8;<br>the n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>x mdir<br>Me                                                                                                                                                  | 5<br>fdir<br>aning                                                                                                                                   | 4<br>oscl                                                                                                                                   | 3<br>pyfx                                                                                                         | to '                                                                                                                                              | min (<br>1                                | 1 0<br>odi2 odi1<br>Standar                                                                  |
| P097   | SPECO* | Orientation specification | < <b>F</b> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F or ME<br>stp o<br>bit<br>odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) <b>S</b> -<br>E<br>rze<br>1                                                                 | C1-SPH><br>D C<br>ksft gchg<br>Orientation<br>00: Previous<br>speed cû<br>01: Forward<br>10: Backwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B<br>tlmp<br>ing w<br>rotatios<br>(the<br>pontrol)<br>rotati<br>rotati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A<br>ips2<br>hen so<br>direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>zdir<br>et to (<br>ction<br>on in v                                                                                                              | 8<br>tlet<br>which                                                                          | xplar<br>7<br>vg8:<br>the n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>x mdir<br>Me                                                                                                                                                  | 5<br>fdir<br>aning                                                                                                                                   | 4<br>oscl<br>when<br>far rot                                                                                                                | 3<br>pyfx<br>set                                                                                                  | to '<br>und                                                                                                                                       | min d<br>1<br>der                         | 1 0<br>odi2 odi1<br>Standar<br>0<br>0                                                        |
| P097   | SPECO* | Orientation specification | < <b>F</b> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F or ME<br>stp o<br>bit<br>odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )S-<br>E<br>rze<br>1<br>2                                                                     | C1-SPH><br>D C<br>ksft gchg<br>Orientation<br>00: Previous<br>speed ct<br>01: Forward<br>10: Backwai<br>Orientation<br>invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B<br>tlmp<br>ing w<br>rotatios<br>(the<br>pontrol)<br>rotati<br>rotati<br>rotati<br>rotati<br>compl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A<br>ips2<br>hen se<br>directed<br>on<br>etion a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>zdir<br>et to (<br>ction<br>on in v<br>11<br>advance                                                                                             | 8<br>tlet<br>which                                                                          | The n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6<br>Me<br>notor h<br>d<br>entatic<br>id                                                                                                                           | 5<br>fdir<br>aning<br>nas so                                                                                                                         | 4<br>oscl<br>when<br>far rot                                                                                                                | 3<br>pyfo<br>set<br>tated                                                                                         | to '<br>uno                                                                                                                                       | min d<br>1<br>der                         | 1 0<br>odi2 odi1<br>Standar                                                                  |
| P097   | SPECO* | Orientation specification | < <b>F</b> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F o<br>stp o<br>bit<br>o odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )S-<br>E<br>rze<br>1<br>2<br>in                                                               | C1-SPH><br>D C<br>ksft gchg<br>Orientation<br>00: Previous<br>speed c<br>01: Forward<br>10: Backwai<br>Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B<br>tImp<br>ing w<br>rotatios<br>(the<br>pontrol)<br>rotati<br>rd rotation<br>compl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A<br>ips2<br>hen se<br>n directed<br>on<br>tition<br>etion a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9<br>zdir<br>et to (<br>ction<br>on in v<br>11<br>advand                                                                                              | 8<br>tlet<br>which                                                                          | 7<br>vg8:<br>the n<br>hibite<br>Ori<br>val<br>Exe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6<br>Me<br>notor h<br>entatic<br>id<br>citatior                                                                                                                    | 5<br>fdir<br>aning<br>nas so<br>on con                                                                                                               | 4<br>oscl<br>when<br>far rot<br>npletio<br>(50%)                                                                                            | 3<br>pyfo<br>n set<br>tated                                                                                       | to<br>und<br>van                                                                                                                                  | min d<br>1<br>der                         | 1 0<br>odi2 odi1<br>Standar<br>0<br>0                                                        |
| P097   | SPECO* | Orientation specification | < <b>F</b> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F 0<br>Stp 0<br>bit<br>0 odi<br>2 dmi<br>3 pyf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )S-<br>E<br>rze<br>1<br>2<br>in                                                               | C1-SPH><br>D C<br>ksft gchg<br>Orientation 1<br>0: Previous<br>speed c<br>01: Forward<br>10: Backward<br>Orientation frivalid<br>Excitation frivalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B<br>tlmp<br>ing w<br>rotatio<br>s (the<br>pontrol)<br>rotati<br>rd rota<br>compl<br>nin. (50<br>servo l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A<br>ips2<br>hen so<br>direction<br>on<br>ttion<br>etion a<br>0%) du<br>ock in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9<br>zdir<br>et to (<br>ction<br>on in v<br>11<br>advand<br>uring<br>valid                                                                            | 8<br>tlet<br>which                                                                          | The n<br>hibite<br>Cri<br>Val<br>Excorie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6<br>Me<br>notor h<br>d<br>entatic<br>id                                                                                                                           | 5<br>fdir<br>aning<br>nas so<br>on con<br>on con<br>n min.<br>n serv                                                                                 | 4<br>oscl<br>when<br>far rol<br>npletio<br>(50%)<br>vo lock                                                                                 | 3<br>pyfo<br>set<br>tated                                                                                         | to<br>und<br>van                                                                                                                                  | min d<br>1<br>der                         | 1 0<br>pdi2 odi1<br>Standar<br>0<br>0<br>0<br>0                                              |
| P097   | SPECO* | Orientation specification | < <b>F</b> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | br ME<br>stp o<br>bit<br>o di<br>c dm<br>d pyf<br>o so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DS-<br>E<br>rze<br>1<br>2<br>in<br>x                                                          | C1-SPH><br>D C<br>ksft gchg<br>Orientation<br>00: Previous<br>speed ci<br>01: Forward<br>10: Backwan<br>Orientation rr<br>orientation s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B<br>tlmp<br>ing w<br>rotatio<br>s (the<br>ontrol)<br>rotati<br>rd rotation<br>compl<br>min. (50<br>servo l<br>eed cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A<br>ips2<br>hen so<br>direction<br>direction<br>on<br>tion<br>etion a<br>0%) du<br>ock im<br>amp ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>zdir<br>et to (<br>ction<br>on in v<br>11<br>advand<br>uring<br>valid                                                                            | 8<br>tlet<br>which<br>: Pro<br>ce                                                           | the n<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normali<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normalized<br>Normaliz | nation                                                                                                                                                             | 5<br>fdir<br>aning<br>nas so<br>on con<br>n min.<br>n serv<br>speed                                                                                  | 4<br>oscl<br>when<br>far rot<br>npletio<br>(50%)<br>vo lock<br>clamp                                                                        | 3<br>pyf)<br>set<br>tated<br>n adv                                                                                | x d<br>to<br>und<br>van<br>ng<br>d                                                                                                                | der<br>ce                                 | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0                                              |
| SP097  | SPECO* | Orientation specification | < <b>F</b> (<br>0<br>0<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F odi<br>stp o<br>bit<br>odi<br>odi<br>odi<br>odi<br>odi<br>odi<br>odi<br>odi<br>odi<br>odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )S-<br>E<br>rze<br>1<br>2<br>in<br>x                                                          | C1-SPH><br>D C<br>ksft gchg<br>Mean<br>Orientation 10: Previous<br>speed c<br>01: Forward<br>10: Backwan<br>Orientation r<br>orientation s<br>Indexing sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B<br>timp<br>ing w<br>rotatio<br>s (the<br>control)<br>rotati<br>rd rotation<br>compl<br>min. (50<br>servo l<br>eed cl<br>deteo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>ips2<br>hen so<br>direction<br>direction<br>on<br>tion<br>etion a<br>0%) du<br>ock im<br>amp in<br>tor po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9<br>zdir<br>et to (<br>ction<br>on in v<br>11<br>advand<br>uring<br>valid<br>larity:                                                                 | 8<br>tlet<br>which<br>: Pro<br>ce                                                           | xplar<br>7<br>vg8:<br>the n<br>hibite<br>Ori<br>Val<br>Exc<br>ori<br>G<br>Ind<br>Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>x mdir<br>Me<br>notor h<br>entatic<br>id<br>citation<br>entatio<br>entatio                                                                                    | 5<br>fdir<br>aning<br>nas so<br>on con<br>n min.<br>n serv<br>speed<br>end de                                                                        | 4<br>oscl<br>when<br>far rot<br>(50%)<br>ro lock<br>clamp<br>tector                                                                         | 3<br>pyf)<br>set<br>tated<br>n adv<br>durir<br>valid<br>o valid<br>polar                                          | x d<br>to<br>und<br>van<br>ng<br>d<br>rity:                                                                                                       | der<br>ce                                 | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0                                    |
| SP097  | SPECO* | Orientation specification | < <b>F</b> (0)<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bit<br>bit<br>bit<br>odi<br>odi<br>odi<br>odi<br>odi<br>odi<br>odi<br>odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )S-<br>E<br>rze<br>1<br>2<br>in<br>2<br>x<br>cl<br>r<br>ir                                    | C1-SPH><br>D C<br>ksft gchg<br>Orientation<br>00: Previous<br>speed c<br>01: Forward<br>10: Backwai<br>Orientation<br>Orientation s<br>Invalid<br>Excitation m<br>orientation s<br>Indexing spi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B<br>timp<br>ing w<br>rotatic<br>d rotati<br>rd rotati<br>rotati<br>rd rotati<br>rd rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rotati<br>rot | A<br>ips2<br>hen so<br>n direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>di<br>di<br>direction<br>direction<br>direction<br>direction<br>direction<br>dire                                                                                                                                                                                                                                                                   | 9<br>zdir<br>2tion<br>ction<br>on in v<br>11<br>advand<br>valid<br>valid<br>larity:<br>r; +                                                           | llar e<br>8<br>tlet<br>)<br>which<br>: Pro<br>ce<br>+                                       | xplar<br>7<br>vg8:<br>the n<br>hibite<br>Orii<br>val<br>Excorie<br>Ind<br>Sp<br>Ma<br>Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nation<br>6<br>x mdir<br>Me<br>notor h<br>entatio<br>id<br>citatior<br>entatio<br>id<br>entatio<br>id<br>entatio<br>indle e                                        | 5<br>fdir<br>aning<br>nas so<br>on con<br>n min.<br>n serv<br>speed<br>end de<br>senso                                                               | 4<br>oscl<br>when<br>far rol<br>(50%)<br>co lock<br>clamp<br>tector<br>pr pola                                                              | 3<br>pyfr<br>a set<br>tated<br>n adv<br>durir<br>valic<br>o valiu<br>polar<br>rrity: -                            | x d<br>to /<br>und<br>van<br>ng<br>d<br>d<br>rity:                                                                                                | min der<br>ce                             | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| \$P097 | SPECO* | Orientation specification | < <b>F</b> c<br>0<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F     Stp     o       bit     odi       0     odi       1     odi       2     dmi       3     pyf       4     osc       5     fdi       6     md       7     vg8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )S-<br>E<br>rze<br>1<br>2<br>in<br>x<br>x<br>cl<br>r<br>ir                                    | C1-SPH><br>D C<br>ksft gchg<br>Mean<br>Orientation<br>00: Previous<br>speed ci<br>01: Forward<br>00: Action<br>10: Backwai<br>Orientation<br>invalid<br>Excitation m<br>orientation s<br>Indexing spi<br>Spindle end<br>Magnetic se<br>Speed gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B<br>timp<br>ing w<br>rotatio<br>s (the<br>pontrol)<br>rotati<br>rd rotati<br>ccompl<br>inin. (50<br>servo l<br>eed cl<br>detec<br>msor r<br>*1/8 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A<br>ips2<br>hen so<br>on<br>tition<br>etion a<br>0%) dt<br>0%) d | 9<br>zdir<br>2tion<br>ction<br>on in v<br>11<br>advand<br>valid<br>valid<br>larity:<br>r; +                                                           | llar e<br>8<br>tlet<br>)<br>which<br>: Pro<br>ce<br>+                                       | xplar<br>7<br>vg8:<br>the n<br>hibite<br>Orio<br>val<br>Excorio<br>Ind<br>Sp<br>Ma<br>Sp<br>inv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6<br>x mdir<br>Me<br>notor h<br>d<br>entatio<br>citatior<br>entatio<br>id<br>citatior<br>entatio<br>entatio<br>entatio<br>entatio<br>entatio<br>entatio<br>entatio | 5<br>fdir<br>aning<br>nas so<br>nn con<br>n min.<br>speed<br>ind de<br>sense<br>sin *1//                                                             | 4<br>osci<br>ywher<br>far rol<br>far rol<br>(50%)<br>vo lockk<br>clamp<br>tector<br>or pola<br>8 durir                                      | 3<br>pyfr<br>a set<br>tated<br>n adv<br>durir<br>valic<br>o valiu<br>polar<br>rrity: -                            | x d<br>to /<br>und<br>van<br>ng<br>d<br>d<br>rity:                                                                                                | min der<br>ce                             | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     |
| P097   | SPECO* | Orientation specification | < <b>F</b> c<br>0<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bit       bit       bit       odi       odi </td <td>S-<br/>E<br/>rze<br/>1<br/>2<br/>in<br/>2<br/>in<br/>x<br/>cl<br/>r<br/>r<br/>ir<br/>kx<br/>t</td> <td>C1-SPH&gt;<br/>DC<br/>ksft gchg<br/>Orientation<br/>O0: Previous<br/>speed c<br/>01: Forward<br/>00: Ackward<br/>Orientation invalid<br/>Excitation m<br/>orientation spi<br/>Indexing spi<br/>Spindle end<br/>Magnetic se<br/>Speed gain<br/>valid</td> <td>B<br/>timp<br/>ing w<br/>rotatico<br/>s (the<br/>ontrol)<br/>rotati<br/>d rota<br/>ccompl<br/>inin. (50<br/>detec<br/>msor p<br/>*1/8 c</td> <td>A<br/>ips2<br/>hen so<br/>on<br/>direction<br/>on<br/>tition<br/>etion a<br/>0%) du<br/>0%) du</td> <td>9<br/>2dir<br/>et to (<br/>ction<br/>on in v<br/>11<br/>advand<br/>valid<br/>larity:<br/>/: +</td> <td>lar e<br/>8<br/>tlet<br/>9<br/>which<br/>: Pro<br/>ce<br/>+</td> <td>xplan<br/>7<br/>vg8:<br/>the n<br/>hibite<br/>Ori<br/>val<br/>Exc<br/>oric<br/>Ind<br/>Sp<br/>inv<br/>Tu</td> <td>ation</td> <td>5<br/>fdir<br/>aning<br/>aas so<br/>na con<br/>n min.<br/>speed<br/>ind de<br/>senso<br/>in 1//<br/>lexing</td> <td>4<br/>oscl<br/>wher<br/>far rol<br/>(50%)<br/>o lock<br/>clamp<br/>tector<br/>or pola<br/>8 durir<br/>valid</td> <td>3<br/>pyfr<br/>set<br/>tated<br/>n adv<br/>durir<br/>valic<br/>o valic<br/>polar<br/>rrity: -<br/>ng tor</td> <td>to /<br/>und<br/>van<br/>d<br/>rity:<br/>-<br/>rque</td> <td>min der<br/>der<br/>ce</td> <td>1 0<br/>odi2 odi1<br/>Standar<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td> | S-<br>E<br>rze<br>1<br>2<br>in<br>2<br>in<br>x<br>cl<br>r<br>r<br>ir<br>kx<br>t               | C1-SPH><br>DC<br>ksft gchg<br>Orientation<br>O0: Previous<br>speed c<br>01: Forward<br>00: Ackward<br>Orientation invalid<br>Excitation m<br>orientation spi<br>Indexing spi<br>Spindle end<br>Magnetic se<br>Speed gain<br>valid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B<br>timp<br>ing w<br>rotatico<br>s (the<br>ontrol)<br>rotati<br>d rota<br>ccompl<br>inin. (50<br>detec<br>msor p<br>*1/8 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>ips2<br>hen so<br>on<br>direction<br>on<br>tition<br>etion a<br>0%) du<br>0%) du | 9<br>2dir<br>et to (<br>ction<br>on in v<br>11<br>advand<br>valid<br>larity:<br>/: +                                                                  | lar e<br>8<br>tlet<br>9<br>which<br>: Pro<br>ce<br>+                                        | xplan<br>7<br>vg8:<br>the n<br>hibite<br>Ori<br>val<br>Exc<br>oric<br>Ind<br>Sp<br>inv<br>Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ation                                                                                                                                                              | 5<br>fdir<br>aning<br>aas so<br>na con<br>n min.<br>speed<br>ind de<br>senso<br>in 1//<br>lexing                                                     | 4<br>oscl<br>wher<br>far rol<br>(50%)<br>o lock<br>clamp<br>tector<br>or pola<br>8 durir<br>valid                                           | 3<br>pyfr<br>set<br>tated<br>n adv<br>durir<br>valic<br>o valic<br>polar<br>rrity: -<br>ng tor                    | to /<br>und<br>van<br>d<br>rity:<br>-<br>rque                                                                                                     | min der<br>der<br>ce                      | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| \$P097 | SPECO* | Orientation specification | < <b>F</b> c<br>0<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br><b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                  | bit       bit       bit       codi       codi  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PS-<br>Erze<br>1<br>2<br>in<br>x<br>cl<br>r<br>ir<br>ix<br>x<br>t<br>r<br>2                   | C1-SPH><br>D C<br>ksft gchg<br>Mean<br>Orientation<br>0: Previous<br>speed ct<br>0: Previous<br>speed ct<br>speed gain<br>valid<br>Turret index<br>2nd orientati | B<br>Itmp<br>ing w<br>rotatic<br>compl<br>in. (50<br>eervo 1<br>eeed c1<br>detec<br>mnsor r<br>*1/8 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A<br>ips2<br>hen sc<br>n direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>direction<br>amp ir<br>obolarity<br>uuring fi<br>valid<br>itsubiss<br>mpleti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9<br>zdir<br>tt o (<br>ction<br>on in v<br>l11<br>advand<br>valid<br>larity:<br>r: +<br>corque<br>hi. Se<br>on inv                                    | llar e<br>8<br>tlet<br>9<br>which<br>: Pro<br>ce<br>+<br>t to "(                            | xplan<br>7<br>vg8:<br>the n<br>hibite<br>Ori<br>Ind<br>Sp<br>inv<br>Tuu<br>Tuu<br>2nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation                                                                                                                                                              | 5<br>fdir<br>aning<br>anas so<br>n con<br>n min.<br>n serv<br>speed<br>nd de<br>senss<br>in *1/<br>lexing<br>rticula                                 | 4<br>oscl<br>wher<br>far rot<br>far rot<br>(50%)<br>o lock<br>clamp<br>tector<br>valid<br>valid<br>riv des<br>comp                          | 3<br>pyfp<br>set<br>tated<br>n adv<br>v durir<br>valic<br>polar<br>rity: -<br>ng tor<br>signa<br>letion           | van<br>d<br>rity:<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                  | min (<br>1<br>der<br>ce<br>e limit        | 1 0<br>pdi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SP097  | SPECO* | Orientation specification | < <b>F</b> c<br>0<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit       bit       bit       codi       codi  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pS-<br>E<br>rze<br>1<br>2<br>in<br>2<br>in<br>x<br>cl<br>r<br>ir<br>kx<br>t<br>r<br>2<br>p    | C1-SPH><br>D C<br>ksft gchg<br>Mean<br>Orientation<br>0: Previous<br>speed ci<br>01: Forward<br>10: Backwai<br>Orientation invalid<br>Excitation m<br>orientation s<br>Indexing spi<br>Spindle end<br>Magnetic se<br>Speed gain<br>valid<br>Turret index<br>Turret index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>Itmp<br>ing w<br>rotatio<br>drota<br>ccompl<br>inn. (50<br>detec<br>insor r<br>*1/8 c<br>ing in<br>by M<br>ion ccc<br>ing 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>ips2<br>hen sc<br>n direction<br>on<br>direction<br>on<br>etion a<br>ook inn<br>amp ir<br>ctor po<br>oolarity<br>iuring fi<br>valid<br>itsubiss<br>mpletii<br>deg ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>zdir<br>zdir<br>tto (<br>ttion<br>on in v<br>11<br>advand<br>valid<br>larity:<br>r: +<br>toorque<br>hi. Se<br>on inv<br>hit                      | 8<br>tlet<br>which<br>: Pro<br>ce<br>+<br>limit<br>t to "(<br>ralid                         | xplan<br>7<br>vg8;<br>the n<br>hibite<br>Cri<br>Val<br>Ex<br>oric<br>Ind<br>Sp<br>inv<br>Ma<br>Sp<br>inv<br>Tuu<br>2nc<br>Tuu<br>2nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ation                                                                                                                                                              | 5<br>fdir<br>aning<br>as so<br>on con<br>n min.<br>n serv<br>speed<br>nd de<br>senso<br>ain *1//<br>dexing<br>rticula<br>tation<br>lexing            | 4<br>oscl<br>wher<br>far rot<br>far rot<br>(50%)<br>o lock<br>clamp<br>tector<br>or pola<br>8 durir<br>valid<br>urly des<br>compl<br>0.1-de | 3<br>pyfp<br>set<br>tated<br>n adv<br>v durir<br>valic<br>polar<br>rrity: -<br>ng tor<br>signa<br>letion<br>eg un | x d<br>to '<br>und<br>van<br>ng<br>d<br>d<br>rity:<br>-<br>que<br>nted<br>n va<br>nit                                                             | min der<br>1<br>der<br>ce<br>e limit      | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SP097  | SPECO* | Orientation specification | < <b>F</b> c<br>0<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br><b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                  | F     Stp     o       F     stp     o       bit     odi       odi     odi       i     ips       i     tips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pS-<br>E<br>rze<br>1<br>2<br>in<br>x<br>z<br>ir<br>ir<br>x<br>z<br>r<br>r<br>z<br>p           | C1-SPH><br>D C<br>ksft gchg<br>Mean<br>Orientation<br>0: Previous<br>speed ct<br>0: Previous<br>speed ct<br>speed gain<br>valid<br>Turret index<br>2nd orientati | B<br>Itmp<br>ing w<br>rotatio<br>drota<br>ccompl<br>inn. (50<br>detec<br>insor r<br>*1/8 c<br>ing in<br>by M<br>ion ccc<br>ing 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>ips2<br>hen sc<br>n direction<br>on<br>direction<br>on<br>etion a<br>ook inn<br>amp ir<br>ctor po<br>oolarity<br>iuring fi<br>valid<br>itsubiss<br>mpletii<br>deg ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>zdir<br>zdir<br>tto (<br>ttion<br>on in v<br>11<br>advand<br>valid<br>larity:<br>r: +<br>toorque<br>hi. Se<br>on inv<br>hit                      | 8<br>tlet<br>which<br>: Pro<br>ce<br>+<br>limit<br>t to "(<br>ralid                         | xplan<br>7<br>vg8;<br>the n<br>hibite<br>Cri<br>Val<br>Ex<br>oric<br>Ind<br>Sp<br>inv<br>Ma<br>Sp<br>inv<br>Tuu<br>2nc<br>Tuu<br>2nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anation                                                                                                                                                            | 5<br>fdir<br>aning<br>as so<br>on con<br>n min.<br>n serv<br>speed<br>nd de<br>senso<br>ain *1//<br>dexing<br>rticula<br>tation<br>lexing            | 4<br>oscl<br>wher<br>far rot<br>far rot<br>(50%)<br>o lock<br>clamp<br>tector<br>or pola<br>8 durir<br>valid<br>urly des<br>compl<br>0.1-de | 3<br>pyfp<br>set<br>tated<br>n adv<br>v durir<br>valic<br>polar<br>rrity: -<br>ng tor<br>signa<br>letion<br>eg un | x d<br>to '<br>und<br>van<br>ng<br>d<br>d<br>rity:<br>-<br>que<br>nted<br>n va<br>nit                                                             | min der<br>1<br>der<br>ce<br>e limit      | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SP097  | SPECO* | Orientation specification | < <b>F</b> c<br>0<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>A<br>B<br>B<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                     | F        stp     o       bit     odi       bit     odi       codi     odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pS-<br>E<br>rze<br>1<br>2<br>in<br>x<br>cl<br>r<br>ir<br>x<br>t<br>r<br>2<br>p                | C1-SPH><br>D C<br>ksft gchg<br>Orientation 1<br>00: Previous<br>speed c<br>01: Forward<br>10: Backwal<br>Crientation f<br>invalid<br>Excitation fr<br>orientation s<br>Indexing spi<br>Spindle end<br>Magnetic se<br>Speed gain<br>valid<br>Turret index<br>This is used<br>2nd orientation<br>Cain chang<br>invalid<br>Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B<br>ing w<br>rotatio<br>s (the<br>pontrol)<br>rotati<br>compl<br>inn. (56<br>servo l<br>detec<br>detec<br>detec<br>ing in<br>by M<br>ion ccc<br>ing 1–<br>eover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A<br>ips2<br>hen sc<br>n direction<br>on<br>etion a<br>cock inn<br>amp ir<br>tor po<br>oolarity<br>uuring to<br>valid<br>itsubis<br>mpleti<br>deg ur<br>during<br>target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9<br>zdir<br>tto (<br>ttion<br>on in v<br>valid<br>valid<br>larity:<br>/: +<br>oorque<br>hi. Se<br>on inv<br>it<br>orien<br>shift                     | lar e<br>8<br>tlet<br>vhich<br>: Pro<br>ce<br>+<br>t to "(<br>alid<br>tatior                | xplan<br>7<br>vg83<br>the n<br>hibite<br>Crit<br>Val<br>Exc<br>orie<br>Ind<br>Sp<br>Ma<br>Sp<br>inv<br>Tuu<br>"<br>unlı<br>2nc<br>Tuu<br>1 Ga<br>val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anation                                                                                                                                                            | 5<br>fdir<br>aning<br>aas so<br>on con<br>n min.<br>speed<br>nd de<br>sense<br>sense<br>sin *1//<br>dexing<br>rticula<br>tation<br>dexing<br>on geov | 4<br>oscl<br>ywher<br>far rol<br>(50%)<br>o lock<br>clamp<br>tector<br>or pola<br>8 durir<br>valid<br>rrly des<br>comp<br>0.1-de<br>er dur  | 3<br>pyfp<br>set<br>stated<br>n adv<br>valid<br>polar<br>rity: -<br>ng tor<br>signa<br>letion<br>eg un<br>ing o   | x d<br>to /<br>und<br>van<br>ng<br>d<br>d<br>rity:<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | min a<br>1<br>der<br>ce<br>e limit<br>lid | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SP097  | SPECO* | Orientation specification | < <b>F</b> c<br>0<br>0<br>1<br>2<br>3<br>3<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>A<br>B<br>B<br>C                                                                                                                                                                                                                                                                                                                                                                                                                     | F     Stp     o       F     stp     o       stp     o       bit     odi       odi     odi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )S-<br>E<br>rze<br>1<br>2<br>in<br>x<br>2<br>ir<br>x<br>z<br>t<br>r<br>ir<br>x<br>z<br>f<br>e | C1-SPH><br>D C<br>ksft gchg<br>Orientation 1<br>00: Previous<br>speed c<br>01: Forward<br>10: Backwal<br>Crientation of<br>invalid<br>Excitation rr<br>orientation s<br>Indexing spi<br>Spindle end<br>Magnetic se<br>Speed gain<br>valid<br>Turret index<br>This is used<br>2nd orientat<br>Turret index<br>Gain chang<br>invalid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B<br>Itmp<br>ing w<br>ing w<br>ing fing w<br>ing ing w<br>ing ing ing ing ing ing ing ing ing ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>ips2<br>hen se<br>n directi<br>on<br>directi<br>tion<br>etion a<br>20%) du<br>ock im<br>protection<br>amp ir<br>tor po<br>oolarity<br>uuring ti<br>valid<br>tsubis<br>tragel<br>targel<br>targel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9<br>zdir<br>to (<br>ction<br>on in v<br>11<br>advanu<br>uring<br>valid<br>larity:<br>; +<br>corque<br>hi. Se<br>on inv<br>hi. Se<br>on inv<br>hi. Se | 8       tlet       which       : Pro       ce       +       t to "(       alid       tation | xplan<br>7<br>vg83<br>the n<br>hibite<br>Exc<br>orid<br>Sp<br>inv<br>Tu<br>Sp<br>inv<br>Tu<br>2nn<br>2nn<br>2nn<br>4<br>0<br>n<br>d<br>0<br>rid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation<br>6<br>6<br>6<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                    | 5<br>fdir<br>aning<br>aas so<br>on con<br>n min.<br>speed<br>nd de<br>sense<br>sense<br>sin *1//<br>dexing<br>rticula<br>tation<br>dexing<br>on geov | 4<br>oscl<br>ywher<br>far rol<br>(50%)<br>o lock<br>clamp<br>tector<br>or pola<br>8 durir<br>valid<br>rrly des<br>comp<br>0.1-de<br>er dur  | 3<br>pyfp<br>set<br>stated<br>n adv<br>valid<br>polar<br>rity: -<br>ng tor<br>signa<br>letion<br>eg un<br>ing o   | x d<br>to /<br>und<br>van<br>ng<br>d<br>d<br>rity:<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | min a<br>1<br>der<br>ce<br>e limit<br>lid | 1 0<br>odi2 odi1<br>Standar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

# Parameters with an asterisk \* in the abbreviation, such as OSP\*, are validated with the NC power turned ON again. Orientation completion advance (SP097/bit2)

|                                                      |                                | 0 (Invalid)                                                                                                                                                            | 1 (Valid)                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2nd orientation<br>completion signal<br>(SP097/bitA) | 0<br>(Invalid)<br>1<br>(Valid) | In SP004 (OINP) width:<br>Orientation completion signal (ORCF)<br>Control output 4/bit4=1<br>2nd orientation completion signal (ORF2)<br>Control output 4/bitF=Invalid | In SP004 (OINP) width:<br>Orientation completion signal (ORCF)<br>Control output 4/bit4=1<br>2nd orientation completion signal (ORF2)<br>Control output 4/bitF=Invalid<br>In SP101 (DINP) width:<br>Orientation completion signal (ORCF)<br>Control output 4/bit4=1<br>In SP004 (OINP) width:<br>2nd orientation completion signal (ORF2)<br>Control output 4/bitF=1 |

| No.   | Abbr.  | Parameter name            |                                                                                                                                                                                |        |              |                                  | D              | etails            | 5       |         |                      |                |           | Set              | ting<br>(Uni | range<br>t) |           | andard      |
|-------|--------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|----------------------------------|----------------|-------------------|---------|---------|----------------------|----------------|-----------|------------------|--------------|-------------|-----------|-------------|
|       |        |                           | Con                                                                                                                                                                            | tinue  | d from       | previo                           | ous pa         | age               |         |         |                      |                |           |                  |              |             |           |             |
|       |        |                           | <fo< td=""><td>r MD</td><td>S-C1-</td><td>SPX/S</td><td>PHX:</td><td>&gt;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></fo<> | r MD   | S-C1-        | SPX/S                            | PHX:           | >                 |         |         |                      |                |           |                  |              |             |           |             |
|       |        |                           | F                                                                                                                                                                              | =   E  | D            | С                                | В              | Α                 | 9       | 8       | 7                    | 6              | 5         | 4                | 3            | 2           | 1         | 0           |
|       |        |                           | os                                                                                                                                                                             | stp or | ze ksf       | t gchg                           |                | ips2              | zdir    |         | vg8                  | x              | fdir      | oscl             | pyfx         | dmin        | odi2      | 2 odi1      |
|       |        |                           |                                                                                                                                                                                | bit    |              | Mean                             |                |                   |         |         |                      |                |           | g wher           |              |             | S         | Standard    |
|       |        |                           | 0                                                                                                                                                                              | odi1   | dire         | ntation i<br>ction (c<br>revious | nly S          | PX, SF            | PHX)    |         |                      |                |           |                  |              |             |           | 0           |
|       |        |                           | 1                                                                                                                                                                              | odi2   | 01: F        | peed co<br>orward<br>ackwar      | rotati         | on                | 11      | l: Pro  | hibite               | d              |           |                  |              |             |           | 0           |
|       |        |                           | 2                                                                                                                                                                              | dmir   | Orier        | ntation of d                     | compl          | etion a           | advan   | се      | Ori<br>val           |                | on cor    | npletic          | n adv        | ance        |           | 0           |
|       |        |                           | 3                                                                                                                                                                              | pyfx   |              | ation m<br>tation s              |                |                   |         |         |                      |                |           | (50%)<br>vo lock |              | g           |           | 0           |
|       |        |                           | 4                                                                                                                                                                              | oscl   | ****         | king spe                         |                |                   |         |         |                      | •              |           | l clam           |              |             |           | 0           |
|       |        |                           | 5                                                                                                                                                                              | fdir   | Spin         | dle end                          | detec          | tor po            | larity: | +       | Sp                   | indle e        | end de    | tector           | polari       | ty: –       |           | 0           |
|       |        |                           | 6<br>7                                                                                                                                                                         | vg8>   | Spee         | d gain                           | *1/8 d         | luring            | torque  | e limit |                      | eed ga<br>alid | ain *1/   | 8 durir          | ng toro      | que lim     | it        | 0           |
|       |        |                           | 8                                                                                                                                                                              |        |              |                                  |                |                   |         |         |                      |                |           |                  |              |             |           | 0           |
|       |        |                           | 9                                                                                                                                                                              | zdir   |              | is used                          |                |                   |         |         |                      |                |           |                  | <u>×</u>     |             |           | 0           |
|       |        |                           | A                                                                                                                                                                              | ips2   | 2nd (        | orientat                         | ion co         | mpleti            | ion inv | /alid   | 2n                   | d orier        | ntation   | comp             | letion       | valid       |           | 0           |
|       |        |                           | B<br>C                                                                                                                                                                         | gcho   | Gain         | change                           | eover          | during            | orien   | itatio  | n Ga<br>val          |                | ingeov    | ver dur          | ing or       | ientatio    | on        | 0           |
|       |        |                           | D                                                                                                                                                                              | ksft   | ****         | ntation v                        | virtual        | target            | t shift | inval   |                      |                | on virt   | ual tar          | aet sh       | ift valio   | 1         | 0           |
|       |        |                           | Е                                                                                                                                                                              | orze   | This         | is used                          | by M           | itsubis           | hi.     |         |                      |                |           |                  | 0            |             |           | 0           |
|       |        |                           | F                                                                                                                                                                              | ostp   |              | o "0" ur                         |                |                   |         |         |                      |                |           |                  |              |             |           | 0           |
| SP097 | SPECO* | Orientation specification | F                                                                                                                                                                              |        | <b>S-C1-</b> | 0 if the<br>SPM><br>C            | В              | A<br>ips2         | 9       | 8       | 7<br>vg8             | 6              | 5<br>fdir | 4                | 3            | 2<br>dmin   | 1<br>odi2 | 0<br>2 odi1 |
|       |        |                           |                                                                                                                                                                                | bit    | 1            | Mean                             | ina w          | hon s             | ot to ( | 'n      |                      | Ma             | aning     | ,<br>wher        | sot t        | ·<br>· 1    | (         | Standard    |
|       |        |                           | 0                                                                                                                                                                              | odi1   | 00: F        | ntation i<br>revious             | otatio<br>(the | n dire<br>directi | ction   |         | the r                |                |           | -                |              |             |           | 0           |
|       |        |                           | 1                                                                                                                                                                              | odi2   |              | peed co<br>orward<br>ackwar      | rotati         | on                |         |         | hihita               | d              |           |                  |              |             |           | 0           |
|       |        |                           | 2                                                                                                                                                                              | dmir   | Orier        | ntation                          |                |                   |         |         | hibite<br>Ori<br>val | entati         | on cor    | npletic          | n adv        | ance        |           | 0           |
|       |        |                           | 3                                                                                                                                                                              |        |              |                                  |                |                   |         |         |                      |                |           |                  | <u> </u>     |             |           | 0           |
|       |        |                           | 4                                                                                                                                                                              | oscl   | ****         | king spe                         |                |                   |         |         |                      | •              |           | l clam           |              |             |           | 0           |
|       |        |                           | 5                                                                                                                                                                              | fdir   | Spin         | dle end                          | deteo          | tor po            | larity: | +       | Sp                   | indle e        | end de    | tector           | polari       | ty: –       |           | 0           |
|       |        |                           | 6                                                                                                                                                                              | vg8>   | Spee         | d gain                           | *1/8 c         | luring            | torque  | e limit |                      | eed ga<br>alid | ain *1/   | 8 durir          | ng toro      | que lim     | it        | 0           |
|       |        |                           | 8                                                                                                                                                                              | 1      | Vanu         |                                  |                |                   |         |         |                      | and            |           |                  |              |             |           | 0           |
|       |        |                           | 9                                                                                                                                                                              |        |              |                                  |                |                   |         |         |                      |                |           |                  |              |             |           | 0           |
|       |        |                           | A                                                                                                                                                                              | ips2   | 2nd o        | orientat                         | ion co         | mpleti            | ion inv | /alid   | 2n                   | d orier        | ntation   | comp             | letion       | valid       |           | 0           |
|       |        |                           | B         Gain changeover during orientation         Gain changeover during orientation           C         gchg         involid         valid                                 |        |              |                                  |                |                   |         | on      | 0                    |                |           |                  |              |             |           |             |
|       |        |                           | O         gorig         invalid         valid           D         ksft         Orientation virtual target shift invalid         Orientation virtual target shift valid         |        |              |                                  |                |                   |         | 0       |                      |                |           |                  |              |             |           |             |
|       |        |                           | E                                                                                                                                                                              | orze   |              | is used                          |                |                   |         |         |                      |                |           | (01              |              |             |           | 0           |
|       |        |                           | F                                                                                                                                                                              | ostp   | Set t        | o "0" ur                         | less p         | oarticu           | larly c | -       |                      |                |           |                  | <u> </u>     |             |           | 0           |
|       |        |                           | F         ostp         Set to "0" unless particularly designated.           (Note 1)         Set 0 if there is no particular explanation for the bit.                          |        |              |                                  |                |                   |         |         |                      |                |           |                  |              |             |           |             |

| No.   | Abbr. | Parameter name                                                      | Details                                                                                                                                                                                     | Setting range<br>(Unit)    | Standard setting |
|-------|-------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|
| SP098 | VGOP* | Speed loop gain<br>proportional term in<br>orientation control mode | Set the speed loop proportional gain in orientation control<br>mode.<br>When the gain is increased, rigidity is improved in the<br>orientation stop but vibration and sound become larger.  | 0 to 1000                  | 63               |
| SP099 | VGOI* | Orientation control mode<br>speed loop gain integral<br>term        | Set the speed loop integral gain in orientation control mode.                                                                                                                               | 0 to 1000                  | 60               |
| SP100 | VGOD* | Orientation control mode<br>speed loop gain delay<br>advance term   | Set a loop gain delay advance gain in orientation control<br>mode.<br>When this parameter is set to "0", PI control is applied.                                                             | 0 to 1000                  | 15               |
| SP101 | DINP* | Orientation advance<br>in-position width                            | When using the orientation completed advance function,<br>set the in-position width that is larger than the normal<br>in-position width defined in SP004 (OINP).                            | 1 to 2880<br>(1/16 deg)    | 16               |
| SP102 | OODR* | Set the excessive error detection width in orientation              |                                                                                                                                                                                             |                            | 32767            |
| SP103 | FTM*  | Index positioning<br>completion OFF time<br>timer                   | Set the time for forcedly turn OFF the index positioning<br>completion signal (different from the orientation<br>completion signal) after the leading edge of the indexing<br>start signal. | 0 to 10000<br>(ms)         | 200              |
| SP104 | TLOR* | Torque limit value after<br>orientation completed I                 | Set the torque limit value after orientation completed.<br>If the external torque limit signal is input, the torque limit<br>value set by this parameter is made invalid.                   | 0 to 120 (%)               | 100              |
| SP105 | IQGO* | Current loop gain<br>magnification 1 in<br>orientation control mode | Set the magnification for current loop gain (torque component) at orientation completion.                                                                                                   | 1 to 1000 (%)              | 100              |
| SP106 | IDGO* | Current loop gain<br>magnification 2 in<br>orientation control mode | Set the magnification for current loop gain (excitation component) at orientation completion.                                                                                               | 1 to 1000 (%)              | 100              |
| SP107 | CSP2  | Deceleration rate 2 in<br>orientation control mode                  | Set the deceleration rate in orientation mode<br>corresponding to the gear 001.<br>When this parameter is set to "0", same as SP006 (CSP).                                                  | 0 to 1000                  | 0                |
| SP108 | CSP3  | Deceleration rate 3 in<br>orientation control mode                  | Set the deceleration rate in orientation mode<br>corresponding to the gear 010.<br>When this parameter is set to "0", same as SP006 (CSP).                                                  | 0 to 1000                  | 0                |
| SP109 | CSP4  | Deceleration rate 4 in<br>orientation control mode                  | Set the deceleration rate in orientation mode<br>corresponding to the gear 011.<br>When this parameter is set to "0", same as SP006 (CSP).                                                  | 0 to 1000                  | 0                |
| SP110 | WCML  | Turret indexing control<br>Command magnification                    | <for mds-c1-sph=""><br/>Specify the gear ratio for the motor axis and the turret<br/>axis.</for>                                                                                            | 0 to 32767<br>(fold)       | 0                |
|       |       |                                                                     | <for mds-c1-sp="" sphx="" spm="" spx=""><br/>Not used. Set "0".</for>                                                                                                                       | 0                          | 0                |
| CD444 |       | Turret indexing control                                             | <for mds-c1-sph=""><br/>Specify the deceleration rate for turret indexing control.</for>                                                                                                    | 0 to 32767<br>(1/256-fold) | 0                |
| SP111 | WDEL  | Deceleration<br>magnification                                       | <for mds-c1-sp="" sphx="" spm="" spx=""><br/>Not used. Set "0".</for>                                                                                                                       | 0                          | 0                |
| SP112 | WCLP  | Turret indexing control                                             | <for mds-c1-sph=""><br/>Specify the clamp speed for the turret axis end.</for>                                                                                                              | 0 to 32767<br>(r/min)      | 0                |
| 01112 | VVCLF | Clamp speed                                                         | <for mds-c1-sp="" sphx="" spm="" spx=""><br/>Not used. Set "0".</for>                                                                                                                       | 0                          | 0                |
| SP113 | WINP  | Turret indexing control<br>In-position width                        | <for mds-c1-sph=""><br/>Specify the in-position detection range for turret indexing control.</for>                                                                                          | 0 to 32767<br>(0.088deg)   | 0                |
|       |       |                                                                     | <for mds-c1-sp="" sphx="" spm="" spx=""><br/>Not used. Set "0".</for>                                                                                                                       | 0                          | 0                |

| No.   | Abbr. | Parameter name                                                                | Details                                                                                                                                                                                                                                                                                                     | Setting range<br>(Unit)      | Standard setting                                |
|-------|-------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------|
| SP114 | OPER  | Orientation control<br>pulse miss check value                                 | An alarm "5C" will occur if the pulse miss value at the<br>orientation stop exceeds this setting value. (Note that this<br>is invalid when set to "0".)<br>In this parameter, set the value to fulfill the following<br>conditions.<br>SP114 setting value > 1.5 × SP004<br>(orientation in-position width) | 0 to 32767<br>(360 deg/4096) | 0                                               |
| SP115 | OSP2  | Orientation control<br>speed clamp value 2                                    | When the orientation clamp speed is changed by the<br>control input, this parameter setting will be used instead of<br>SP005: OSP.<br>Indexing speed clamp valid<br>This parameter is used when (SP097: SPEC0/bit4 = 1).                                                                                    | 0 to 32767<br>(r/min)        | 0                                               |
| SP116 | OPYVR | Minimum excitation value<br>after changeover (2nd<br>minimum excitation rate) | Set the minimum excitation rate when position control input or external input is selected.                                                                                                                                                                                                                  | 0 to 100 (%)                 | 0                                               |
| SP117 | ORUT  | Fixed control constant                                                        | Set by Mitsubishi. Set "0" unless designated in particular.                                                                                                                                                                                                                                                 | 0                            | 0                                               |
| SP118 | ORCT  | Orientation control<br>number of retry times                                  | Set the number of times to retry when an orientation or<br>feedback error occurs.<br>The warning (A9) is issued while retrying orientation, and<br>an alarm (5C) is issued when the set number of times is<br>exceeded.                                                                                     | 0 to 100<br>(time)           | 0                                               |
| SP119 | MPGH  | Orientation control<br>position loop gain H coil<br>magnification             | Set the compensation magnification of the orientation<br>position loop gain for the H coil.<br>H coil orientation position loop gain<br>= SP001 (or SP002) × SP119/256<br>When set to "0", will become the same as SP001 or<br>SP002.                                                                       | 0 to 2560<br>(1/256-fold)    | 0                                               |
| SP120 | MPGL  | Orientation control<br>position loop gain L coil<br>magnification             | Set the compensation magnification of the orientation<br>position loop gain for the L coil.<br>L coil orientation position loop gain<br>= SP001 (or SP002) × SP120/256<br>When set to "0", will become the same as SP001 or<br>SP002.                                                                       | 0 to 2560<br>(1/256-fold)    | 0                                               |
| SP121 | MPCSH | Orientation deceleration rate H coil magnification                            | Set the compensation magnification of the orientation<br>deceleration rate for the H coil.<br>Orientation deceleration rate for the H coil<br>= SP006 × SP121/256<br>When set to "0", will become the same as SP006.                                                                                        | 0 to 2560<br>(1/256-fold)    | 0                                               |
| SP122 | MPCSL | Orientation deceleration rate L coil magnification                            | Set the compensation magnification of the orientation<br>deceleration rate for the L coil.<br>Orientation deceleration rate for the L coil<br>= SP006 × SP122/256<br>When set to "0", will become the same as SP006.                                                                                        | 0 to 2560<br>(1/256-fold)    | 0                                               |
| SP123 | MGD0  | Magnetic sensor output<br>peak value                                          | This parameter is used for adjusting the operation during magnetic sensor orientation. Set the peak value of the magnetic sensor output. If the gap between the sensor and magnet is small, set a large value. If the gap is large, set a small value.                                                      | 1 to 10000                   | Standard<br>magnet=542<br>Compact<br>magnet=500 |
| SP124 | MGD1  | Magnetic sensor linear<br>zone width                                          | This parameter is used for adjusting the operation during magnetic sensor orientation. Set the width of the magnetic sensor linear zone. If the installation radius of the magnet is large, set a small value.                                                                                              | 1 to 10000                   | Standard<br>magnet=768<br>Compact<br>magnet=440 |
| SP125 | MGD2  | Magnetic sensor<br>changeover point                                           | This parameter is used for adjusting the operation during magnetic sensor orientation. Set the distance from the target stop point for changing the position feedback to magnetic sensor output.<br>Normally, a value that is approx. half of SP124 (MGDI) is set.                                          | 1 to 10000                   | Standard<br>magnet=384<br>Compact<br>magnet=220 |

| No.   | Abbr.                                                      | Parameter name                                                          | Details                                                                                                                                                                                                                                                                  | Setting range<br>(Unit)   | Standard setting |
|-------|------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|
| SP126 | MPGM                                                       | Orientation position loop<br>gain M coil magnification                  | <for mds-c1-spm=""><br/>Set the compensation magnification of the orientation<br/>position loop gain for the M coil.<br/>M coil orientation position loop gain<br/>= SP001 (or SP002) × SP119/256<br/>When set to "0", will become the same as SP001 or<br/>SP002.</for> | 0 to 2560<br>(1/256-fold) | 0                |
|       |                                                            |                                                                         | <for mds-c1-sp="" sph="" sphx="" spx=""><br/>Not used. Set "0".</for>                                                                                                                                                                                                    | 0                         | 0                |
| SP127 | 127 MPCSM Orientation decelerati<br>rate M coil magnificat |                                                                         | <b>For MDS-C1-SPM&gt;</b><br>Set the compensation magnification of the orientation<br>deceleration rate for the M coil.<br>Orientation deceleration rate for the M coil<br>= SP006 × SP121/256<br>When set to "0", will become the same as SP006.                        | 0 to 2560<br>(1/256-fld)  | 0                |
|       |                                                            |                                                                         | <for mds-c1-sp="" sphx="" spm="" spx=""><br/>Not used. Set "0".</for>                                                                                                                                                                                                    | 0                         | 0                |
| SP128 | OXKPM                                                      | After orientation<br>completion,<br>Position loop gain<br>magnification | <for mds-c1-spm=""><br/>Set the switched M coil position loop gain magnification<br/>after orientation when gain switching is enabled (SP097:<br/>SPEC0/bitC=1).</for>                                                                                                   | 0 to 2560<br>(1/256-fold) | 0                |
|       |                                                            | (M coil)                                                                | <for mds-c1-sp="" sphx="" spm="" spx=""><br/>Not used. Set "0".</for>                                                                                                                                                                                                    | 0                         | 0                |

| For MDS-C1-SP/SPH/SPX/SPHX>         F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       yg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       Semi-closed loop (Gear 1 : 1 only         0       fclx       Closed loop       Semi-closed loop (Gear 1 : 1 only         1       adin       Interpolation A/D compensation invalid       Interpolation A/D compensation valid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0<br>adin fclx                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| zrtn     ptyp     fb9x     zrtd     zrn2     zdir     ztyp     vg8x     fdir     phos     rtrn       bit     Meaning when set to 0     Meaning when set to 0     Meaning when set to 1       0     fclx     Closed loop     Semi-closed loop (Gear 1 : 1 only       1     adin     Interpolation A/D compensation     Interpolation A/D compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
| bit         Meaning when set to 0         Meaning when set to 1           0         fclx         Closed loop         Semi-closed loop (Gear 1 : 1 only           1         adin         Interpolation A/D compensation         Interpolation A/D compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | din fclx                                                                                                                                                                                                                                                                                                                                                    |
| 0     fclx     Closed loop     Semi-closed loop (Gear 1 : 1 only       1     adin     Interpolation A/D compensation     Interpolation A/D compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |
| 0         fclx         Closed loop         Semi-closed loop (Gear 1 : 1 only           1         adin         Interpolation A/D compensation         Interpolation A/D compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standard                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                           |
| 2 rtrn Position monitor during ready OFF Position monitor during ready OFF valid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                           |
| 3 phos High-gain servo synchronous High-gain servo synchronous compensation invalid compensation valid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                           |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                           |
| 5 fdir Position detector polarity (+) Position detector polarity (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                           |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                           |
| 7     vg8x     Speed gain × 1/8 during torque limit     Speed gain × 1/8 during torque limit       10     vg8x     vg8x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                           |
| 8 ztyp Z-phase type: Normal start up Z-phase type: Start up only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                           |
| 9 zdir Z-phase rising polarity (+) Z-phase rising polarity (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                           |
| B     zrn2       C     zrtd   This is used by Mitsubishi. Set to "0" unless particularly designated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                           |
| D fb9x Speed feedback, Standard (PLG) Speed feedback<br>90,000 pulse detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                           |
| E ptyp Position control switch type: After deceleration stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                           |
| F         zrtn         Zero point return direction: CCW         Zero point return direction: CW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                           |
| 29 SPECC* C-axis specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                             |
| <pre><for mds-c1-spm=""></for></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 0                                                                                                                                                                                                                                                                                                                                                         |
| <for mds-c1-spm=""></for>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0<br>fclx                                                                                                                                                                                                                                                                                                                                                 |
| <pre><for mds-c1-spm=""> </for></pre> F     E     D     C     B     A     9     8     7     6     5     4     3     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |
| <pre><for mds-c1-spm=""> </for></pre> F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fclx                                                                                                                                                                                                                                                                                                                                                        |
| <for mds-c1-spm="">          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       Semi-closed loop (Gear 1 : 1 only         1</for>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fclx<br>Standard                                                                                                                                                                                                                                                                                                                                            |
| For MDS-C1-SPM>          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       Semi-closed loop (Gear 1 : 1 only         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fclx<br>Standard<br>0                                                                                                                                                                                                                                                                                                                                       |
| For MDS-C1-SPM>          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       O       fclx       Closed loop       Semi-closed loop (Gear 1 : 1 only         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fclx       Standard       0       0       0                                                                                                                                                                                                                                                                                                                 |
| For MDS-C1-SPM>          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       Semi-closed loop (Gear 1 : 1 only         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fclx<br>Standard<br>0<br>0                                                                                                                                                                                                                                                                                                                                  |
| <for mds-c1-spm="">          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       yg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       Semi-closed loop (Gear 1 : 1 only         0       fclx       Closed loop       Semi-closed loop (Gear 1 : 1 only         1      </for>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fclx       Standard       0       0       0                                                                                                                                                                                                                                                                                                                 |
| For MDS-C1-SPM>         F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 0       Meaning when set to 1       0       fclx       Closed loop       Semi-closed loop (Gear 1 : 1 only         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fclx           Standard           0           0           1           0           0                                                                                                                                                                                                                                                                         |
| <for mds-c1-spm="">          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       yg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       O       fclx       Closed loop       Semi-closed loop (Gear 1 : 1 only         1      </for>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                             |
| For MDS-C1-SPM>          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 0       Meaning when set to 1       0       fcix       Closed loop       Semi-closed loop (Gear 1 : 1 only         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fclx           Standard           0           0           1           0           0           1           0           0           1           0           0           0           0                                                                                                                                                                         |
| For MDS-C1-SPM>          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       yog8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 0       Meaning when set to 1       0       fcix       Closed loop       Semi-closed loop (Gear 1 : 1 only         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fclx           Standard           0           0           1           0           0           1           0           0           1           0           0           0           0           0           0           0           0           0           0           0                                                                                     |
| <for mds-c1-spm="">          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fbyp       ztd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 0       Meaning when set to 1         0       fclx       Closed loop       Semi-closed loop (Gear 1 : 1 only         1      </for>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                     |
| <b>For MDS-C1-SPM&gt;</b> F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       yg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       O       fclx       Closed loop       Semi-closed loop (Gear 1 : 1 only         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 |
| For MDS-C1-SPM>          F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 0       Meaning when set to 1       0       fcir       1       1       1         2       rtm       Position monitor during ready OFF       Semi-closed loop (Gear 1 : 1 only       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0</td> | fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                     |
| F E D C B A 9 8 7 6 5 4 3 2             zrtn ptyp fb9x zrtd zrn2 zdir ztyp vg8x fdir phos rtm             bit         Meaning when set to 0         Meaning when set to 1            0         fclx         Closed loop         Semi-closed loop (Gear 1 : 1 only            1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0             |
| F       E       D       C       B       A       9       8       7       6       5       4       3       2         zrtn       ptyp       fb9x       zrtd       zrn2       zdir       ztyp       vg8x       fdir       phos       rtm         bit       Meaning when set to 0       Meaning when set to 1       O       fclx       Closed loop       Semi-closed loop (Gear 1 : 1 only         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0             |

| No.   | Abbr.  | Parameter name                                                                | Details                                                                                                                                                                         | Setting range<br>(Unit) | Standard setting |
|-------|--------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
| SP130 | PGC1   | First position loop gain<br>for cutting control on<br>C-axis                  | Set the position loop gain when the first gain is selected for C axis cutting.                                                                                                  | 1 to 100<br>(rad/s)     | 15               |
| SP131 | PGC2   | Second position loop<br>gain for cutting control on<br>C-axis                 | Set the position loop gain when the second gain is selected for C axis cutting.                                                                                                 | 1 to 100<br>(rad/s)     | 15               |
| SP132 | PGC3   | Third position loop gain<br>for cutting control on<br>C-axis                  | Set the position loop gain when the third gain is selected for C-axis cutting.                                                                                                  | 1 to 100<br>(rad/s)     | 15               |
| SP133 | PGC4   | Stop position loop gain<br>for cutting control on<br>C-axis                   | Set the position loop gain for stopping when carrying out C-axis cutting control.                                                                                               | 1 to 100<br>(rad/s)     | 15               |
| SP134 | VGCP0* | C-axis non-cutting<br>control speed loop gain<br>proportional item            | Set the speed loop proportional gain in C-axis non-cutting control mode.                                                                                                        | 0 to 5000               | 63               |
| SP135 | VGCI0* | C-axis non-cutting<br>control speed loop gain<br>integral item                | Set the speed loop integral gain in C-axis non-cutting control mode.                                                                                                            | 0 to 5000               | 60               |
| SP136 | VGCD0* | C-axis non-cutting<br>control speed loop gain<br>delay advance item           | Set the speed loop delay advance gain in C-axis<br>non-cutting control mode.<br>When this parameter is set to "0", PI control is exercised.                                     | 0 to 5000               | 15               |
| SP137 | VGCP1* | First speed loop gain<br>proportional item for<br>C-axis cutting control      | Set the speed loop proportional gain when the first gain is selected for C-axis cutting control.                                                                                | 0 to 5000               | 63               |
| SP138 | VGCI1* | First speed loop gain<br>integral item for cutting<br>control on C-axis       | Set the speed loop integral gain when the first gain is selected for C-axis cutting control.                                                                                    | 0 to 5000               | 60               |
| SP139 | VGCD1* | First speed loop gain<br>delay advance item for<br>cutting control on C-axis  | Set the speed loop delay advance gain when the first gain<br>is selected for curing on the C-axis cutting control.<br>When this parameter is set to "0", PI control is applied. | 0 to 5000               | 15               |
| SP140 | VGCP2* | Second speed loop gain<br>proportional item for<br>cutting control on C-axis  | Set the speed loop proportional gain when the second gain is selected for C-axis cutting control.                                                                               | 0 to 5000               | 63               |
| SP141 | VGCI2* | Second speed loop gain<br>integral item for cutting<br>control on C-axis      | Set the speed loop integral gain when the second gain is selected for C-axis cutting control.                                                                                   | 0 to 5000               | 60               |
| SP142 | VGCD2* | Second speed loop gain<br>delay advance item for<br>cutting control on C-axis | Set the speed loop delay advance gain when the second gain is selected for C-axis cutting.<br>When this parameter is set to "0", PI control is applied.                         | 0 to 5000               | 15               |
| SP143 | VGCP3* | Third speed loop gain<br>proportional item for<br>cutting control on C-axis   | Set the speed loop proportional gain when the third gain is selected for C-axis cutting control.                                                                                | 0 to 5000               | 63               |
| SP144 | VGCI3* | Third speed loop gain<br>integral item for cutting<br>control on C-axis       | Set the speed loop integral gain when the third gain is selected for C-axis cutting control.                                                                                    | 0 to 5000               | 60               |
| SP145 | VGCD3* | Third speed loop gain<br>delay advance item for<br>cutting on C-axis          | Set the speed loop delay advance gain when the third gain is selected for C-axis cutting control.<br>When this parameter is set to "0", PI control is applied.                  | 0 to 5000               | 15               |
| SP146 | VGCP4* | Speed loop gain propor-<br>tional item for stop of<br>cutting on C-axis       | Set the speed loop proportional gain when C-axis cutting is stopped.                                                                                                            | 0 to 5000               | 63               |
| SP147 | VGCI4* | Speed loop gain integral<br>item for stop of cutting on<br>C-axis             | Set the speed loop integral gain when C-axis cutting is stopped.                                                                                                                | 0 to 5000               | 60               |
| SP148 | VGCD4* | Speed loop gain delay<br>advance item for stop of<br>cutting on C-axis        | Set the speed loop delay advance gain when C-axis<br>cutting is stopped.<br>When this parameter is set to "0", PI control is applied.                                           | 0 to 5000               | 15               |
| SP149 | CZRN   | C-axis control zero point return speed                                        | This parameter is valid when SP129 (SPECC)/bitE is set<br>to "0".<br>Set the zero point return speed used when the speed loop<br>changes to the position loop.                  | 1 to 500<br>(r/min)     | 50               |

| No.   | Abbr.  | Parameter name                                                                 | Details                                                                                                                                                                                                                                                                                                   | Setting range<br>(Unit)                                 | Standard setting |
|-------|--------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------|
| SP150 | CPDT   | C-axis control zero point return deceleration point                            | This parameter is valid when SP129 (SPECC)/bitE is set<br>to "0".<br>Set the deceleration rate where the machine starts to<br>decelerate when it returns to the target stop point during<br>C-axis zero point return.<br>When the machine tends to overshoot at the stop point,<br>set the smaller value. | 1 to 10000                                              | 1                |
| SP151 | CPSTL  | C-axis zero point return shift amount (low byte)                               | This parameter is valid when SPECC (SP129)/bitE is set to "0".                                                                                                                                                                                                                                            | 00000000 to<br>FFFFFFF                                  | 0000             |
| SP152 | CPSTH  | C-axis zero point return<br>shift amount (high byte)                           | Set the C-axis zero point position.<br>(HEX setting)                                                                                                                                                                                                                                                      | Only for SPX<br>00000000 to<br>00057E3F<br>(1/1000 deg) | 0000             |
| SP153 | CINP   | C-axis control in-position width                                               | Set the position error range for outputting the in-position<br>signal during C-axis control.<br>(HEX setting)                                                                                                                                                                                             | 0000 to FFFF<br>(1/1000 deg)                            | 03E8             |
| SP154 | CODRL* | Excessive error width on C-axis control (low byte)                             | Set the excessive error width on the C-axis control.<br>(HEX setting)                                                                                                                                                                                                                                     | 00000000 to<br>FFFFFFF                                  | D4C0             |
| SP155 | CODRH* | Excessive error width on<br>C-axis control (high byte)                         |                                                                                                                                                                                                                                                                                                           | (1/1000 deg)                                            | 0001             |
| SP156 | OVSH   | C-axis control overshoot compensation                                          | Set this to prevent overshooting when shifting from<br>movement to stopping with C-axis control.<br>(Set this referring to the load meter display when<br>overshooting occurred.)                                                                                                                         | 0 to 1000<br>(0.1%)                                     | 0                |
| SP157 |        |                                                                                | Not used. Set to "0".                                                                                                                                                                                                                                                                                     | 0                                                       | 0                |
| SP158 |        |                                                                                | Not used. Set to "0".                                                                                                                                                                                                                                                                                     | 0                                                       | 0                |
| SP159 | CPY0   | C-axis non-cutting<br>control variable<br>excitation ratio                     | Set the minimum value of variable excitation ratio for non-cutting control on the C-axis.                                                                                                                                                                                                                 | 0 to 100 (%)                                            | 50               |
| SP160 | CPY1   | C-axis cutting control variable excitation ratio                               | Set the minimum variable excitation ratio for cutting control on the C-axis.                                                                                                                                                                                                                              | 0 to 100 (%)                                            | 100              |
| SP161 | IQGC0* | Current loop gain<br>magnification 1 for<br>non-cutting control on<br>C-axis   | Set the magnification of current loop gain (torque component) for C-axis non-cutting control.                                                                                                                                                                                                             | 1 to 1000 (%)                                           | 100              |
| SP162 | IDGC0* | Current loop gain<br>magnification 2 for<br>non-cutting control on<br>C-axis   | Set the magnification of current loop gain (excitation component) for C-axis non-cutting control.                                                                                                                                                                                                         | 1 to 1000 (%)                                           | 100              |
| SP163 | IQGC1* | Current loop gain<br>magnification 1 for<br>cutting control on C-axis          | Set the magnification of current loop gain (torque component) for C-axis cutting control.                                                                                                                                                                                                                 | 1 to 1000 (%)                                           | 100              |
| SP164 | IDGC1* | Current loop gain<br>magnification 2 for<br>cutting control on C-axis          | Set the magnification of current loop gain (excitation component) for C-axis cutting control.                                                                                                                                                                                                             | 1 to 1000 (%)                                           | 100              |
| SP165 | PG2C   | C-axis control position<br>loop gain 2                                         | Set the second position loop gain when high-gain control<br>is carried out for control of the C-axis.<br>This parameter is applied to all the operation modes of<br>C-axis control.<br>When this function is not used, assign "0".                                                                        | 0 to 999<br>(rad/s)                                     | 0                |
| SP166 | PG3C   | C-axis control position<br>loop gain 3                                         | Set the third position loop gain when high-gain control is<br>carried out for control of the C-axis.<br>This parameter is applied to all the operation modes of<br>C-axis control.<br>When this function is not used, assign "0".                                                                         | 0 to 999<br>(rad/s)                                     | 0                |
| SP167 | PGU*   | Position loop gain for<br>increased spindle<br>holding force                   | Set the position loop gain for when the disturbance observer is valid.                                                                                                                                                                                                                                    | 0 to 999<br>(rad/s)                                     | 15               |
| SP168 | VGUP*  | Speed loop gain<br>proportional item for<br>increased spindle<br>holding force | Set the speed loop gain proportional item for when the disturbance observer is valid.                                                                                                                                                                                                                     | 0 to 5000                                               | 63               |
| SP169 | VGUI*  | Speed loop gain integral<br>item for increased<br>spindle holding force        | Set the speed loop gain integral item for when the disturbance observer is valid.                                                                                                                                                                                                                         | 0 to 5000                                               | 60               |

| No.   | Abbr. | Parameter name                                                                  | Details                                                                                                                                | Setting range<br>(Unit) | Standard setting |
|-------|-------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
| SP170 | VGUD* | Speed loop gain delay<br>advance item for<br>increased spindle<br>holding force | Set the speed loop gain delay advance item for when the disturbance observer is valid.                                                 | 0 to 5000               | 15               |
| SP171 |       |                                                                                 | Not used. Set "0".                                                                                                                     | 0                       | 0                |
| SP172 |       |                                                                                 | Not used. Set "0".                                                                                                                     | 0                       | 0                |
| SP173 |       |                                                                                 | Not used. Set "0".                                                                                                                     | 0                       | 0                |
| SP174 |       |                                                                                 | Not used. Set "0".                                                                                                                     | 0                       | 0                |
| SP175 |       |                                                                                 | Not used. Set "0".                                                                                                                     | 0                       | 0                |
| SP176 | ZGOF  | Gate OFF delay time<br>after zero speed                                         | <for mds-c1-sp="" sph="" sphx="" spx=""><br/>Set the time until gate OFF after zero speed (ZS) is<br/>detected at speed control.</for> | 0 to 1000<br>(10ms)     | 0                |
|       |       | detection                                                                       | < For MDS-C1-SPM><br>Not used. Set "0".                                                                                                | 0                       | 0                |

| No.   | Abbr.  | Parameter name                        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         | Det                      | ails                                                                   |                                                                         |                                                                                                         |                                                             |                                                    |                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|--------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |        |                                       | <fo< th=""><th>r MDS</th><th>6-C1-S</th><th>P/SPI</th><th>H/SP)</th><th>X/SP</th><th>HX&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fo<>                                                                                                                                                                                                                                     | r MDS                                                 | 6-C1-S                                                                                        | P/SPI                                                                                                            | H/SP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X/SP                                             | HX>                                     |                          |                                                                        |                                                                         |                                                                                                         |                                                             |                                                    |                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |        |                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                           | E                                                     | D                                                                                             | С                                                                                                                | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Α                                                | 9                                       | 8                        | 7                                                                      | 6                                                                       | 5                                                                                                       | 4                                                           | 3                                                  | 2                       | 1        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | odx8                                                                                          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         | phos                     |                                                                        |                                                                         | fdir                                                                                                    |                                                             | pyfx                                               | rtrn                    | adin     | n fclx                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             | bit                                                   |                                                                                               | Meani                                                                                                            | ina wl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hen se                                           | et to 0                                 | )                        |                                                                        | Me                                                                      | aning                                                                                                   | when                                                        | set to                                             | o 1                     | S        | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |        |                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                           | fclx                                                  | Close                                                                                         |                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                         |                          | Sen                                                                    |                                                                         | ed loc                                                                                                  |                                                             |                                                    |                         |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                           | adin                                                  | invalid                                                                                       |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          | Inte<br>valie                                                          |                                                                         | ion A/I                                                                                                 | ) com                                                       | pensa                                              | tion                    |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                           | rtrn                                                  | Positio<br>invalio                                                                            | on mor<br>I                                                                                                      | nitor d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uring I                                          | ready                                   | OFF                      | Pos<br>valio                                                           |                                                                         | nonito                                                                                                  | r durin                                                     | ig read                                            | dy OF                   | F        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                           | pyfx                                                  | Norma                                                                                         | al excit                                                                                                         | tation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                         |                          |                                                                        | ition lo<br>ong)                                                        | oop ex                                                                                                  | citatio                                                     | on fixed                                           | d                       |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          | _                                                                      |                                                                         |                                                                                                         |                                                             |                                                    |                         |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                           | fdir                                                  |                                                                                               | on dete<br>ositive                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          |                                                                        |                                                                         | letecto<br>ative di                                                                                     |                                                             |                                                    |                         |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          |                                                                        |                                                                         |                                                                                                         |                                                             |                                                    |                         |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | Lliab (                                                                                       |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nobro                                            | 20110                                   |                          | Llia                                                                   | h aoin                                                                  | 0000                                                                                                    | ovnok                                                       | aronoi                                             |                         |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                           | phos                                                  |                                                                                               | gain se<br>ensatic                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | UUS                                     |                          |                                                                        |                                                                         | servo<br>ation v                                                                                        |                                                             |                                                    | 19                      |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          |                                                                        |                                                                         |                                                                                                         |                                                             |                                                    |                         | <u> </u> | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | A<br>B                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          |                                                                        |                                                                         |                                                                                                         |                                                             |                                                    |                         |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | C                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | -                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          | -                                                                      |                                                                         |                                                                                                         |                                                             |                                                    |                         | -+       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | D                                                                                                                                                                                                                                                                                                                                                                                                                           | odx8                                                  | Exces                                                                                         | sive er                                                                                                          | rror de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | etectio                                          | n widt                                  | h                        |                                                                        |                                                                         | tion of<br>width                                                                                        |                                                             |                                                    |                         |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          |                                                                        |                                                                         |                                                                                                         |                                                             |                                                    |                         |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |        |                                       | E                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          |                                                                        |                                                                         |                                                                                                         |                                                             |                                                    |                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P177  | SPECS* | Spindle synchronous<br>specifications | F<br>(N                                                                                                                                                                                                                                                                                                                                                                                                                     | ote 1)<br>ote 2)                                      | bits<br>SP09<br>Set (                                                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          |                                                                        |                                                                         |                                                                                                         |                                                             |                                                    | rectio                  | on wif   | 0<br>th                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SP177 | SPECS* |                                       | F<br>(N<br>(N                                                                                                                                                                                                                                                                                                                                                                                                               | ote 2)<br>r MDS                                       | SP09<br>Set (<br>5-C1-S                                                                       | 97.<br>D if the                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                         |                          |                                                                        |                                                                         |                                                                                                         |                                                             |                                                    | rectio                  | on wit   |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P177  | SPECS* |                                       | F<br>(N<br>(N<br><fo< th=""><th>ote 2)<br/>r MDS</th><th>SP09<br/>Set (<br/>5-C1-S</th><th>97.<br/>D if the<br/><b>PM&gt;</b></th><th>ere is</th><th>no pa</th><th>articu<br/>9</th><th>lar e</th><th>plan</th><th>ation</th><th>for th</th><th>e bit.</th><th>1</th><th>2</th><th>:</th><th>th</th></fo<>                                                                                                                  | ote 2)<br>r MDS                                       | SP09<br>Set (<br>5-C1-S                                                                       | 97.<br>D if the<br><b>PM&gt;</b>                                                                                 | ere is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | no pa                                            | articu<br>9                             | lar e                    | plan                                                                   | ation                                                                   | for th                                                                                                  | e bit.                                                      | 1                                                  | 2                       | :        | th                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P177  | SPECS* |                                       | F<br>(N<br>(N<br><fo< td=""><td>ote 2)<br/>r MDS</td><td>SP09<br/>Set (<br/>S-C1-S<br/>D<br/>odx8</td><td>97.<br/>D if the<br/><b>PM&gt;</b></td><td>ere is<br/>B</td><td>no pa</td><td>articu<br/>9</td><td>lar ex<br/>8<br/>phos</td><td>plan</td><td>ation<br/>6</td><td>for th</td><td>e bit.</td><td>3<br/>mach</td><td>2</td><td>1</td><td>th<br/>0</td></fo<>                                                        | ote 2)<br>r MDS                                       | SP09<br>Set (<br>S-C1-S<br>D<br>odx8                                                          | 97.<br>D if the<br><b>PM&gt;</b>                                                                                 | ere is<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no pa                                            | articu<br>9                             | lar ex<br>8<br>phos      | plan                                                                   | ation<br>6                                                              | for th                                                                                                  | e bit.                                                      | 3<br>mach                                          | 2                       | 1        | th<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| '177  | SPECS* |                                       | F<br>(N<br>(N<br><fo< td=""><td>ote 2)<br/>r MDS</td><td>SP09<br/>Set (<br/>S-C1-S<br/>D<br/>odx8</td><td>97.<br/>D if the<br/>PM&gt;<br/>C<br/>Meani</td><td>ere is<br/>B</td><td>no pa</td><td>articu<br/>9</td><td>lar ex<br/>8<br/>phos</td><td>(plan<br/>7</td><td>ation<br/>6<br/>Me</td><td>for th<br/>5<br/>fdir</td><td>e bit.<br/>4<br/>when</td><td>3<br/>mach</td><td>2</td><td>1</td><td>0<br/>fclx</td></fo<> | ote 2)<br>r MDS                                       | SP09<br>Set (<br>S-C1-S<br>D<br>odx8                                                          | 97.<br>D if the<br>PM><br>C<br>Meani                                                                             | ere is<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no pa                                            | articu<br>9                             | lar ex<br>8<br>phos      | (plan<br>7                                                             | ation<br>6<br>Me                                                        | for th<br>5<br>fdir                                                                                     | e bit.<br>4<br>when                                         | 3<br>mach                                          | 2                       | 1        | 0<br>fclx                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 77    | SPECS* |                                       | F<br>(N)<br><fo<br>F<br/>0<br/>1</fo<br>                                                                                                                                                                                                                                                                                                                                                                                    | ote 2)<br>r MD\$<br>E E<br>bit                        | SP09<br>Set (<br>S-C1-S<br>D<br>odx8                                                          | 97.<br>D if the<br>PM><br>C<br>Meani                                                                             | ere is<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no pa                                            | articu<br>9                             | lar ex<br>8<br>phos      | (plan<br>7                                                             | ation<br>6<br>Me                                                        | for th                                                                                                  | e bit.<br>4<br>when                                         | 3<br>mach                                          | 2                       | 1        | 0<br>fclx<br>Standard<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 77    | SPECS* |                                       | F<br>(N)<br><fo<br>F</fo<br>                                                                                                                                                                                                                                                                                                                                                                                                | ote 2)<br>r MD\$<br>E E<br>bit                        | SP09<br>Set (<br>S-C1-S<br>odx8                                                               | 97.<br>Dif the<br>PM><br>C<br>Meani<br>d loop                                                                    | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A<br>hen se                                      | 9<br>et to 0                            | lar ex<br>8<br>phos      | 7<br>Sen                                                               | 6<br>Meani-clos                                                         | for th                                                                                                  | 4<br>when                                                   | 3<br>mach<br>set to                                | 2<br>0 1                | 1<br>S   | 0<br>fclx<br>Standard<br>0                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | SPECS* |                                       | F<br>(N)<br><fo<br>F<br/>0<br/>1<br/>2<br/>3</fo<br>                                                                                                                                                                                                                                                                                                                                                                        | ote 2)<br>r MD\$<br>E E<br>bit                        | SP09<br>Set (<br>G-C1-S<br>odx8<br>Closed<br>Autom                                            | 97.<br>D if the<br>PM><br>C<br>Meani                                                                             | B<br>ing wl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>hen se                                      | 9<br>et to 0                            | lar ex<br>8<br>phos<br>0 | 7<br>Sen<br>Auto                                                       | ation<br>6<br>Meani-clos                                                | for th                                                                                                  | e bit.                                                      | 3<br>mach<br>set to                                | 2<br>o 1                | 1<br>S   | 0<br>fclx<br>Standard<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | SPECS* |                                       | F<br>(N)<br><fo<br>F<br/>0<br/>1<br/>2</fo<br>                                                                                                                                                                                                                                                                                                                                                                              | ote 2) r MDS E E                                      | SP09<br>Set (<br>Closed<br>Autom<br>spindl                                                    | 97.<br>D if the<br>PM><br>C<br>Meani<br>d loop                                                                   | ere is<br>B<br>ing wl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>A<br>hen so<br>angeov                       | 9<br>9<br>et to 0<br>ver dui<br>invalio | lar ex<br>8<br>phos<br>0 | 7<br>Sen<br>Auto<br>spir                                               | ation<br>6<br>Meani-clos                                                | for the                                                                                                 | e bit.<br>4<br>when<br>pp<br>hange<br>nizatio               | 3<br>mach<br>set to                                | 2<br>o 1                | 1<br>S   | 0<br>fclx<br>Standard<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | SPECS* |                                       | F<br>(N)<br><fo<br>F<br/>0<br/>1<br/>2<br/>3</fo<br>                                                                                                                                                                                                                                                                                                                                                                        | ote 2) r MDS E E                                      | SP09<br>Set (<br>Closer<br>Closer<br>Autom<br>spindl                                          | 97.<br>D if the<br>PM><br>C<br>Meani<br>d loop<br>natic cc<br>e sync                                             | B<br>ing wl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>A<br>hen so<br>angeov<br>zation             | 9<br>9<br>et to 0<br>ver dui<br>invalio | lar ex<br>8<br>phos<br>0 | xplan<br>7<br>Sen<br>Auto<br>spir<br>Pos                               | ation<br>6<br>Meani-clos                                                | for th                                                                                                  | 4<br>when<br>pp<br>hange<br>nizatio                         | 3<br>mach<br>set to                                | 2<br>o 1                | 1<br>S   | 0<br>fclx<br>Standard<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | SPECS* |                                       | F<br>(N,<br>(N,<br>F<br>0<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                               | ote 2) r MDS bit fclx mach                            | SP09<br>Set (<br>Closer<br>Closer<br>Autom<br>spindl                                          | 97.<br>D if the<br>PM><br>C<br>Meani<br>d loop                                                                   | B<br>ing wl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>A<br>hen so<br>angeov<br>zation             | 9<br>9<br>et to 0<br>ver dui<br>invalio | lar ex<br>8<br>phos<br>0 | xplan<br>7<br>Sen<br>Auto<br>spir<br>Pos                               | ation<br>6<br>Meani-clos                                                | for the                                                                                                 | 4<br>when<br>pp<br>hange<br>nizatio                         | 3<br>mach<br>set to                                | 2<br>o 1                | 1<br>S   | 0<br>fclx<br>5tandard<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | SPECS* |                                       | F<br>(N/<br>(N/<br>F<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                          | ote 2) r MDS bit fclx mach                            | SP09<br>Set (<br>Closer<br>Closer<br>Autom<br>spindl                                          | 97.<br>D if the<br>PM><br>C<br>Meani<br>d loop<br>natic cc<br>e sync                                             | B<br>ing wl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>A<br>hen so<br>angeov<br>zation             | 9<br>9<br>et to 0<br>ver dui<br>invalio | lar ex<br>8<br>phos<br>0 | xplan<br>7<br>Sen<br>Auto<br>spir<br>Pos                               | ation<br>6<br>Meani-clos                                                | for th                                                                                                  | 4<br>when<br>pp<br>hange<br>nizatio                         | 3<br>mach<br>set to                                | 2<br>o 1                | 1<br>S   | 0<br>fclx<br>5tandard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                  |
|       | SPECS* |                                       | F<br>(N/<br>(N/<br>FO<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                    | ote 2) r MDS bit fclx mach                            | SP09<br>Set 0<br>odx8<br>Closed<br>Closed<br>Autom<br>spindl<br>Positic<br>(positi<br>(positi | 97.<br>D if the<br>PM><br>C<br>Meani<br>d loop<br>natic cc<br>e sync                                             | B<br>bil cha<br>bil cha<br>hroniz<br>ector c<br>ection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A A A A A A A A A A A A A A A A A A A            | 9<br>9<br>ver dui<br>invalic            | lar ex<br>8<br>phos<br>0 | xplan                                                                  | ation<br>6<br>Me:<br>mi-clos<br>omatic<br>dle sy<br>ition c<br>gative   | for th                                                                                                  | e bit.                                                      | 3<br>mach<br>set to<br>eover o<br>n vali           | 2<br>D 1<br>during      | 1<br>S   | 0<br>fclx<br>5tandard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                  |
|       | SPECS* |                                       | F<br>(N/<br>(N/<br>FO<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                    | bit<br>fclx<br>fdir                                   | SP09<br>Set 0<br>odx8<br>Closed<br>Closed<br>Autom<br>spindl<br>Positic<br>(positi<br>(positi | 97.<br>) if the<br>PM><br>C<br>Meani<br>d loop<br>matic cc<br>e sync<br>on dete<br>ve dire                       | B<br>bil cha<br>bil cha<br>hroniz<br>ector c<br>ection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A A A A A A A A A A A A A A A A A A A            | 9<br>9<br>ver dui<br>invalic            | lar ex<br>8<br>phos<br>0 | xplan                                                                  | ation<br>6<br>Me:<br>mi-clos<br>omatic<br>dle sy<br>ition c<br>gative   | for the                                                                                                 | e bit.                                                      | 3<br>mach<br>set to<br>eover o<br>n vali           | 2<br>D 1<br>during      | 1<br>S   | 0<br>fclx<br>5tandard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                  |
|       | SPECS* |                                       | F (N/<br>(N/<br>F0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9<br>A                                                                                                                                                                                                                                                                                                                                                   | bit<br>fclx<br>fdir                                   | SP09<br>Set 0<br>odx8<br>Closed<br>Closed<br>Autom<br>spindl<br>Positic<br>(positi<br>(positi | 97.<br>) if the<br>PM><br>C<br>Meani<br>d loop<br>matic cc<br>e sync<br>on dete<br>ve dire                       | B<br>bil cha<br>bil cha<br>hroniz<br>ector c<br>ection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A A A A A A A A A A A A A A A A A A A            | 9<br>9<br>ver dui<br>invalic            | lar ex<br>8<br>phos<br>0 | xplan                                                                  | ation<br>6<br>Me:<br>mi-clos<br>omatic<br>dle sy<br>ition c<br>gative   | for the                                                                                                 | e bit.                                                      | 3<br>mach<br>set to<br>eover o<br>n vali           | 2<br>D 1<br>during      | 1<br>S   | 0           fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                             |
| 7     | SPECS* |                                       | F (N/<br>(N/<br>F0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9<br>A<br>B                                                                                                                                                                                                                                                                                                                                              | bit<br>fclx<br>fdir                                   | SP09<br>Set 0<br>odx8<br>Closed<br>Closed<br>Autom<br>spindl<br>Positic<br>(positi<br>(positi | 97.<br>) if the<br>PM><br>C<br>Meani<br>d loop<br>matic cc<br>e sync<br>on dete<br>ve dire                       | B<br>bil cha<br>bil cha<br>hroniz<br>ector c<br>ection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A A A A A A A A A A A A A A A A A A A            | 9<br>9<br>ver dui<br>invalic            | lar ex<br>8<br>phos<br>0 | xplan                                                                  | ation<br>6<br>Me:<br>mi-clos<br>omatic<br>dle sy<br>ition c<br>gative   | for the                                                                                                 | e bit.                                                      | 3<br>mach<br>set to<br>eover o<br>n vali           | 2<br>D 1<br>during      | 1<br>S   | 0<br>fclx<br>5tandard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                  |
| 77    | SPECS* |                                       | F (N/<br>(N/<br>F0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9<br>A                                                                                                                                                                                                                                                                                                                                                   | bit<br>fclx<br>fdir                                   | SP09<br>Set (<br>                                                                             | 97.<br>) if the<br>PM><br>C<br>Meani<br>d loop<br>matic cc<br>e sync<br>on dete<br>ve dire<br>gain se<br>ensatic | B<br>ing wl<br>bill changed<br>bill chan | A<br>A<br>hen so<br>angeov<br>zation<br>directic | 9<br>9<br>Ver du<br>invalic<br>on       | 8<br>phos<br>phos        | 7<br>Sen<br>Sen<br>Auto<br>spir<br>Pos<br>(neg<br>Corr<br>Higl<br>corr | ation<br>6<br>Mee<br>ni-clos<br>omatico<br>ddle sy<br>ition c<br>gative | for the                                                                                                 | e bit.<br>4<br>when<br>p<br>nizatic<br>on)<br>synct<br>alid | 3<br>mach<br>set to<br>sover of<br>n vali<br>ction | 2<br>D 1<br>during<br>d | 1<br>S   | 0           fclx           Standard           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                             |
| 77    | SPECS* |                                       | F       (N/         (N/       (N/         √F0       F         0       1         2       3         4       5         6       7         8       9         A       B         C       D                                                                                                                                                                                                                                         | r MDS<br>r MDS<br>bit<br>fclx<br>mach<br>fdir<br>phos | SP09<br>Set (<br>                                                                             | 97.<br>) if the<br>PM><br>C<br>Meani<br>d loop<br>matic cc<br>e sync<br>on dete<br>ve dire<br>gain se<br>ensatic | B<br>ing wl<br>bill changed<br>bill chan | A<br>A<br>hen so<br>angeov<br>zation<br>directic | 9<br>9<br>Ver du<br>invalic<br>on       | 8<br>phos<br>phos        | 7<br>Sen<br>Sen<br>Auto<br>spir<br>Pos<br>(neg<br>Corr<br>Higl<br>corr | ation<br>6<br>Mee<br>ni-clos<br>omatico<br>ddle sy<br>ition c<br>gative | for th<br>5<br>fdir<br>aning<br>eed loc<br>c coil c<br>vnchro<br>letectc<br>directi<br>servo<br>ation v | e bit.<br>4<br>when<br>p<br>nizatic<br>on)<br>synct<br>alid | 3<br>mach<br>set to<br>sover of<br>n vali<br>ction | 2<br>D 1<br>during<br>d | 1<br>S   | 0         fclx           Standard         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 |
| 77    | SPECS* |                                       | F (N/<br>(N/<br>F0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9<br>A<br>B<br>C                                                                                                                                                                                                                                                                                                                                         | r MDS<br>r MDS<br>bit<br>fclx<br>mach<br>fdir<br>phos | SP09<br>Set (<br>                                                                             | 97.<br>) if the<br>PM><br>C<br>Meani<br>d loop<br>matic cc<br>e sync<br>on dete<br>ve dire<br>gain se<br>ensatic | B<br>ing wl<br>bill changed<br>bill chan | A<br>A<br>hen so<br>angeov<br>zation<br>directic | 9<br>9<br>Ver du<br>invalic             | 8<br>phos<br>phos        | 7<br>Sen<br>Sen<br>Auto<br>spir<br>Pos<br>(neg<br>Corr<br>Higl<br>corr | ation<br>6<br>Mee<br>ni-clos<br>omatico<br>ddle sy<br>ition c<br>gative | for the                                                                                                 | e bit.<br>4<br>when<br>p<br>nizatic<br>on)<br>synct<br>alid | 3<br>mach<br>set to<br>sover of<br>n vali<br>ction | 2<br>D 1<br>during<br>d | 1<br>S   | 0<br>fclx<br>5tandard<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                  |

| No.   | Abbr. | Parameter name                                                                                         | Details                                                                                                                                                                                        | Setting<br>range<br>(Unit)                        | Standard setting |
|-------|-------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|
| SP178 | VGSP* | Spindle synchronous<br>control speed loop gain<br>proportional term                                    | Set the speed loop proportional gain in spindle<br>synchronous control mode.                                                                                                                   | 0 to 1000                                         | 63               |
| SP179 | VGSI* | Spindle synchronous<br>control speed loop gain<br>integral term                                        | Set the speed loop integral gain in spindle synchronous control mode.                                                                                                                          | 0 to 1000                                         | 60               |
| SP180 | VGSD* | Spindle synchronous<br>control speed loop gain<br>delay advance term                                   | Set the speed loop delay advance gain in spindle<br>synchronous control mode.<br>When this parameter is set to "0", PI control is applied.                                                     | 0 to 1000                                         | 15               |
| SP181 | VCGS* | Spindle synchronous<br>control<br>Target value of variable<br>speed loop proportional gain             | Set the magnification of speed loop proportional gain with respect to SP178 (VGSP) at the maximum speed defined in SP017 (TSP) in spindle synchronous control mode.                            | 0 to 100 (%)                                      | 100              |
| SP182 | VCSS* | Spindle synchronous<br>control<br>Change starting speed of<br>variable speed loop<br>proportional gain | Set the speed when the<br>speed loop proportional<br>gain change starts in<br>the spindle<br>synchronous control<br>mode.<br>SP178 X<br>(SP181/100)<br>0 SP182 SP017                           | 0 to 32767<br>(r/min)                             | 0                |
| SP183 | SYNV  | Spindle synchronous<br>control<br>Sync matching speed                                                  | For changeover from the speed loop to the position loop<br>in the spindle synchronous control mode, set a speed<br>command error range for output of the synchronous<br>speed matching signal. | 0 to 1000<br>(r/min)                              | 20               |
| SP184 |       |                                                                                                        | Not used. Set "0".                                                                                                                                                                             | 0                                                 | 0                |
| SP185 | SINP  | Spindle synchronous<br>control<br>In-position width                                                    | Set the position error range for output of the in-position<br>signal in the spindle synchronous control mode.                                                                                  | 1 to 2880<br>(1/16 deg)                           | 16               |
| SP186 | SODR* | Spindle synchronous<br>control<br>Excessive error width                                                | Set the excessive error width in the spindle synchronous control mode.                                                                                                                         | 0 to 32767<br>(pulse)<br>(1 pulse =<br>0.088 deg) | 32767            |
| SP187 | IQGS* | Spindle synchronous<br>control<br>Current loop gain<br>magnification1                                  | Set the magnification of current loop gain (torque<br>component) in the spindle synchronous control mode.                                                                                      | 1 to 1000<br>(%)                                  | 100              |
| SP188 | IDGS* | Spindle synchronous<br>control<br>Current loop gain<br>magnification 2                                 | Set the magnification of current loop gain (excitation<br>component) in the spindle synchronous control mode.                                                                                  | 1 to 1000<br>(%)                                  | 10               |
| SP189 | PG2S  | Spindle synchronous<br>control<br>Position loop gain 2                                                 | Set the second position loop gain when high-gain control<br>is carried out in the spindle synchronous control mode.<br>When this parameter function is not used, set to "0".                   | 0 to 999<br>(rad/s)                               | 0                |
| SP190 | PG3S  | Spindle synchronous<br>control<br>Position loop gain 3                                                 | Set the third position loop gain when high-gain control is carried out in the spindle synchronous control mode. When this parameter function is not used, set to "0".                          | 0 to 999<br>(rad/s)                               | 0                |
| SP191 |       |                                                                                                        | Not used. Set "0".                                                                                                                                                                             | 0                                                 | 0                |
| SP192 |       |                                                                                                        | Not used. Set "0".                                                                                                                                                                             | 0                                                 | 0                |

|     | Abbr.  | Parameter name                         |                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                              |                                                                                  |                                                      |                                          | Deta               | ails                                                                            |                                                                                                         |                                                                      |                                                                        |                            |                                    |          |                                                                                                                                                                                                                                                                                                                                                                        |
|-----|--------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|--------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------|------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |                                        | <fo< th=""><th>or MD</th><th>S-0</th><th>C1-SF</th><th>P/SPI</th><th>H/SP</th><th>X/SPI</th><th>HX&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></fo<>                                                                                                       | or MD                                                                                                                             | S-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C1-SF                                                                          | P/SPI                                                                        | H/SP                                                                             | X/SPI                                                | HX>                                      |                    |                                                                                 |                                                                                                         |                                                                      |                                                                        |                            |                                    |          |                                                                                                                                                                                                                                                                                                                                                                        |
|     |        |                                        |                                                                                                                                                                                                                                                                                                          | FI                                                                                                                                | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                              | С                                                                            | В                                                                                | Α                                                    | 9                                        | 8                  | 7                                                                               | 6                                                                                                       | 5                                                                    | 4                                                                      | 3                          | 2                                  | 1        | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | zı                                                                                                                                                                                                                                                                                                       | rtn pt                                                                                                                            | ур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | od8x                                                                           |                                                                              |                                                                                  |                                                      |                                          | phos               |                                                                                 |                                                                                                         | fdir                                                                 | cdir                                                                   | pyfx                       | rtrn                               | adii     | n fclx                                                                                                                                                                                                                                                                                                                                                                 |
|     |        |                                        |                                                                                                                                                                                                                                                                                                          | bit                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                                              | Meani                                                                        | ing wl                                                                           | nen se                                               | et to C                                  | )                  |                                                                                 | Mea                                                                                                     | aning                                                                | when                                                                   | set to                     | o 1                                | 1        | Standard                                                                                                                                                                                                                                                                                                                                                               |
|     |        |                                        | 0                                                                                                                                                                                                                                                                                                        | fclx                                                                                                                              | : (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Closed                                                                         | l loop                                                                       |                                                                                  |                                                      |                                          |                    | Sem                                                                             | i-clos                                                                                                  | ed loc                                                               | p (Ge                                                                  | ar 1 :                     | 1 onl                              | y)       | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | 1                                                                                                                                                                                                                                                                                                        | adir                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nterpo<br>nvalid                                                               |                                                                              | A/D c                                                                            | ompe                                                 | nsatic                                   | n                  | Inter<br>valid                                                                  |                                                                                                         | on A/I                                                               | D com                                                                  | pensa                      | ation                              |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | 2                                                                                                                                                                                                                                                                                                        | rtrr                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Positio<br>nvalid                                                              | n mor                                                                        | nitor d                                                                          | uring I                                              | eady                                     | OFF                | Posit<br>valid                                                                  | tion m                                                                                                  | nonito                                                               | r durin                                                                | g read                     | dy OF                              | F        | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | 3                                                                                                                                                                                                                                                                                                        | pyf                                                                                                                               | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Norma                                                                          | l excit                                                                      | tation                                                                           |                                                      |                                          |                    | Posit<br>(stroi                                                                 |                                                                                                         | op ex                                                                | citatio                                                                | n fixe                     | d                                  |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | 4                                                                                                                                                                                                                                                                                                        | cdi                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comm                                                                           |                                                                              |                                                                                  |                                                      |                                          |                    |                                                                                 |                                                                                                         |                                                                      | rity (–)                                                               |                            |                                    |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | 5                                                                                                                                                                                                                                                                                                        | fdir                                                                                                                              | · F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Positio                                                                        | n dete                                                                       | ector p                                                                          | olarity                                              | / (+)                                    |                    | Posit                                                                           | tion d                                                                                                  | etecto                                                               | or pola                                                                | rity (–                    | )                                  |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | 6                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                              |                                                                                  |                                                      |                                          |                    |                                                                                 |                                                                                                         |                                                                      |                                                                        |                            |                                    |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | 7                                                                                                                                                                                                                                                                                                        | pho                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | High-g                                                                         |                                                                              |                                                                                  |                                                      | nous                                     |                    |                                                                                 |                                                                                                         |                                                                      |                                                                        | nronou                     | JS                                 |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        |                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | compe                                                                          | ensatic                                                                      | on inva                                                                          | alid                                                 |                                          |                    | comp                                                                            | bensa                                                                                                   | ation v                                                              | alid                                                                   |                            |                                    |          |                                                                                                                                                                                                                                                                                                                                                                        |
|     |        |                                        | 9<br>A                                                                                                                                                                                                                                                                                                   | -                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                              |                                                                                  |                                                      |                                          |                    |                                                                                 |                                                                                                         |                                                                      |                                                                        |                            |                                    | <u> </u> | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | B                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                              |                                                                                  |                                                      |                                          |                    |                                                                                 |                                                                                                         |                                                                      |                                                                        |                            |                                    |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | C                                                                                                                                                                                                                                                                                                        | _                                                                                                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                              |                                                                                  |                                                      |                                          |                    |                                                                                 |                                                                                                         |                                                                      |                                                                        |                            |                                    |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | D                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Magnif<br>width >                                                              |                                                                              |                                                                                  |                                                      | ve err                                   | or                 |                                                                                 |                                                                                                         | tion of<br>times                                                     |                                                                        | ssive e                    | error                              |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | E                                                                                                                                                                                                                                                                                                        | pty                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Positio<br>zero po                                                             |                                                                              |                                                                                  | vitch ty                                             | /pe: A                                   | fter               |                                                                                 |                                                                                                         | ontrol<br>on sto                                                     |                                                                        | n type                     | : Afte                             | r        | 0                                                                                                                                                                                                                                                                                                                                                                      |
|     |        |                                        | F                                                                                                                                                                                                                                                                                                        | zrtr                                                                                                                              | ηŻ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zero p                                                                         | oint re                                                                      | eturn d                                                                          | lirectio                                             | n: CC                                    | W                  | Zero                                                                            | point                                                                                                   | retur                                                                | n dire                                                                 | ction:                     | CW                                 |          | 0                                                                                                                                                                                                                                                                                                                                                                      |
| 93  | SPECT* | Synchronized tapping specifications    |                                                                                                                                                                                                                                                                                                          | -                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | et 0 if<br>C1-SI                                                               |                                                                              | e is no                                                                          | o part                                               | icular                                   | expla              | natio                                                                           | on foi                                                                                                  | r the I                                                              | bit.                                                                   |                            |                                    |          |                                                                                                                                                                                                                                                                                                                                                                        |
| 93  | SPECT* | Synchronized tapping specifications    | <f0< td=""><td>or MD</td><td>S-(</td><td></td><td></td><td>e is no<br/>B</td><td>o part</td><td>icular<br/>9</td><td>expla<br/>8<br/>phos</td><td>natio</td><td>on foi<br/>6</td><td>the<br/>5<br/>fdir</td><td>bit.<br/>4<br/>cdir</td><td>3</td><td>2<br/>rtrn</td><td>1</td><td>0<br/>fclx</td></f0<> | or MD                                                                                                                             | S-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                                                                              | e is no<br>B                                                                     | o part                                               | icular<br>9                              | expla<br>8<br>phos | natio                                                                           | on foi<br>6                                                                                             | the<br>5<br>fdir                                                     | bit.<br>4<br>cdir                                                      | 3                          | 2<br>rtrn                          | 1        | 0<br>fclx                                                                                                                                                                                                                                                                                                                                                              |
| 3   | SPECT* | Synchronized tapping<br>specifications | <f0< td=""><td>F D</td><td>S-(</td><td>D<br/>od8x</td><td>PM&gt;<br/>C</td><td>В</td><td>A</td><td>9</td><td>8<br/>phos</td><td></td><td>6</td><td>5<br/>fdir</td><td>4<br/>cdir</td><td>-</td><td>rtrn</td><td></td><td>fclx</td></f0<>                                                                 | F D                                                                                                                               | S-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D<br>od8x                                                                      | PM><br>C                                                                     | В                                                                                | A                                                    | 9                                        | 8<br>phos          |                                                                                 | 6                                                                                                       | 5<br>fdir                                                            | 4<br>cdir                                                              | -                          | rtrn                               |          | fclx                                                                                                                                                                                                                                                                                                                                                                   |
| 3   | SPECT* | Synchronized tapping<br>specifications | < <b>Fo</b>                                                                                                                                                                                                                                                                                              | F D<br>F p<br>tn p<br>bit                                                                                                         | <b>S-(</b><br><br>ур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C1-SI<br>D<br>od8x                                                             | PM><br>C<br>Meani                                                            |                                                                                  | A                                                    | 9                                        | 8<br>phos          | 7                                                                               | 6<br>Mea                                                                                                | 5<br>fdir                                                            | 4<br>cdir<br>when                                                      | set to                     | rtrn<br>o 1                        |          | fclx<br>Standar                                                                                                                                                                                                                                                                                                                                                        |
| ;   | SPECT* | Synchronized tapping<br>specifications | <f0< td=""><td>F D</td><td><b>S-(</b><br/><br/>ур</td><td>D<br/>od8x</td><td>PM&gt;<br/>C<br/>Meani</td><td>В</td><td>A</td><td>9</td><td>8<br/>phos</td><td>7</td><td>6<br/>Mea</td><td>5<br/>fdir</td><td>4<br/>cdir<br/>when</td><td>-</td><td>rtrn<br/>o 1</td><td></td><td>fclx</td></f0<>          | F D                                                                                                                               | <b>S-(</b><br><br>ур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D<br>od8x                                                                      | PM><br>C<br>Meani                                                            | В                                                                                | A                                                    | 9                                        | 8<br>phos          | 7                                                                               | 6<br>Mea                                                                                                | 5<br>fdir                                                            | 4<br>cdir<br>when                                                      | -                          | rtrn<br>o 1                        |          | fclx                                                                                                                                                                                                                                                                                                                                                                   |
| S   | PECT*  | Synchronized tapping<br>specifications | < <b>Fo</b>                                                                                                                                                                                                                                                                                              | F I<br>rtn pt<br>bit                                                                                                              | <b>S-(</b><br>ур<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C1-SI<br>D<br>od8x                                                             | PM><br>C<br>Meani                                                            | B                                                                                | A                                                    | 9<br>et to C                             | 8<br>phos          | 7<br>Sem                                                                        | 6<br>Mea<br>i-clos                                                                                      | 5<br>fdir<br>aning<br>ed loc                                         | 4<br>cdir<br>when                                                      | set to                     | rtrn<br>o 1<br>1 onl               | y)       | fclx<br>Standar                                                                                                                                                                                                                                                                                                                                                        |
| SP  | PECT*  | Synchronized tapping<br>specifications | < <b>Fo</b>                                                                                                                                                                                                                                                                                              | F I<br>rtn pt<br>bit<br>fclx                                                                                                      | <b>S-(</b><br>= yp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C1-SI<br>D<br>od8x<br>Closed                                                   | PM><br>C<br>Meani                                                            | B                                                                                | A                                                    | 9<br>et to C                             | 8<br>phos          | 7<br>Semi<br>Posit                                                              | 6<br>Mea<br>i-clos                                                                                      | 5<br>fdir<br>aning<br>ed loc                                         | 4<br>cdir<br>when                                                      | set to                     | rtrn<br>o 1<br>1 onl               | y)       | fclx<br>Standar<br>0<br>0                                                                                                                                                                                                                                                                                                                                              |
| SPE | CT*    | Synchronized tapping<br>specifications | < <b>Fo</b>                                                                                                                                                                                                                                                                                              | F I<br>rtn pt<br>bit<br>fclx<br>rtrr<br>pyf;                                                                                      | S-(<br>=<br>yp<br>: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1-SI<br>D<br>od8x<br>Closed                                                   | PM><br>C<br>Meani<br>I loop                                                  | B<br>ing wl                                                                      | A<br>nen se                                          | 9<br>et to C                             | 8<br>phos          | 7<br>Sem<br>Posit                                                               | 6<br>Mea<br>i-clos                                                                                      | 5<br>fdir<br>aning<br>ed loc                                         | 4<br>cdir<br>when                                                      | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onl               | y)       | fclx<br>Standar<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                         |
| SPE | CT*    | Synchronized tapping<br>specifications | < <b>Fo</b><br>zı<br>0<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                          | F I<br>trtn pt<br>bit<br>fclx<br>fclx<br>rtrr<br>pyfz<br>cdii<br>fdir                                                             | S-(<br>=<br>yp<br>: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1-SI<br>Od8x<br>Closec<br>Positio<br>nvalid                                   | PM><br>C<br>Meani<br>I loop<br>n mor                                         | B<br>ing wi                                                                      | A<br>nen se                                          | 9<br>et to 0                             | 8<br>phos          | 7<br>Sem<br>Posit<br>valid                                                      | 6<br>Mea<br>i-clos<br>tion m                                                                            | 5<br>fdir<br>aning<br>ed loc                                         | 4<br>cdir<br>when<br>pp (Ge                                            | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onli<br>dy OF     | y)       | fclx<br>Standar<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                               |
| SPE | CT*    | Synchronized tapping<br>specifications | < <b>Fo</b> 21 0 1 2 3 4 5 6                                                                                                                                                                                                                                                                             | F I<br>trtn pt<br>bit<br>fclx<br>fclx<br>rtrr<br>pyfz<br>cdii<br>fdir                                                             | S-(<br>=<br>yp<br>: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1-SI<br>Od8x<br>Closec<br>Positio<br>nvalid                                   | PM><br>C<br>Meani<br>I loop<br>n mor                                         | B<br>ing wi                                                                      | A<br>nen se                                          | 9<br>et to 0                             | 8<br>phos          | 7<br>Sem<br>Posit<br>valid                                                      | 6<br>Mea<br>i-clos<br>tion m                                                                            | 5<br>fdir<br>aning<br>ed loc                                         | 4<br>cdir<br>when<br>pp (Ge                                            | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onli<br>dy OF     | y)       | fclx           Standar           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 |
| SF  | PECT*  | Synchronized tapping<br>specifications | < <b>Fo</b><br>2<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                 | F ID<br>F I<br>pt<br>bit<br>fclx<br>fclx<br>cdii<br>fdii<br>fdii                                                                  | S-(<br>=<br>yp<br>: ()<br>: | C1-SI<br>D<br>od8x<br>Closec<br>Positio<br>Comm<br>Positio                     | PM><br>C<br>Meani<br>I loop<br>n mor<br>and p<br>n dete                      | B<br>ing wl<br>nitor d<br>olarity<br>ector p                                     | A<br>nen se<br>uring r<br>(+)<br>solarity            | 9<br>et to 0<br>ready                    | 8<br>phos          | 7<br>Sem<br>Positi<br>Positi<br>Positi<br>High                                  | 6<br>Mea<br>i-clos<br>tion m<br>manc<br>tion d                                                          | 5<br>fdir<br>ed loc<br>nonitor<br>l polar<br>etecto                  | 4<br>cdir<br>when<br>pp (Ge<br>r durin<br>rity (–)<br>r pola           | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onl<br>dy OF      | y)       | fclx           Standar           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0             |
| SF  | PECT*  | Synchronized tapping<br>specifications | < <b>Fo</b><br>2<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>8<br>1<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1                                                                                                                                                                           | F II<br>F I<br>bit<br>fcl»<br>fcl»<br>fcl»<br>fcl»<br>fcl»<br>fcl»<br>pyfz<br>cdii<br>fdir<br>pho                                 | S-(<br>=<br>yp<br>: ()<br>: | C1-SI<br>D<br>od8x<br>I<br>Closec<br>Positio                                   | PM><br>C<br>Meani<br>I loop<br>n mor<br>and p<br>n dete                      | B<br>ing wl<br>nitor d<br>olarity<br>ector p                                     | A<br>nen se<br>uring r<br>(+)<br>solarity            | 9<br>et to 0<br>ready                    | 8<br>phos          | 7<br>Sem<br>Positi<br>Com<br>Positi<br>High                                     | 6<br>Mea<br>i-clos<br>tion m<br>manc<br>tion d                                                          | 5<br>fdir<br>aning<br>ed loc<br>nonitor                              | 4<br>cdir<br>when<br>pp (Ge<br>r durin<br>rity (–)<br>r pola           | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onl<br>dy OF      | y)       | fclx           Standar           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1                                     |
| SI  | PECT*  | Synchronized tapping<br>specifications | < <b>Fo</b><br>1<br>2<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                  | F II<br>Ttn pt<br>bit<br>fclx<br>fclx<br>cdii<br>fdii<br>pho                                                                      | S-(<br>=<br>yp<br>: ()<br>: | C1-SI<br>D<br>od8x<br>Closec<br>Positio<br>Comm<br>Positio                     | PM><br>C<br>Meani<br>I loop<br>n mor<br>and p<br>n dete                      | B<br>ing wl<br>nitor d<br>olarity<br>ector p                                     | A<br>nen se<br>uring r<br>(+)<br>solarity            | 9<br>et to 0<br>ready                    | 8<br>phos          | 7<br>Sem<br>Positi<br>Com<br>Positi<br>High                                     | 6<br>Mea<br>i-clos<br>tion m<br>manc<br>tion d                                                          | 5<br>fdir<br>ed loc<br>nonitor<br>l polar<br>etecto                  | 4<br>cdir<br>when<br>pp (Ge<br>r durin<br>rity (–)<br>r pola           | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onl<br>dy OF      | y)       | fclx           Standar           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                     |
| SF  | PECT*  | Synchronized tapping<br>specifications | < <b>Fo</b>                                                                                                                                                                                                                                                                                              | F II<br>rtn pt<br>bit<br>fcl»<br>rtrr<br>pyf;<br>cdii<br>fdir<br>pho                                                              | S-(<br>=<br>yp<br>: ()<br>: | C1-SI<br>D<br>od8x<br>Closec<br>Positio<br>Comm<br>Positio                     | PM><br>C<br>Meani<br>I loop<br>n mor<br>and p<br>n dete                      | B<br>ing wl<br>nitor d<br>olarity<br>ector p                                     | A<br>nen se<br>uring r<br>(+)<br>solarity            | 9<br>et to 0<br>ready                    | 8<br>phos          | 7<br>Sem<br>Positi<br>Com<br>Positi<br>High                                     | 6<br>Mea<br>i-clos<br>tion m<br>manc<br>tion d                                                          | 5<br>fdir<br>ed loc<br>nonitor<br>l polar<br>etecto                  | 4<br>cdir<br>when<br>pp (Ge<br>r durin<br>rity (–)<br>r pola           | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onl<br>dy OF      | y)       | fclx           Standar           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                             |
| S   | SPECT* | Synchronized tapping<br>specifications | < <b>Fo</b><br>zı<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>A<br>B                                                                                                                                                                                                                            | F II<br>F I<br>fclx<br>fclx<br>fclx<br>fclx<br>fclx<br>fclx<br>pyf;<br>fdir<br>pho                                                | S-(<br>=<br>yp<br>: ()<br>: | C1-SI<br>D<br>od8x<br>Closec<br>Positio<br>Comm<br>Positio                     | PM><br>C<br>Meani<br>I loop<br>n mor<br>and p<br>n dete                      | B<br>ing wl<br>nitor d<br>olarity<br>ector p                                     | A<br>nen se<br>uring r<br>(+)<br>solarity            | 9<br>et to 0<br>ready                    | 8<br>phos          | 7<br>Sem<br>Positi<br>Com<br>Positi<br>High                                     | 6<br>Mea<br>i-clos<br>tion m<br>manc<br>tion d                                                          | 5<br>fdir<br>ed loc<br>nonitor<br>l polar<br>etecto                  | 4<br>cdir<br>when<br>pp (Ge<br>r durin<br>rity (–)<br>r pola           | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onl<br>dy OF      | y)       | fclx           Standar           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                         |
|     | SPECT* | Synchronized tapping<br>specifications | < <b>Fo</b>                                                                                                                                                                                                                                                                                              | F II<br>trtn pt<br>bit<br>fcl»<br>rtrr<br>pyf<br>cdii<br>fdir<br>pho                                                              | S-C<br>=<br>yp<br>: C<br>F<br>iii<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C1-SI<br>D<br>od8x<br>Closecc<br>Positio<br>Comm<br>Positio<br>High-g<br>compe | PM><br>C<br>Meani<br>I loop<br>n mor<br>and p<br>and p<br>an dete            | B<br>ing wh<br>nitor d<br>olarity<br>ervo sy<br>on inva                          | A<br>nen se<br>uring r<br>(+)<br>voolarity<br>vnchro | 9<br>ready<br>/ (+)                      | 8<br>phos<br>OFF   | 7<br>Sem<br>Positi<br>Valid<br>Com<br>Positi<br>High<br>comp                    | 6<br>Mea<br>i-clos<br>tion m<br>mance<br>tion d<br>-gain<br>oensa                                       | 5<br>fdir<br>ed loc<br>nonitol<br>d polar<br>servo<br>stion v        | 4<br>cdir<br>pp (Ge<br>r durin<br>rity (–)<br>yr pola<br>syncl<br>alid | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onl<br>dy OF<br>) | y)       | fclx           Standar           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                             |
|     | SPECT* | Synchronized tapping<br>specifications | < <b>Fo</b><br>21<br>21<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>A<br>B<br>C                                                                                                                                                                                                                 | pr MD<br>F   I<br>ftrn   pf<br>bit<br>  fclx<br>  rtrr<br>  pyf<br>  cdii<br>  fdii<br>   <br>   <br>   <br>   <br>   <br>   <br> | S-(<br>yp<br>· F<br>· F<br>· F<br>· F<br>· F<br>· · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1-SI<br>D<br>od8x<br>Closec<br>Positio<br>Comm<br>Positio<br>Comm<br>Positio  | PM><br>C<br>Meani<br>I loop<br>n mor<br>and p<br>n dete<br>ain se<br>ensatic | B<br>ing will<br>nitor d<br>olarity<br>ector p<br>ector p<br>ector p<br>non inva | A<br>nen se<br>uring r<br>(+)<br>vnchro<br>alid      | 9<br>eet to C<br>reeady<br>r (+)<br>nous | 8<br>phos<br>OFF   | 7<br>Sem<br>Positivalid<br>Com<br>Positi<br>High<br>comp<br>Maguwidth<br>Positi | 6<br>Mea<br>i-clos<br>tion m<br>manc<br>clos<br>manc<br>dion d<br>-gain<br>oensa<br>nificat<br>n × 8 fi | 5<br>fdir<br>aning<br>ed loc<br>honiton<br>etecto<br>servo<br>tion v | 4<br>cdir<br>pp (Ge<br>r durin<br>rity (–)<br>r pola<br>synch<br>alid  | set to<br>ar 1 :<br>g read | rtrn<br>o 1<br>1 onl<br>dy OF      | y)       | fclx           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0       |

| Synchronized tapping<br>control<br>speed loop gain<br>proportional term         Set the speed loop proportional gain in synchronized<br>tapping control mode.         0 to 1000         63           SP195         VGTP<br>control<br>speed loop gain integral<br>term         Synchronized tapping<br>control mode.         0 to 1000         60           SP195         VGTP<br>control<br>speed loop gain integral<br>term         Set the speed loop delay advance gain in synchronized<br>tapping control mode.         0 to 1000         60           SP196         VGTP<br>Control<br>control<br>control         Set the speed loop delay advance gain in synchronized<br>tapping control mode.         0 to 1000         15           SP197         Fixed control constant         Set by Misubishi. Set "0" unless designated in particular.         0         0         0           SP198         VCSTP<br>control<br>gain         Set the speed where<br>the speed loop<br>proportional gain         Set the speed where<br>the speed loop<br>proportional gain         0         0 to 1000 (%)         100           SP199         VCSTP<br>control<br>gain (gar 1)         Set the speed where<br>the speed loop proportional gain<br>control.         Set the acceleration feed forward gain for selection of<br>gar 000 during synchronized tapping control.         0 to 1000 (%)         0 to 1000<br>(%)         0           SP200         FFC4*<br>control<br>gain (gar 2)         Synchronized tapping<br>control         Set the acceleration feed forward gain for selection of<br>gar 001 during synchronized tapping control.         0 to 1000<br>(%)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No.            | Abbr. | Parameter name                                                 | Details                                                                                                                   | Setting<br>range<br>(Unit) | Standard setting  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|
| SP195       VGTI*       control<br>speed loop gain integral<br>term       control mode.       0 to 1000       60         SP196       VGTU*       Speed loop gain integral<br>term       Set the speed loop delay advance gain in synchronized<br>tapping control mode.       0 to 1000       15         SP196       VGTU*       Speed loop gain delay<br>advance term       Set the speed loop delay advance gain in synchronized<br>tapping control mode.       0 to 1000       15         SP197       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP198       VCGT*       farget value of variable<br>speed loop proportional gain<br>gain       Set the speed where<br>the speed loop<br>proportional gain<br>control       Set the speed where<br>the speed loop<br>proportional gain<br>control       Set the speed where<br>the speed loop<br>proportional gain<br>control       0 to 1000       0 to 1000       0         SP199       VCST*       Control<br>control<br>acceleration feed forward<br>gain (gear 1)       Set the acceleration feed forward gain for selection of<br>gear 001 during synchronized tapping control.       0 to 1000       0 to 1000       0         SP201       FFC2*       control<br>acceleration feed forward<br>gain (gear 2)       Set the acceleration feed forward gain for selection of<br>gear 010 during synchronized tapping control.       0 to 1000       0 to 1000       0       0         SP201       FFC2*       control<br>acceleration feed forward<br>gain (gea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SP194          | VGTP* | control<br>speed loop gain                                     |                                                                                                                           | 0 to 1000                  | 63                |
| $ \begin{array}{c} \mbox{control} \\ \mbox{SP196} VGTD^* speed loop gain delay advance} \\ \mbox{When this parameter is set to "0", PI control is applied. \\ \mbox{When this parameter is set to "0", PI control is applied. \\ \mbox{SP197} \\ \mbox{Fixed control constant} \\ \mbox{Synchronized tapping control} \\ \mb$ | SP195          | VGTI* | control<br>speed loop gain integral                            |                                                                                                                           | 0 to 1000                  | 60                |
| SP198Synchronized tapping<br>controlSet the magnification of speed loop proportional gain with<br>traget value of variable<br>gainSet the magnification of speed loop proportional gain with<br>respect to SP194 (VGTP) at the maximum motor speed<br>defined in SP017 (TSP) in synchronized tapping control<br>mode.0 to 100 (%)100SP199VCST*change starting speed loop<br>proportional gain<br>synchronized tapping<br>controlSet the speed where<br>the speed loop<br>proportional gain<br>synchronized tapping<br>control.0 to 32767<br>(r/min)00SP200FFCI*Synchronized tapping<br>acceleration feed forward<br>gain (gear 1)Set the acceleration feed forward gain for selection of<br>gear 000 during synchronized tapping control.0 to 1000<br>(%)0SP201FFC2*Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 2)Set the acceleration feed forward gain for selection of<br>gear 001 during synchronized tapping control.0 to 1000<br>(%)0SP202FFC2*Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 3)Set the acceleration feed forward gain for selection of<br>gear 011 during synchronized tapping control.0 to 1000<br>(%)0SP203FFC4*Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 4)Set the acceleration feed forward gain for selection of<br>gear 011 during synchronized tapping control.0 to 1000<br>(%)0SP204THODFixed control constantSet by Mitsubishi. Set "0" unless designated in particular.00SP205ZCHSPLG 2-phase automatic<br>adjustmentSet by Mitsubishi. Set "0" u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SP196          | VGTD* | control<br>speed loop gain delay<br>advance                    | tapping control mode.                                                                                                     | 0 to 1000                  | 15                |
| SP198       VCGT*       control<br>speed loop proportional<br>gain       respect to SP194 (VGTP) at the maximum motor speed<br>defined in SP017 (TSP) in synchronized tapping control<br>mode.       0 to 100 (%)       100         SP198       VCGT*       Synchronized tapping<br>control<br>variable speed loop<br>proportional gain       Set the speed where<br>the speed loop<br>proportional gain<br>change starting speed or<br>variable speed loop<br>proportional gain<br>control       Set the speed where<br>the speed loop<br>proportional gain<br>change starts during<br>sprintonized tapping<br>control.       0 to 32767<br>(r/min)       0<br>to 1000 (%)       0         SP200       FFC1*       Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 1)       Set the acceleration feed forward gain for selection of<br>gear 000 during synchronized tapping control.       0 to 1000<br>(%)       0         SP201       FFC2*       Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 2)       Set the acceleration feed forward gain for selection of<br>gear 011 during synchronized tapping control.       0 to 1000<br>(%)       0         SP202       FFC3*       Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 3)       Set the acceleration feed forward gain for selection of<br>gear 011 during synchronized tapping control.       0 to 1000<br>(%)       0         SP203       FFC4*       Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 4)       Set the acceleration feed forward gain for selection of<br>gear 011 during synchronized tapping control.       0 to 1000<br>(%)       0       0         <                                                                                                                                                                                                                                                                                                                                                                                                                                           | SP197          |       | Fixed control constant                                         | Set by Mitsubishi. Set "0" unless designated in particular.                                                               | 0                          | 0                 |
| SP199       VCST       Synchronized tapping<br>control<br>variable speed loop<br>proportional gain<br>synchronized tapping<br>control.       the speed loop<br>proportional gain<br>synchronized tapping<br>control.       SP194 ×<br>(SP198/100)       0 to 32767<br>(r/min)       0         SP200       FFCI*       Synchronized tapping<br>control       Set the acceleration feed forward gain for selection of<br>gain (gear 1)       0 to 1000<br>(%)       0 to 1000<br>(%)       0         SP201       FFC2*       Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 2)       Set the acceleration feed forward<br>gain (gear 2)       Set the acceleration feed forward<br>gain (gear 3)       Set the acceleration feed forward gain for selection of<br>gear 010 during synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 3)       O to 1000<br>(%)       0 to 1000<br>(%)       0         SP203       FFC3*       Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 3)       Set the acceleration feed forward gain for selection of<br>gear 010 during synchronized tapping control.       0 to 1000<br>(%)       0         SP204       FFC4*       Synchronized tapping<br>control<br>acceleration feed forward<br>gain (gear 4)       Set the acceleration feed forward<br>gain (gear 4)       0 to 1000<br>(%)       0         SP204       THOD       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0 to 1       0 → 1         SP205       ZCHS       PLG Z-phase automatic<br>adjustment       Set by Mitsubishi. Set "0" unless designated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SP198          | VCGT* | control<br>target value of variable<br>speed loop proportional | respect to SP194 (VGTP) at the maximum motor speed defined in SP017 (TSP) in synchronized tapping control                 |                            | 100               |
| SP200       FFCI*       control acceleration feed forward gain (gear 1)       gear 000 during synchronized tapping control.       0 to 1000 (%)       0         SP201       FFC2*       Synchronized tapping control acceleration feed forward gain for selection of gear 001 during synchronized tapping control.       Synchronized tapping control.       0 to 1000 (%)       0         SP201       FFC2*       Synchronized tapping control acceleration feed forward gain for selection of gear 001 during synchronized tapping control.       0 to 1000 (%)       0         SP202       FFC3*       Synchronized tapping control acceleration feed forward gain for selection of gear 010 during synchronized tapping control.       0 to 1000 (%)       0         SP203       FFC4*       Synchronized tapping control acceleration feed forward gain for selection of gear 011 during synchronized tapping control.       0 to 1000 (%)       0         SP204       THOD       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP205       ZCHS       PLG Z-phase automatic adjustment       O to 1       0 + 1       0 + 1         SP206       CK*       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP206       CK*       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0 </td <td>SP199</td> <td>VCST*</td> <td>control<br/>change starting speed of<br/>variable speed loop</td> <td>the speed loop<br/>proportional gain SP194<br/>change starts during SP194 ×<br/>synchronized tapping (SP198/100)<br/>control.</td> <td></td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                         | SP199          | VCST* | control<br>change starting speed of<br>variable speed loop     | the speed loop<br>proportional gain SP194<br>change starts during SP194 ×<br>synchronized tapping (SP198/100)<br>control. |                            | 0                 |
| SP201       FFC2*       control acceleration feed forward gain (gear 2)       gear 001 during synchronized tapping control.       0 to 1000 (%)       0         SP202       FFC3*       Synchronized tapping control acceleration feed forward gain (gear 3)       Set the acceleration feed forward gain for selection of gear 010 during synchronized tapping control.       0 to 1000 (%)       0         SP203       FFC4*       Synchronized tapping control acceleration feed forward gain (gear 3)       Set the acceleration feed forward gain for selection of gear 011 during synchronized tapping control.       0 to 1000 (%)       0         SP204       THOD       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP204       THOD       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP205       ZCHS       PLG Z-phase automatic adjustment adjustment       0 to 1       0 -1       1       0 -1         SP206       GCK*       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP206       GCL*       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP206       GL*       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular. <td>SP200</td> <td>FFCI*</td> <td>control acceleration feed forward</td> <td>gear 000 during synchronized tapping control.<br/>This parameter should be used when an error of relative</td> <td></td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SP200          | FFCI* | control acceleration feed forward                              | gear 000 during synchronized tapping control.<br>This parameter should be used when an error of relative                  |                            | 0                 |
| SP202       FFC3*       control acceleration feed forward gain (gear 3)       gear 010 during synchronized tapping control.       0 to 1000 (%)       0         SP203       FFC4*       Synchronized tapping control acceleration feed forward gain (gear 4)       Set the acceleration feed forward gain for selection of gear 011 during synchronized tapping control.       0 to 1000 (%)       0         SP204       THOD       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP204       THOD       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP205       ZCHS       PLG Z-phase automatic adjustment       Set of MDS-C1-SPM>       This validates the PLG Z-phase automatic function       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SP201          | FFC2* | control acceleration feed forward                              |                                                                                                                           | 0 to 1000                  | 0                 |
| SP203       FFC4*       control acceleration feed forward gain (gear 4)       gear 011 during synchronized tapping control.       0 to 1000 (%)       0         SP204       THOD       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP204       THOD       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP205       ZCHS       PLG Z-phase automatic adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SP202          | FFC3* | control acceleration feed forward                              |                                                                                                                           | 0 to 1000                  | 0                 |
| SP205ZCHSPLG Z-phase automatic<br>adjustment $< For MDS-C1-SPM >$<br>This validates the PLG Z-phase automatic adjustment<br>function $0 \text{ to } 1$ $0 \rightarrow 1$ SP206GCK*Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular. $0$ $0$ SP207GDL*Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular. $0$ $0$ SP208W2Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular. $0$ $0$ SP209Not used. Set to "0". $0$ $0$ SP210Not used. Set to "0". $0$ $0$ SP211Not used. Set to "0". $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SP203          | FFC4* | control acceleration feed forward                              |                                                                                                                           | 0 to 1000                  | 0                 |
| SP205ZCHSPLG Z-phase automatic<br>adjustmentThis validates the PLG Z-phase automatic adjustment0 to 1 $0 \rightarrow 1$ SP206GCK*Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular.00SP207GDL*Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular.00SP208W2Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular.00SP209Not used. Set to "0".00SP210Not used. Set to "0".00SP211Image: Set to "0".00SP211Not used. Set to "0".00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SP204          | THOD  | Fixed control constant                                         | Set by Mitsubishi. Set "0" unless designated in particular.                                                               | 0                          | 0                 |
| Not used. Set to "0".0SP206GCK*Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular.00SP207GDL*Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular.00SP208W2Fixed control constantSet by Mitsubishi. Set "0" unless designated in particular.00SP209Not used. Set to "0".00SP210Not used. Set to "0".00SP211Not used. Set to "0".00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SP205          | ZCHS  | PLG Z-phase automatic<br>adjustment                            | This validates the PLG Z-phase automatic adjustment function                                                              | 0 to 1                     | $0 \rightarrow 1$ |
| SP207       GDL*       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP208       W2       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP209       Not used. Set to "0".       0       0       0         SP210       Not used. Set to "0".       0       0         SP211       Not used. Set to "0".       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |       |                                                                |                                                                                                                           | 0                          | 0                 |
| SP208       W2       Fixed control constant       Set by Mitsubishi. Set "0" unless designated in particular.       0       0         SP209       V       Not used. Set to "0".       0       0       0         SP210       V       Not used. Set to "0".       0       0       0         SP211       V       Not used. Set to "0".       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SP206          | GCK*  | Fixed control constant                                         | , ,                                                                                                                       | 0                          | 0                 |
| SP209         Not used. Set to "0".         0         0           SP210         Not used. Set to "0".         0         0           SP211         Not used. Set to "0".         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |       |                                                                |                                                                                                                           |                            |                   |
| SP210         Not used. Set to "0".         0         0           SP211         Not used. Set to "0".         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | W2    | Fixed control constant                                         |                                                                                                                           |                            |                   |
| SP211         Not used. Set to "0".         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |       |                                                                |                                                                                                                           |                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |       |                                                                |                                                                                                                           |                            |                   |
| SP212 Not used. Set to "0". 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SP211<br>SP212 |       |                                                                | Not used. Set to "0".<br>Not used. Set to "0".                                                                            |                            |                   |

| No.   | Abbr. | Parameter name                                                                 | Details                                                                                                                                                                                                                                                                                                               | Setting range<br>(Unit)                           | Standard setting |
|-------|-------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|
| SP213 | LPF   | Low path filter                                                                | <for mds-c1-sp="" sph="" spm=""><br/>Set to reduce the noise generated from the spindle motor<br/>Set the band of the low path filter</for>                                                                                                                                                                           | 0 to 2250<br>(rad/s)                              | 0                |
|       |       |                                                                                | <for mds-c1-spx="" sphx=""><br/>Not used. Set to "0".</for>                                                                                                                                                                                                                                                           | 0                                                 | 0                |
| SP214 | TZRN  | Synchronized tapping<br>control<br>zero point return speed                     | This parameter is valid when SP193 (SPECT)/bit E is set to "0".<br>Set the zero point return speed used when the speed loop changes to the position loop.                                                                                                                                                             | 0 to 500<br>(r/min)                               | 50               |
| SP215 | TPDT  | Synchronized tapping<br>control<br>zero point return<br>deceleration rate      | This parameter is valid when SP193 (SPECT)/bit E is set<br>to "0".<br>Set the deceleration rate where the machine starts to<br>decelerate when it returns to the target stop point during<br>synchronized tapping zero point return.<br>When the machine tends to overshoot at the stop point<br>set a smaller value. | 0 to 10000<br>(pulse)                             | 1                |
| SP216 | TPST  | Synchronized tapping<br>control<br>zero point return shift<br>amount           | This parameter is valid when SP193 (SPECT)/bit E is set to "0".<br>Set the synchronized tapping zero point position.                                                                                                                                                                                                  | 0 to 4095                                         | 0                |
| SP217 | TINP  | Synchronized tapping<br>control<br>in-position width                           | Set the position error range for output of the in-position during synchronized tapping control.                                                                                                                                                                                                                       | 1 to 2880<br>(1/16 deg)                           | 16               |
| SP218 | TODR* | Synchronized tapping<br>control<br>excessive error width                       | Set the excessive error width during synchronized tapping.                                                                                                                                                                                                                                                            | 0 to 32767<br>(pulse)<br>(1 pulse =<br>0.088 deg) | 32767            |
| SP219 | IQGT* | Synchronized tapping<br>control<br>current loop gain<br>magnification 1        | Set the magnification of current loop gain (torque component) during synchronized tapping control.                                                                                                                                                                                                                    | 1 to 1000 (%)                                     | 100              |
| SP220 | IDGT* | Synchronized tapping<br>control<br>current loop gain<br>magnification 2        | Set the magnification of current loop gain (excitation component) during synchronized tapping control.                                                                                                                                                                                                                | 1 to 1000 (%)                                     | 100              |
| SP221 | PG2T  | Synchronized tapping<br>control<br>position loop gain 2                        | Set the second position loop gain when high-gain control<br>is applied during synchronized tapping control.<br>When this parameter is not used, set to "0".                                                                                                                                                           | 0 to 999<br>(rad/s)                               | 0                |
| SP222 | PG3T  | Synchronized tapping<br>control<br>position loop gain 3                        | Set the third position loop gain when high-gain control is<br>applied during synchronized tapping control.<br>When this parameter is not used, set to "0".                                                                                                                                                            | 0 to 999<br>(rad/s)                               | 0                |
| SP223 | SPDV  | Speed monitor speed                                                            | Set the spindle limit speed in the door open state.<br>(Invalid when 0 is set.)<br>If the spindle end speed exceeds this setting value when<br>the door is open, the speed monitor error (5E) will occur.                                                                                                             | 0 to 800<br>(r/min)                               | 0                |
| SP224 | SPDF  | Speed monitor time                                                             | Set the time (continuous) to detect alarms.<br>(Detected instantly when 0 is set.)                                                                                                                                                                                                                                    | 0 to 2813<br>(3.5 ms)                             | 0                |
| SP225 | ОХКРН | Position loop gain<br>magnification after<br>orientation completed<br>(H coil) | If gain changeover is valid (SP097: SPEC0/bitC=1) during<br>orientation control, set the magnification of each gain<br>changed to after orientation completed.                                                                                                                                                        | 0 to 2560<br>(1/256-fold)                         | 0                |
| SP226 | OXKPL | Position loop gain<br>magnification after<br>orientation completed<br>(L coil) |                                                                                                                                                                                                                                                                                                                       | 0 to 2560<br>(1/256-fold)                         | 0                |
| SP227 | ΟΧVΚΡ | Speed loop proportional gain magnification after orientation completed         |                                                                                                                                                                                                                                                                                                                       | 0 to 2560<br>(1/256-fold)                         | 0                |
| SP228 | ΟΧνκι | Speed loop cumulative<br>gain magnification after<br>orientation completed     |                                                                                                                                                                                                                                                                                                                       | 0 to 2560<br>(1/256-fold)                         | 0                |

| No.            | Abbr.        | Parameter name                                     | Details                                                                                                                                                                                                                                        | Setting range<br>(Unit)     | Standard setting |
|----------------|--------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|
| SP229          | OXSFT        | Orientation virtual target shift amount            | Set the amount to shift the target position when<br>orientation virtual target position is valid (SP097:<br>SPEC0/bitD=1).                                                                                                                     | 0 to 2048<br>(360 deg/4096) | 0                |
| SP230          | WIH          | Iron loss compensation<br>value                    | <for mds-c1-sph=""><br/>Set the ratio of iron loss to all losses when temperature<br/>compensation considering iron loss is valid.</for>                                                                                                       | 0 to 100<br>(%)             | 0                |
|                |              | Value                                              | <for mds-c1-sp="" sphx="" spm="" spx=""><br/>Not used. Set "0".</for>                                                                                                                                                                          | 0                           | 0                |
| SP231          | OL2T         | Overload 2 time constant                           | <for mds-c1-sph=""><br/>Set the primary-delay time constant to detect overload 2</for>                                                                                                                                                         | 0 to 60<br>(min)            | 0                |
| 01201          | OLZI         |                                                    | <for mds-c1-sp="" sphx="" spm="" spx=""><br/>Not used. Set "0".</for>                                                                                                                                                                          | 0                           | 0                |
| SP232          |              |                                                    | Not used. Set "0".                                                                                                                                                                                                                             | 0                           | 0                |
| SP233          | JL*          | Disturbance observer<br>Load inertia rate          | Set "the motor inertia + motor axis conversion load inertia"<br>in respect to the motor inertia.<br>$SV037 (JL) = \frac{JI + Jm}{Jm} \times 100$<br>Jm : Motor inertia<br>JI : Motor axis conversion load inertia                              | 0 to 5000 (%)               | 0                |
| SP234          | OBS1*        | Disturbance observer<br>low path filter frequency  | Set the frequency of the low path filter for when the disturbance observer is valid.                                                                                                                                                           | 0 to 1000<br>(rad/s)        | 0                |
| SP235          | OBS2*        | Disturbance observer<br>gain                       | Set the gain for the disturbance observer.                                                                                                                                                                                                     | 0 to 500 (%)                | 0                |
| SP236          | OBS3         | Fixed control constant                             | Set by Mitsubishi. Set "0" unless designated in particular.                                                                                                                                                                                    | 0                           | 0                |
| SP237          | KSCP*        | Spindle speed overrun<br>judgment value            | <for mds-c1-spm=""><br/>The following value is judgment value for spindle speed<br/>overrun (alarm 3E).<br/>The speed command + SP237 × 0.125 [r/min]</for>                                                                                    | 0 to 32767<br>(r/min)       | 0                |
|                |              |                                                    | <for mds-c1-sp="" sph="" sphx="" spx=""><br/>Not used. Set "0".</for>                                                                                                                                                                          | 0                           | 0                |
| SP238          | SE2R         | Speed excessive<br>deflection 2<br>detection range | <for mds-c1-spm=""><br/>The following value is judgment value for speed excessive<br/>deflection 2 (alarm 3F).<br/>The speed command × SP238 / 100 [r/min]</for>                                                                               | 0 to 100<br>(%)             | 0                |
|                |              |                                                    | <for mds-c1-sp="" sph="" sphx="" spx=""><br/>Not used. Set "0".</for>                                                                                                                                                                          | 0                           | 0                |
| SP239          | SE2T         | Speed excessive deflection 2                       | <for mds-c1-spm=""><br/>Set the continuous detection time for speed excessive<br/>deflection 2 (alarm 3F).</for>                                                                                                                               | 0 to 3000                   | 0                |
|                |              | detection time                                     | <for mds-c1-sp="" sph="" sphx="" spx=""><br/>Not used. Set "0".</for>                                                                                                                                                                          | 0                           | 0                |
| SP240          | EXHS         | PLG automatic<br>adjustment (PJEX)                 | <for mds-c1-spx="" sphx=""><br/>This validates the automatic adjustment function for the<br/>PLG connected to the MDS-B-PJEX.</for>                                                                                                            | 0 to 1                      | 0  ightarrow 1   |
|                |              |                                                    | <for mds-c1-sp="" sph="" spm=""><br/>Not used. Set "0".</for>                                                                                                                                                                                  | 0                           | 0                |
| SP241          | EXBIT        | Spindle monitor<br>changeover                      | <for mds-c1-spx="" sphx=""><br/>This changes the spindle drive unit type, serial NO. and<br/>software version display.<br/>"0" Displays the details for the spindle drive unit.<br/>"1" Displays the details for the detector converter.</for> | 0 to 1                      | 0                |
|                |              |                                                    | <for mds-c1-sp="" sph="" spm=""><br/>Not used. Set "0".</for>                                                                                                                                                                                  | 0                           | 0                |
|                |              |                                                    |                                                                                                                                                                                                                                                |                             |                  |
| SP242<br>SP243 | Vavx<br>UTTM | Fixed control constant                             | Set by Mitsubishi. Set "0" unless designated in particular.<br>Set by Mitsubishi. Set "0" unless designated in particular.                                                                                                                     | 0                           | 0                |

| No.   | Abbr.  | Parameter name                       | Details                                                                                                                                                                                                                                              | Setting range<br>(Unit)            | Standard setting  |
|-------|--------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|
| SP245 | PGHS   | PLG automatic<br>adjustment          | <for mds-c1-sp="" sph="" spm=""><br/>This validates the automatic adjustment function for the<br/>PLG.</for>                                                                                                                                         | 0 to 1                             | $0 \rightarrow 1$ |
|       |        | aujustment                           | <for mds-c1-spx="" sphx=""><br/>Not used. Set "0".</for>                                                                                                                                                                                             | 0                                  | 0                 |
| SP246 | TEST   | Fixed control constant               | Set by Mitsubishi. Set "0" unless designated in particular.                                                                                                                                                                                          | 0                                  | 0                 |
| SP247 |        |                                      | Not used. Set "0".                                                                                                                                                                                                                                   | 0                                  | 0                 |
| SP248 |        |                                      | Not used. Set "0".                                                                                                                                                                                                                                   | 0                                  | 0                 |
| SP249 | SMO    | Speed meter speed                    | Set the motor rotation speed when the speed meter 10V<br>is output.<br>When set to "0", this parameter becomes the same as<br>SP017 (TSP).                                                                                                           | 0 to 32767<br>(r/min)              | 0                 |
| SP250 | LMO    | Load meter voltage                   | Set the voltage when the load meter 120% is output.<br>When set to "0", this becomes 10V.                                                                                                                                                            | 0 to 10 (V)                        | 0                 |
| SP251 |        |                                      | Not used. Set "0".                                                                                                                                                                                                                                   | 0                                  | 0                 |
| SP252 |        |                                      | Not used. Set "0".                                                                                                                                                                                                                                   | 0                                  | 0                 |
| SP253 | DA1NO  | D/A output channel 1<br>data number  | Set the output data number for channel 1 of the D/A<br>output function.<br>When set to "0", the output is speedometer.                                                                                                                               | -32768 to<br>32767                 | 0                 |
| SP254 | DA2NO  | D/A output channel 2<br>data number  | Set the output data number for channel 2 of the D/A<br>output function.<br>When set to "0", the output is speedometer.                                                                                                                               | -32768 to<br>32767                 | 0                 |
| SP255 | DA1MPY | DA output channel 1<br>magnification | Set the data magnification for channel 1 of the D/A output<br>function.<br>The output magnification is the setting value divided by<br>256.<br>When set to "0", the output magnification becomes 1-fold,<br>in the same manner as when "256" is set. | -32768 to<br>32767<br>(1/256-fold) | 0                 |
| SP256 | DA2MPY | DA output channel 2<br>magnification | Set the data magnification for channel 2 of the D/A output<br>function.<br>The output magnification is the setting value divided by<br>256.<br>When set to "0", the output magnification becomes 1-fold,<br>in the same manner as when "256" is set. | -32768 to<br>32767<br>(1/256-fold) | 0                 |

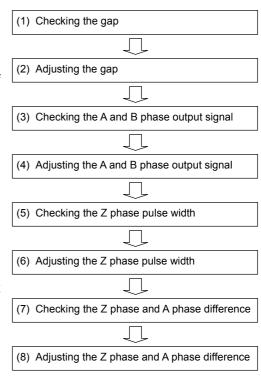
| No.                  | Abbr. | Parameter name             | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Setting range<br>(Unit) | Standard setting |
|----------------------|-------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
| SP257<br>to<br>SP320 |       | Motor constant<br>(H coil) | <ul> <li>This parameter is valid only in the following two conditional cases:</li> <li>(a) In case that SP034 (SFNC2)/bit0=1 and SP034 (SFNC2)/bit2=0 Set the motor constants when using a special motor, not described in the SP040 (MTYP) explanation and when not using the coil changeover motor.</li> <li>(b) In case that SP034 (SFNC2)/bit0=1 and SP034 (SFNC2)/bit2=1 Set the motor constant of the H coil of the coil changeover motor.</li> <li>(Note) It is not allowed for the user to change the setting. (HEX setting)</li> </ul> | 0000 to FFFF            | 0000             |
| SP321<br>to<br>SP384 |       | Motor constant<br>(L coil) | <ul> <li>This parameter is valid only in the following conditional case:</li> <li>(a) In case that SP034 (SFNC2)/bit0=1 and SP034 (SFNC2)/bit2=1 Set the motor constant of the L coil of the coil changeover motor.</li> <li>(Note) It is not allowed for the user to change the setting. (HEX setting)</li> </ul>                                                                                                                                                                                                                              | 0000 to FFFF            | 0000             |

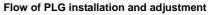
All motor constant parameters are validated with the NC power turned ON again.

<For MDS-C1-SPM>

| No.                                          | Abbr. | Parameter name             | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Setting range<br>(Unit) | Standard setting |
|----------------------------------------------|-------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
| SP257<br>to<br>SP296<br>SP312<br>to<br>SP320 |       | Motor constant<br>(H coil) | <ul> <li>This parameter is valid only in the following two conditional cases:</li> <li>(a) In case that SP034 (SFNC2)/bit0=1 and SP034 (SFNC2)/bit2=0 Set the motor constants when using a special motor, not described in the SP040 (MTYP) explanation and when not using the coil changeover motor.</li> <li>(b) In case that SP034 (SFNC2)/bit2=1 and SP034 (SFNC2)/bit2=1 Set the motor constant of the H coil of the coil changeover motor.</li> </ul> | 0000 to FFFF            | 0000             |
|                                              |       |                            | (Note) It is not allowed for the user to change the setting.<br>(HEX setting)                                                                                                                                                                                                                                                                                                                                                                               |                         |                  |
| SP297<br>to<br>SP311<br>SP363<br>to<br>SP375 |       | Motor constant<br>(M coil) | <ul> <li>This parameter is valid only in the following conditional case:</li> <li>(a) In case that SP034 (SFNC2)/bit0=1 and SP034 (SFNC2)/bit2=1 Set the motor constant of the M coil of the coil changeover motor.</li> <li>(Note) It is not allowed for the user to change the setting. (HEX setting)</li> </ul>                                                                                                                                          | 0000 to FFFF            | 0000             |
| SP321<br>to<br>SP362<br>SP376<br>to<br>SP384 |       | Motor constant<br>(L coil) | <ul> <li>This parameter is valid only in the following conditional case:</li> <li>(a) In case that SP034 (SFNC2)/bit0=1 and SP034 (SFNC2)/bit2=1 Set the motor constant of the L coil of the coil changeover motor.</li> <li>(Note) It is not allowed for the user to change the setting. (HEX setting)</li> </ul>                                                                                                                                          | 0000 to FFFF            | 0000             |

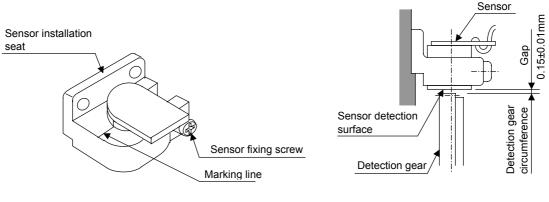
All motor constant parameters are validated with the NC power turned ON again.


# 3-6 Initial adjustment of the spindle PLG


## 3-6-1 Adjusting the PLG installation

The PLG (spindle motor speed detector) mounted on the Mitsubishi framed spindle motor is shipped from Mitsubishi in the adjusted state. If there are no particular problems, carry out automatic adjustment "3-6-2 Automatic adjustment of Z phase" and "3-6-3 Automatic adjustment of motor end PLG" according to the spindle system.

When using the spindle end PLG for simple C-axis control or the built-in spindle, the PLG detector is installed by the user, so the PLG sensor's gap and output signal must be adjusted with the following procedures. After installing and adjusting these, carry out automatic adjustment of the PLG according to each system.


Install the PLG and then adjust following the procedures on the right. The output signal waveform can be retrieved from the check terminal on the PCB. Measure the waveform with an oscilloscope. The A/B phase output signal and the Z phase pulse width can be adjusted with the volume (VR1 to VR5) on the PCB. (The pulse width has been adjusted at shipment, and normally does not need to be adjusted.)





#### (1) Checking the gap

Check that the gap between the sensor detection surface and detection gear circumference is within 0.15±0.01mm as shown below. The gap is adjusted before shipment, but an error could occur due to the effect of the dimensional difference of the notched fitting section provided for installation, or the dimensional difference of the detection gears' outer diameter. If deviated from the above range, adjust the gap following the section "(2) Adjusting the gap".



Sensor section

Gap with detection gear

## (2) Adjusting the gap

- [1] Confirm that the detection gears are not rotating. The sensor could be damaged if the gap is adjusted while the gears are rotating.
- [2] Loosen the sensor fixing screw with the sensor fixed on the sensor installation seat.
- [3] Using a clearance gauge, adjust so that the gap between the sensor detection surface and the detection gears' circumference is 0.15±0.01mm.
- [4] The sensor can be moved up and down or turned when the sensor fixing screw is loosened. Position the rotating direction to match the marking line drawn on the sensor and installation seat.
- [5] When done adjusting the gap, apply a locking agent on the sensor fixing screw, and then fix the sensor.
- [6] After fixing the sensor, check the gap again. If operation is carried out with an excessively small gap, the sensor and gears could contact, and the sensor could be damaged.
- [7] Faults could occur if an excessive external force is applied or if the sensor detection surface is damaged.

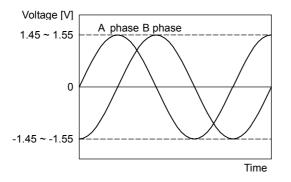
## (3) Checking the A phase and B phase output signal

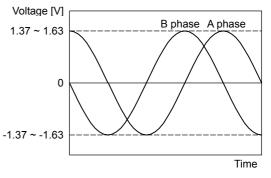
Check the output signal waveform by measuring the signals of the check terminals on the PCB with the DC range of the synchroscope.

A phase output signal...... Across A-G B phase output signal..... Across B-G

The PLG reference speed when confirming the output signal waveform differs according to the number of output pulses. Refer to the following table for the reference speed for each number of pulses. If operation is not possible at the reference speed, operate at a low speed within the range in which the waveform can be confirmed.

|                   |             |                                |                                   | <b>J</b>                                |
|-------------------|-------------|--------------------------------|-----------------------------------|-----------------------------------------|
| Check<br>terminal | Signal name | Number of detection gear teeth | Number of A and B<br>phase pulses | Reference speed for signal confirmation |
| Α                 | A phase     | 128                            | 128                               | 3600 r/min                              |
| В                 | B phase     | 180                            | 180                               | 2500 r/min                              |
| Z                 | Z phase     | 256                            | 256                               | 1800 r/min                              |
| G                 | Ground      | 512                            | 512                               | 1200 r/min                              |

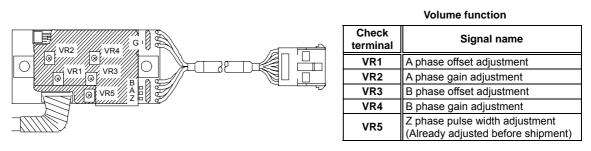

#### Check terminal function Reference speed for A and B phase output signal confirmation


The output signal waveform is confirmed when the motor is run in the forward direction and reverse direction. The rotation directions are defined below.

During forward run ... When the detection gears are rotating in the clockwise direction looking from the sensor lead side.

During reverse run ... When the detection gears are rotating in the counterclockwise direction looking from the sensor lead side.

The normal A and B phase output signal waveform when running at the reference speed is shown below. If the output signal waveform is not as shown below, refer to the next section "(4) Adjusting the A and B phase output signal" and adjust.



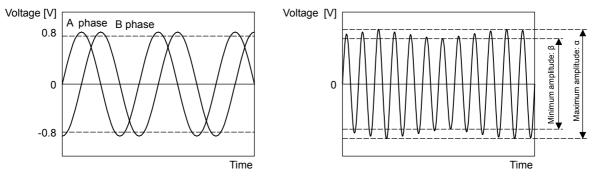



A phase/B phase output signal waveform during forward run A phase/B phase output signal waveform during reverse run

## (4) Adjusting the A phase and B phase output signal

- [1] Set the drive unit in the open loop operation state. (Set the spindle parameter SP038/bitF to "1" and turn the NC power ON again.) There are cases when sudden speed changes cannot be followed during open loop operation, so gradually change the speed command.
- [2] Forward run the motor and rotate the PLG at the reference speed.
- [3] Using the PCB volume VR1 to VR4, adjust so that the A phase and B phase signals are within the specified range. If the correct waveform cannot be attained even after adjusting with VR1 to VR4, adjust the gap again.
- [4] Reverse run the motor and rotate the PLG at the reference speed.
- [5] Adjust the output waveform by adjusting VR1 to VR4 in the same manner.




PCB section

- [6] Set the drive unit to the closed loop operation state (normal operation).
- [7] Run the motor at the maximum speed, and confirm that the A phase and B phase output voltage peak value is larger than 0.8V on both the plus side and minus side during both forward run and reverse run.
- [8] Run the motor at the reference speed, and confirm that the A phase and B phase output signal envelope is 0.4V or less.

The envelope is calculated by the expression below.

(Envelope) = (Maximum amplitude  $\alpha$ ) - (Minimum amplitude  $\beta$ )

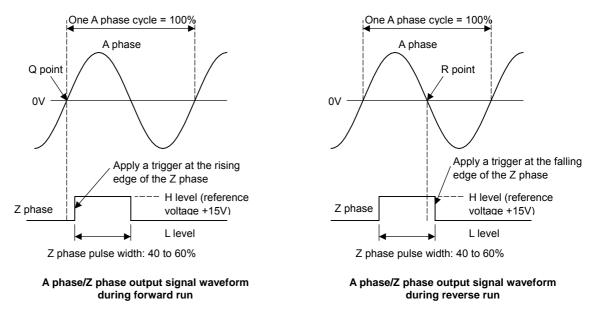
[9] If the envelope is larger than the designated value, the deflection of the detection gears' outer diameter may be large, so check the deflection.



Example of A phase/B phase signal waveform during forward run at maximum speed

Definition of envelope

#### (5) Confirming the Z phase pulse width


Check the output signal waveform by measuring the signals of the check terminals on the PCB with the DC range of the synchroscope.

| A phase output signal | Across A-G |
|-----------------------|------------|
| Z phase output signal | Across Z-G |

The output signal waveform is confirmed during motor forward run and reverse run. Set the synchroscope as follows to measure the waveform during each run direction.

Confirm that the Z phase pulse width (time that the Z phase signal is at the "H" level = approx. 15V) is 40% or more and 60% or less, when one cycle of the A phase signal is calculated as 100%. The normal Z phase output signal waveform when run at the reference speed is shown below. If the output signal waveform is not as shown below, refer to the next section "(6) Adjusting the Z phase pulse width" and adjust.

The Z phase pulse width has been adjusted at shipment, with a combination of the sensor section and PCB section having the same serial No. Thus, it normally does not need to be adjusted. If a sensor section and PCB section having different serial numbers must be used, causing the Z phase pulse width to deviate from the specified range, carry out the adjustment.



## (6) Adjusting the Z phase pulse width

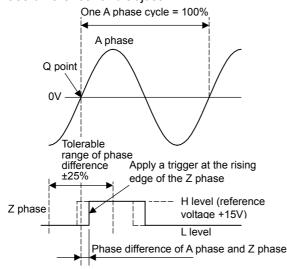
The Z phase pulse width can be adjusted with potentiometer VR5 on the PCB. VR5 is fixed after it has been tested and adjusted to match the sensor section and PCB section having the same serial No., so do not turn it unless a sensor section and PCB section with different serial numbers must be used.

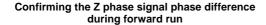
#### (7) Checking the Z phase and A phase difference

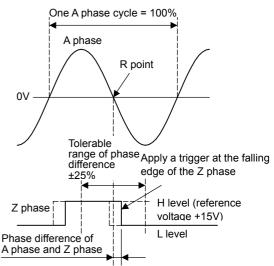
Check the output signal waveform by measuring the signals of the check terminals on the PCB with the DC range of the synchroscope.

A phase output signal...... Across A-G Z phase output signal..... Across Z-G

The output signal waveform is confirmed during motor forward run and reverse run. Set the synchroscope as follows to measure the waveform during each run direction.


During forward run ...... Apply a trigger at the rising edge of the Z phase output signal During reverse run ...... Apply a trigger at the falling edge of the Z phase output signal


The phase difference for the Z phase signal and A phase signal is defined as follows.


During forward run ...... Time difference between Z phase output signal rising edge and A phase output signal zero point (Q point)

During reverse run ...... Time difference between Z phase output signal falling edge and A phase output signal's 1/2 cycle point (R point)

Confirm that the phase difference between the Z phase to the A phase is within  $\pm 25\%$  during both forward and reverse run when one cycle of the A phase signal is calculated as100%. If the output signal waveform is not as shown below, refer to the next section "(8) Adjusting the Z phase and A phase difference" and adjust.








Confirming the Z phase signal phase difference during reverse run

## (8) Adjusting the Z phase and A phase difference

- [1] Stop the motor, and make sure that the detection gears are not rotating. The sensor could be damaged if adjustments are carried out while the gears are rotating.
- [2] Using a clearance gauge, adjust so that the gap between the sensor direction surface and the detection gears' circumference is 0.15±0.01mm, and loosen the sensor fixing screw.
- [3] The phase difference of the Z phase to the A phase can be adjusted by rotating the sensor as shown on the right. At this time, rotate the sensor a little bit while using the marking lines on the sensor and installation seat as a guide.
- [4] Tighten the sensor fixing screw so that the sensor does not move, and confirm that the gap between the sensor detection surface and detection gears' circumference is  $0.15 \pm 0.01$ mm. Then, rotate the gears and confirm the phase difference as explained above.
- [5] When the phase difference is within the tolerable range, apply a locking agent on the sensor fixing screw, and then fix the sensor. Check the gap again after fixing the sensor.



Adjusting the Z phase difference

Always carry out the initial automatic adjustment when starting the spindle system up for the first time or when the spindle drive unit has been replaced.

[1]MDS-C1-SPM : "3-6-2 Z-phase automatic adjustment" + "3-6-3 Motor end PLG automatic adjustment"
 [2]MDS-C1-SP/SPH : "3-6-3 Motor end PLG automatic adjustment"
 [3]MDS-C1-SPX/SPHX : "3-6-4 Spindle end PLG automatic adjustment"

# 3-6-2 Z phase automatic adjustment

Z-phase automatic adjustment is a function that automatically adjusts the relative position of the IPM spindle motor pole and the PLG Z-phase pulse signal input into the spindle drive unit. The adjustment data is saved in the drive unit, and is used to control the motor the next time the power is turned ON. The motor cannot be started without completing this adjustment (alarm 16 will be detected), so always carry out this adjustment when starting up the spindle system, when the spindle motor has been replaced, when the PLG has been replaced or adjusted, or when the spindle drive unit has been replaced.

## <Adjustment methods>

- [1] If SP205 is set to 1, change it to 0, and reboot the NC power. If it is already set to 0, go to step [2].
- [2] If the SP205 setting is 0, change it to 1.
- [3] Input forward run start. The spindle motor will automatically rotate at the adjustment speed (two stages for Z-phase pulse detection and pole position detection). (The control output 4/bitD is changed to 1 on the NC spindle monitor screen from startup until a restart occurs. In the same manner, the control input 3/bit8 or bit9 status of 1 is established after the forward run start input, and "D" is displayed for the drive unit until automatic adjustment is completed.)
- [4] The adjustment results will be calculated and the operation will automatically stop approx. 90 seconds after forward run is started (may vary according to pole position). (When automatic adjustment is completed, the drive unit display at the NC spindle monitor screen changes from "D" to "C". Even though the motor is stopped while "D" is displayed, automatic adjustment is in progress. Be sure to wait until "C" displays.)
- [5] Turn forward run OFF. (The adjustment data will be saved.)
- [6] Reboot the NC power.

| No.   | Abbr. | Parameter name        | Details                                                                                        | Setting range<br>(Unit) | Standard setting |
|-------|-------|-----------------------|------------------------------------------------------------------------------------------------|-------------------------|------------------|
| SP205 | ZCHS  | PLG 7-phase automatic | <for mds-c1-spm=""><br/>This validates the PLG Z-phase automatic adjustment<br/>function</for> | 0 to 1                  | 0  ightarrow 1   |

| POINT | <ol> <li>If the NC power is turned ON when SP205 is set to 1, the adjustment data saved in the drive unit will be used for control.</li> <li>To readjust, or to turn the start OFF during the automatic adjustment when "D" is displayed for the drive unit (see step [4] above), specify another SP205=0 setting to restart the NC, then perform the above procedure, beginning from step [2].</li> <li>If operation is started without completing the adjustment, alarm 16 will occur.</li> </ol> |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|  | <ol> <li>The motor will automatically rotate at the adjustment speed during Z-phase<br/>automatic adjustment. Do not touch the rotating sections as this is<br/>hazardous.</li> <li>Complete PLG adjustment before starting this adjustment. (Built-in motor)</li> <li>Keep the spindle load inertia and friction load as small as possible when<br/>using this function. (The maximum inertia is approx. 5-fold the motor<br/>inertia.)</li> </ol> |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# 3-6-3 Motor end PLG automatic adjustment

Motor end PLG automatic adjustment is a function that automatically adjusts the gain and offset of the spindle motor built-in PLG's A and B phase sine wave signals which are input into the spindle drive unit. The adjustment data is saved in the drive unit, and is used to control the motor the next time the power is turned ON.

Always carry out this adjustment when starting up the spindle system, when the spindle motor has been replaced, when the PLG has been replaced or adjusted, or when the spindle drive unit has been replaced. This function is used to improve the accuracy of the position data.

When using the IPM motor (MDS-C1-SPM), complete the "3-6-1 Z-phase automatic adjustment" before starting this adjustment.

## <Adjustment methods>

- [1] If SP245 is set to 1, change it to 0, and turn the NC power ON again. If it is already set to 0, go to step [2].
- [2] If the SP245 setting is 0, change it to 1.
- [3] Input forward run start. The spindle motor will automatically rotate at the adjustment speed (two stages for offset adjustment and gain adjustment). (The control input 3/bit8 or bit9 is changed to 1 after the forward run start input, and "D" is displayed for the drive unit until automatic adjustment is completed. For C1-SPM, a control output 4/bitD status of 1 is established on the NC spindle monitor screen from startup until a restart occurs.)
- [4] The adjustment results will be calculated and the operation will automatically stop several seconds after forward run is started. (When automatic adjustment is completed, the drive unit display at the NC spindle monitor screen changes from "D" to "C". Even though the motor is stopped while "D" is displayed, automatic adjustment is in progress. Be sure to wait until "C" displays.)
- [5] Turn forward run OFF. (The adjustment data will be saved.)
- [6] Turn the NC power ON again.

After completing the PLG adjustment, carry out trial operation, and confirm that there is no abnormal noise (knocking or scratching noise) during forward run or reverse run.

| No.   | Abbr. | Parameter name | Details                                                                                                     | Setting range<br>(Unit) | Standard setting  |
|-------|-------|----------------|-------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|
| SP245 | PGHS  | PLG automatic  | <for mds-c1-sp="" sph="" spm=""><br/>This validates the automatic adjustment function for the<br/>PLG</for> | 0 to 1                  | $0 \rightarrow 1$ |

| <ol> <li>If the NC power is turned ON when SP245 is set to 1, the adjustment data saved in the drive unit will be used for control.</li> <li>To readjust, or to turn the start OFF during the automatic adjustment (when "D" is displayed for the drive unit (see step [4] above)), specify another SP205=0 setting to restart the NC, then perform the above procedure, beginning from step [2].</li> </ol> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|  | <ol> <li>The motor will automatically rotate at the adjustment speed during PLG<br/>automatic adjustment. Do not touch the rotating sections as this is<br/>hazardous.</li> <li>Complete PLG adjustment before starting this adjustment. (Built-in motor)</li> </ol> |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# 3-6-4 Spindle end PLG automatic adjustment

Spindle end PLG automatic adjustment is a function that automatically adjusts the gain and offset of the A and B phase sine wave signals of the spindle end PLG used for C axis control which are input into the detector converter (MDS-B-PJEX) used in the MDS-C1- SPX/SPHX unit. The adjustment data is saved in the detector converter, and is used to control the motor the next time the power is turned ON.

Always carry out this adjustment when starting up the spindle system, when the spindle motor has been replaced, when the PLG has been replaced or readjusted, or when the detector converter has been replaced. This function is used to improve the accuracy of the position data.

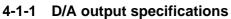
## <Adjustment methods>

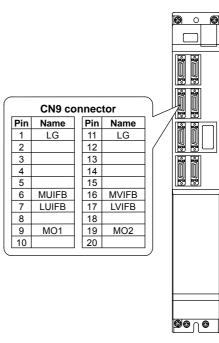
- [1] If SP240 is set to 1, change it to 0, and turn the NC power ON again. If it is already set to 0, go to step [2].
- [2] If the SP240 setting is 0, change it to 1.
- [3] Input forward run start. The spindle motor will automatically rotate at the adjustment speed (two stages for offset adjustment and gain adjustment). (The control input 3/bit8 or bit9 is changed to 1 after the forward run start input, and "D" is displayed for the drive unit until automatic adjustment is completed.)
- [4] The adjustment results will be calculated and the operation will automatically stop several seconds after forward run is started. (When automatic adjustment is completed, the drive unit display at the NC spindle monitor screen changes from "D" to "C". Even though the motor is stopped while "D" is displayed, automatic adjustment is in progress. Be sure to wait until "C" displays.)
- [5] Turn forward run OFF. (The adjustment data will be saved.)
- [6] Turn the NC power ON again.

| No.   | Abbr. | Parameter name | Details                                                                                                                             | Setting range<br>(Unit) | Standard setting  |
|-------|-------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|
| SP240 |       | PLG automatic  | <for mds-c1-spx="" sphx=""><br/>This validates the automatic adjustment function for the<br/>PLG connected to the MDS-B-PJEX.</for> | 0 to 1                  | $0 \rightarrow 1$ |

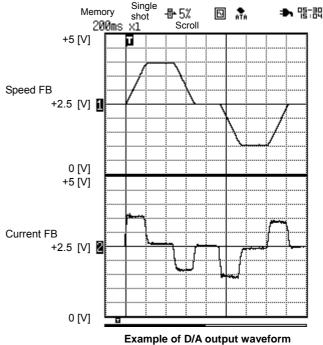
|  | <ol> <li>If the NC power is turned ON when SP240 is set to 1, the adjustment data<br/>saved in the detector converter (MDS-B-PJEX) will be used for control.</li> <li>To readjust, or to turn the start OFF during the automatic adjustment when<br/>"D" is displayed for the drive unit (see step [4] above), specify another<br/>SP205=0 setting to restart the NC, then perform the above procedure,<br/>beginning from step [2].</li> </ol> |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|  | <ol> <li>The motor will automatically rotate at the adjustment speed during PLG<br/>automatic adjustment. Do not touch the rotating sections as this is<br/>hazardous.</li> <li>Complete PLG adjustment before starting this adjustment.</li> </ol> |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


| A output specifications for servo drive unit                    |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/A output specifications                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Output data settings                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Setting the output magnification                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| in adjustment                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Current loop gain                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Speed loop gain                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Position loop gain                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| aracteristics improvement                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Optimal adjustment of cycle time                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vibration suppression measures                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Improvement of characteristics during acceleration/deceleration |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Improvement of protrusion at quadrant changeover                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Improvement of overshooting                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Collision detection                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | D/A output specifications<br>Output data settings<br>Setting the output magnification<br>in adjustment<br>Current loop gain<br>Speed loop gain<br>Position loop gain<br>aracteristics improvement<br>Optimal adjustment of cycle time<br>Vibration suppression measures<br>Improving the cutting surface precision<br>Improvement of characteristics during acceleration/deceleration<br>Improvement of protrusion at quadrant changeover |


CAUTION "Chapter 4 Servo adjustment" explains the methods when controlling with the high-gain specifications.

# 4-1 D/A output specifications for servo drive unit


The MDS-C1-V1/V2 servo drive unit has a function to D/A output the various control data. The servo adjustment data required for setting the servo parameters to match the machine can be D/A output. Measure using a hi-coder, oscilloscope, etc.

| Item                         | Explanation                                                                                                                                                                                  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| No. of channels              | 2ch                                                                                                                                                                                          |  |  |
| Output cycle                 | 888µs (min. value)                                                                                                                                                                           |  |  |
| Output precision             | 8bit                                                                                                                                                                                         |  |  |
| Output voltage range         | 0V to 2.5V (zero) to +5V                                                                                                                                                                     |  |  |
| Output magnification setting | ±1/256 to ±128-fold                                                                                                                                                                          |  |  |
| Output pin                   | CN9 connector<br>MO1 = Pin 9<br>MO2 = Pin 19<br>GND = Pins 1, 11                                                                                                                             |  |  |
| Function                     | Phase current feedback output function<br>L axis U phase current FB : Pin 7<br>L axis V phase current FB : Pin 17<br>M axis U phase current FB : Pin 6<br>M axis V phase current FB : Pin 16 |  |  |
| Others                       | The D/A output for the 2-axis unit<br>(MDS-C1-V2) is also 2ch. When using<br>the 2-axis unit, set -1 for the output<br>data (SV061, 62) of the axis that is not<br>to be measured.           |  |  |





With the MDS-C1-V1/V2 Series, there is a 2.5V offset voltage (2.5V when data is 0), so the zero level position must be adjusted on the hi-corder side.



| No.          | Abbrev.                      | Para          | ameter name                                                                           | Explanation                                                         |                                    |                  |  |  |
|--------------|------------------------------|---------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|------------------|--|--|
| V061<br>V062 | -                            |               | channel 1 data No. Input the No. of the data to be output to each D/A output channel. |                                                                     |                                    |                  |  |  |
| No.          | Outp                         | ut data       | Original data un                                                                      | it Output magnification<br>standard setting value<br>(SV063, SV064) | Output unit for standard setting   | Output<br>cycle  |  |  |
| -1           | D/A output r                 | not selected  | For 2-axis drive unit (ME output.                                                     | DS-C1-V2). Set the parameters to anoth                              | her axis in the drive unit that is | not D/A          |  |  |
| 0            | ch1: Speed                   | feedback      | r/min                                                                                 | 13 (2000r/min)<br>9 (3000r/min)                                     | 1000r/min/V<br>1500r/min/V         | 3.55ms<br>3.55ms |  |  |
|              | ch2: Curren                  | t command     | Stall %                                                                               | 131                                                                 | Stall 100%/V                       | 3.55ms           |  |  |
| 1            | Current com                  | nmand         | Stall %                                                                               | 131                                                                 | Stall 100%/V                       | 3.55ms           |  |  |
| 2            | -                            |               |                                                                                       |                                                                     |                                    |                  |  |  |
| 3            | Current feed                 | lback         | Stall %                                                                               | 131                                                                 | Stall 100%/V                       | 3.55ms           |  |  |
| 4            | -                            |               |                                                                                       |                                                                     |                                    |                  |  |  |
| 5            | -                            |               |                                                                                       |                                                                     |                                    |                  |  |  |
| 6            | Position dro                 | ор            | NC display unit/2                                                                     | 2 328 (Display unit = 1µm)                                          | 10µm/0.5V                          | 3.55ms           |  |  |
| 7            | -                            |               |                                                                                       |                                                                     |                                    |                  |  |  |
| 8            | Feedrate (F                  | <b>1</b> T)   | (NC disiplay unit/2<br>Communication cy                                               |                                                                     | 1000 (mm/min)/0.5V                 | 3.55ms           |  |  |
| 9            | -                            |               |                                                                                       |                                                                     |                                    |                  |  |  |
| 10           | Position cor                 | nmand         | NC display unit/2                                                                     | 2 328 (Display unit = 1µm)                                          | 10µm/0.5V                          | 3.55ms           |  |  |
| 11           | -                            |               |                                                                                       |                                                                     |                                    |                  |  |  |
| 12           | Position fee                 | dback         | NC display unit/2                                                                     | 2 328 (Display unit = 1µm)                                          | 10µm/0.5V                          | 3.55ms           |  |  |
| 13           | -                            |               |                                                                                       |                                                                     |                                    |                  |  |  |
| 14           | Collision de<br>estimated to |               | Stall %                                                                               | 131                                                                 | Stall 100%/V                       | 3.55ms           |  |  |
| 15           | Collision de<br>disturbance  |               | Stall %                                                                               | 131                                                                 | Stall 100%/V                       | 3.55ms           |  |  |
| 64           | Current com<br>(high-speed   |               | Internal unit                                                                         | 8 (adjustments required)                                            | -                                  | 888µs            |  |  |
| 65           | Current feed<br>(high-speed  |               | Internal unit                                                                         | 8 (adjustments required)                                            | -                                  | 888µs            |  |  |
| 77           | Estimated d torque           | isturbance    | Internal unit                                                                         | 8 (adjustments required)                                            | -                                  | 888µs            |  |  |
| 125          | Test output<br>wave          | saw tooth     | 0V to 5V                                                                              | 0 (256)                                                             | Cycle: 227.5ms                     | 888µs            |  |  |
| 126          | Test output                  | oblong wave   | 0V to 5V                                                                              | 0 (256)                                                             | Cycle 1.7ms                        | 888µs            |  |  |
| 127          | Test output                  | 2.5V (data 0) | 2.5V                                                                                  | 0 (256)                                                             | -                                  | 888µs            |  |  |

# 4-1-2 Output data settings

# 4-1-3 Setting the output magnification

Normally, set the standard setting value for the output scale (SV063, SV064). When "0" is set, the magnification will be the same as "256".

$$DATA \times \frac{SV063}{256} \times \frac{5 [V]}{256 (8 \text{ bit})} + 2.5 [V] \text{ (Offset)} = \text{Output voltage [V]}$$

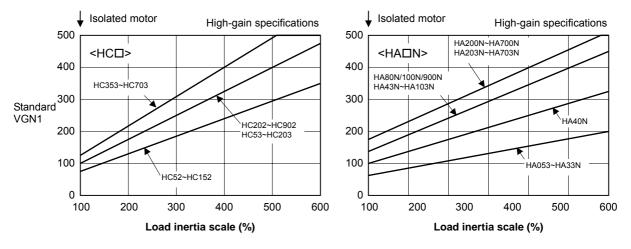
(Example) To output current FB with stall 100%/V unit (SV061=3, SV063=131)

$$100 \times \frac{131}{256} \times \frac{5}{256}$$
 + 2.5 = 3.499 [V]

| No.   | Abbrev. | Parameter name                       | Explanation                                                                                                      | Setting range   |
|-------|---------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|
| SV063 |         |                                      | Set the output magnification with a 1/256 unit.<br>When "0" is set, the magnification will be the same as "256". | -32768 to 32767 |
| SV064 |         | D/A output channel 2<br>output scale |                                                                                                                  | (1/256-fold)    |

# 4-2 Gain adjustment

# 4-2-1 Current loop gain


| No.   | Abbrev. | Parameter name           | Explanation                                                                                                                                      | Setting range |
|-------|---------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SV009 |         | compensation             | Set the gain of current loop.<br>As this setting is determined by the motor's electrical                                                         | 1 to 20480    |
| SV010 |         |                          | characteristics, the setting is fixed for each type of motor.<br>Set the standard values for all the parameters depending on<br>each motor type. |               |
| SV011 | IQG     | Current loop q axis gain |                                                                                                                                                  | 1 to 8192     |
| SV012 | IDG     | Current loop d axis gain |                                                                                                                                                  |               |

## 4-2-2 Speed loop gain

## (1) Setting the speed loop gain

The speed loop gain 1 (SV005: VGN1) is an important parameter for determining the responsiveness of the servo control. During servo adjustment, the highest extent that this value can be set to becomes important. The setting value has a large influence on the machine cutting precision and cycle time.

- [1] Refer to the following table and set the standard VGN1 according to the size of the entire load inertia (motor and machine load inertia).
- [2] If the standard speed gain setting value is exceeded, the current command fluctuation will increase even if the speed feedback fluctuates by one pulse. This can cause the machine to vibrate easily, so set a lower value to increase the machine stability.



#### <When machine resonance does not occur at the standard VGN1>

Set the standard VGN1. Use the standard value if no problem (such as machine resonance) occurs. If sufficient cutting precision cannot be obtained at the standard VGN1, VGN1 can be raised above the standard value as long as a 70 percent margin in respect to the machine resonance occurrence limit is maintained. The cutting accuracy can also be improved by adjusting with the disturbance observer.

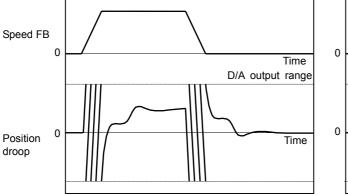
#### <When machine resonance occurs at the standard VGN1>

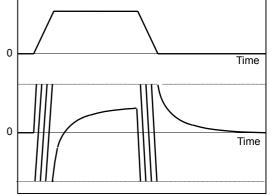
Machine resonance is occurring if the shaft makes abnormal sounds when operating or stopping, and a fine vibration can be felt when the machine is touched while stopped. Machine resonance occurs because the servo control responsiveness includes the machine resonance points. (Speed control resonance points occur, for example, at parts close to the motor such as ball screws.) Machine resonance can be suppressed by lowering VGN1 and the servo control responsiveness, but the cutting precision and cycle time are sacrificed. Thus, set a vibration suppression filter and suppress the machine resonance (Refer to section "4-3-2 Vibration suppression measures"), and set a value as close as possible to the standard VGN1. If the machine resonance cannot be sufficiently eliminated even by using a vibration suppression filter, then lower the VGN1.

| No.   | Abbrev. | Parameter name | Explanation                                                                                                                                                                                                                                        | Setting range |
|-------|---------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SV005 | VGN1    |                | Set the speed loop gain.<br>Set this according to the load inertia size.<br>The higher the setting value is, the more accurate the control will be,<br>however, vibration tends to occur.<br>If vibration occurs, adjust by lowering by 20 to 30%. | 1 to 999      |

The final VGN1 setting value is 70 to 80% of the maximum value at which the machine does not resonate. Suppressing the resonance with the vibration suppression function and increasing

the VGN1 setting is effective for adjusting the servo later.


## (2) Setting the speed loop lead compensation


POINT

The speed loop lead compensation (SV008: VIA) determines the characteristics of the speed loop mainly at low frequency regions. 1364 is set as a standard, and 1900 is set as a standard during SHG control. The standard value may drop in respect to loads with a large inertia.

When the VGN1 is set lower than the standard value because the load inertia is large or because machine resonance occurred, the speed loop control band is lowered. If the standard value is set in the leading compensation in this status, the leading compensation control itself will induce vibration. In concrete terms, a vibration of 10 to 20Hz could be caused during acceleration/ deceleration or stopping, and the position droop waveform could be disturbed when accelerating to a constant speed and when stopped. (Refer to lower left drawing)

This vibration cannot be suppressed by the vibration suppression functions. Lower the VIA in increments of 100 from the standard setting value. Set a value where vibration does not occur and the position droop waveform converges smoothly. Because lowering the VIA causes a drop in the position control's trackability, the vibration suppression is improved even when a disturbance observer is used without lowering the VIA. (Be careful of machine resonance occurrence at this time.)





Vibration waveform with lead compensation control

Adjusted position droop waveform

If VIA is lowered, the position droop waveform becomes smooth and overshooting does not occur. However, because the trackability in respect to the position commands becomes worse, the positioning time and accuracy are sacrificed. VIA must be kept high (set the standard value) to guarantee precision, especially in high-speed contour cutting (generally F = 1000 or higher). In other words, in a machine aiming for high speed and high accuracy, a large enough value must be set in VGN1 so that VIA does not need to be lowered. When adjusting, the cutting precision will be better if adjustment is carried out to a degree where overshooting does not occur and a high VIA is maintained, without pursuing position droop smoothness.

If there are no vibration or overshooting problems, the high-speed contour cutting precision can be further improved by setting the VIA higher than the standard value. In this case, adjust by raising the VIA in increments of 100 from the standard value.

Setting a higher VIA improves the trackability regarding position commands in machines for which cycle time is important, and the time to when the position droop converges on the in-position width is shortened.

It is easier to adjust the VIA to improve precision and cycle time if a large value (a value near the standard value) can be set in VGN1, or if VGN1 can be raised equivalently using the disturbance observer.

| No.   | Abbrev. | Parameter name                  | Explanation                                                                                                                                                                                                                                                                                                                                                                      | Setting range |
|-------|---------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SV008 |         | Speed loop lead<br>compensation | Set the gain of the speed loop integration control.<br>The standard setting is "1364". During the SHG control, the standard<br>setting is "1900". Adjust the value by increasing/decreasing it by about<br>100 at a time.<br>Raise this value to improve contour tracking precision in high-speed<br>cutting. Lower this value when the position droop vibrates (10 to<br>20Hz). | 1 to 9999     |

Position droop vibration of 10Hz or less is not leading compensation control vibration. The position loop gain must be adjusted.

# 4-2-3 Position loop gain

## (1) Setting the position loop gain

The position loop gain 1 (SV003: PGN1) is a parameter that determines the trackability to the command position. 47 is set as a standard. Set the same position loop gain value between interpolation axes.

When PGN1 is raised, the trackability will be raised and the settling time will be shortened, but a speed loop that has a responsiveness that can track the position loop gain with increased response will be required. If the speed loop responsiveness is insufficient, several Hz of vibration or overshooting will occur during acceleration/deceleration. Vibration or overshooting will also occur when VGN1 is smaller than the standard value during VIA adjustment, but the vibration in the position loop occurs generally 10Hz or less. (The VIA vibration occurs from 10 to 20Hz.) When the position control includes machine resonance points (Position control machine resonance points occur at the tool end parts, etc.) because of insufficient machine rigidity, the machine will vibrate during positioning, etc. In either case, lower PGN1 and adjust so that vibration does not occur.

If the machine also vibrates due to machine backlash when the motor stops, the vibration can be suppressed by lowering the PGN1 and smoothly stopping.

If SHG control is used, an equivalently high position loop gain can be maintained while suppressing these vibrations. To adjust the SHG control, gradually raise the gain from a setting where 1/2 of a normal control PGN1 where vibration did not occur was set in PGN1. If the PGN1 setting value is more than 1/2 of the normal control PGN1 when SHG control is used, there is an improvement effect in position control. (Note that for the settling time the improvement effect is at  $1/\sqrt{2}$  or more.)

| No.   | Abbrev. | Parameter name       | Explanation                                                                                                                                                                                                                                                                                                                                                           | Setting range       |
|-------|---------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| SV003 | PGN1    |                      | Set the position loop gain. The standard setting is "47".<br>The higher the setting value is, the more precisely the command can be<br>followed and the shorter the positioning time gets, however, note that a<br>bigger shock is applied to the machine during acceleration/deceleration.<br>When using the SHG control, also set SV004 (PGN2) and SV057<br>(SHGC). | 1 to 200<br>(rad/s) |
| SV004 | PGN2    | Position loop gain 2 | Set 0. (For SHG control)                                                                                                                                                                                                                                                                                                                                              | 0 to 999            |
| SV057 | SHGC    | SHG control gain     | Set 0. (For SHG control)                                                                                                                                                                                                                                                                                                                                              | 0 to 1200           |

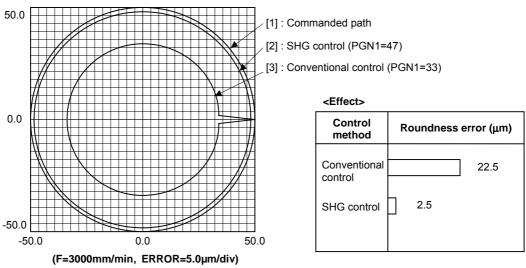
Always set the same value for the position loop gain between the interpolation  $/! \setminus CAUTION$ axes.

# (2) Setting the position loop gain for spindle synchronous control

During spindle synchronous control (synchronous tapping control, etc.), there are three sets of position loop gain parameters besides the normal control.

| No.   | Abbrev. | Parameter name                                            | Expla                                     | nation                                                                                      | Setting range       |
|-------|---------|-----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------|
| SV049 |         | Position loop gain 1<br>in spindle<br>synchronous control |                                           | Set the same parameter as the<br>position loop gain for the spindle<br>synchronous control. | 1 to 200<br>(rad/s) |
| SV050 |         | Position loop gain 2<br>in spindle<br>synchronous control | Set 0 as a standard.<br>(For SHG control) |                                                                                             | 0 to 999            |
| SV058 |         | SHG control gain in<br>spindle synchronous<br>control     | Set 0 as a standard.<br>(For SHG control) |                                                                                             | 0 to 1200           |

**CAUTION** Always set the same value for the position loop gain between the spindle and servo synchronous axes.


## (3) SHG control (option function)

If the position loop gain is increased or feed forward control (NC function) is used to shorten the settling time or increase the precision, the machine system may vibrate easily.

SHG control changes the position loop to a high-gain by stably compensating the servo system position loop through a delay. This allows the settling time to be reduced and a high precision to be achieved. (SHG: Smooth High-Gain)

- (Feature 1) When the SHG control is set, even if PGN1 is set to the same value as the conventional gain, the position loop gain will be doubled.
- (Feature 2) The SHG control response is smoother than conventional position control during acceleration/deceleration, so the gain can be increased further with SHG control compared to the conventional position control.
- (Feature 3) With SHG control, a high gain is achieved so a high precision can be obtained during contour control.

The following drawing shows an example of the improvement in roundness characteristics with SHG control.



Shape error characteristics

During SHG control, PGN1, PGN2 and SHGC are set with the following ratio.

PGN1 : PGN2 : SHGC = 1 :  $\frac{8}{3}$  : 6

During SHG control even if the PGN1 setting value is the same, the actual position loop gain will be higher, so the speed loop must have a sufficient response. If the speed loop response is low, vibration or overshooting could occur during acceleration/deceleration in the same manner as conventional control. If the speed loop gain has been lowered because machine resonance occurs, lower the position loop gain and adjust.

| No.   | Abbrev.          | Parameter name                         | Setting<br>ratio | Setting example                         |       |         | ample |         | Explanation                                              | Setting range |
|-------|------------------|----------------------------------------|------------------|-----------------------------------------|-------|---------|-------|---------|----------------------------------------------------------|---------------|
|       | PGN1<br>(PGN1sp) | Position loop gain 1                   | 1                | 23                                      | 26    | 33      | 38    | 47      | Always set with a combination of these three parameters. | 1 to 200      |
|       | PGN2<br>(PGN2sp) | Position loop gain 2                   | <u>8</u><br>3    | 62                                      | 70    | 86      | 102   | 125     |                                                          | 0 to 999      |
|       | SHGC<br>(SHGCsp) | SHG control gain                       | 6                | 140                                     | 160   | 187     | 225   | 281     |                                                          | 0 to 999      |
| SV008 | VIA              | Speed loop lead compensation           | Set 1900 a       | Set 1900 as a standard for SHG control. |       |         |       |         |                                                          | 1 to 9999     |
| SV015 | FFC              | Acceleration rate<br>feed forward gain | Set 100 as       | s a sta                                 | ndarc | l for S | HG co | ontrol. |                                                          | 0 to 999      |

POINT

The SHG control is an optional function. If the option is not set in the CNC, the alarm 37 (at power ON) or warning E4, Error Parameter No. 104 (2304 for M60S/E60 Series CNC) will be output.

# 4-3 Characteristics improvement

#### 4-3-1 Optimal adjustment of cycle time

The following items must be adjusted to adjust the cycle time. Refer to the Instruction Manuals provided with each CNC for the acceleration/deceleration pattern. : This will affect the maximum speed during positioning.

- [1] Rapid traverse rate (rapid)
- [2] Clamp speed (clamp)
- : This will affect the maximum speed during cutting.
- [3] Acceleration/deceleration time : Set the time to reach the feedrate. constant (G0t\*, G1t\*)
- [4] In-position width (SV024)
- : This will affect each block's movement command end time.
- [5] Position loop gain (SV003)

- : This will affect each block's movement command settling time.

# (1) Adjusting the rapid traverse

To adjust the rapid traverse, the CNC axis specification parameter rapid traverse rate (rapid) and acceleration/deceleration time constant (G0t\*) are adjusted. The rapid traverse rate is set so that the motor speed matches the machine specifications in the range below the maximum speed in the motor specifications. For the acceleration/deceleration time constants, carry out rapid traverse reciprocation operation, and set so that the maximum current command value at acceleration/ deceleration is within the range shown below. The output torque is limited at areas near the maximum speed, so monitor the current FB waveform during acceleration/deceleration and adjust so that the torque is within the specified range.

If the drive unit's input voltage is less than the rated voltage, the torque will easily become insufficient, and excessive errors will occur easily during acceleration/deceleration.

## (2) Adjusting the cutting feed

To adjust the cutting rate, the NC axis specification parameter clamp speed (clamp) and acceleration/deceleration time constant (G1t\*) are adjusted. The in-position width at this time must be set to the same value as actual cutting.

 Determining the clamp rate and adjusting the acceleration/deceleration time constant The maximum cutting rate (clamp speed) can be determined freely. (Features)

- (Adjustment) Carry out cutting feed reciprocation operation with no dwell at the maximum cutting rate and adjust the acceleration/deceleration time constant so that the maximum current command value during acceleration/deceleration is within the range shown below.
- Setting the step acceleration/deceleration and adjusting the clamp speed
  - (Features) The acceleration/deceleration time constant is determined with the position loop in the servo, so the acceleration/deceleration  $F\Delta T$  can be reduced.
  - (Adjustment) Set 1 (step) for the acceleration/deceleration time constant and carry out cutting feed reciprocation operation with no dwell. Adjust the cutting feed rate so that the maximum current command value during acceleration/deceleration is within the range shown below, and then set the value in the clamp speed.

| Motor model | Max. current<br>command value | Motor model | Max. current<br>command value | Motor model | Max. current<br>command value |
|-------------|-------------------------------|-------------|-------------------------------|-------------|-------------------------------|
| HC52        | Within 388%                   | HA053N      | Within 240%                   | HA40N       | Within 400%                   |
| HC102       | Within 340%                   | HA13N       | Within 240%                   | HA80N       | Within 365%                   |
| HC152       | Within 380%                   | HA23N       | Within 230%                   | HA100N      | Within 260%                   |
| HC202       | Within 275%                   | HA33N       | Within 230%                   | HA200N      | Within 225%                   |
| HC352       | Within 251%                   |             |                               | HA300N      | Within 200%                   |
| HC452       | Within 189%                   | HA-LF11K2   | Within 215%                   | HA700N      | Within 205%                   |
| HC702       | Within 221%                   | HA-LF15K2   | Within 240%                   | HA900N      | Within 220%                   |
| HC902       | Within 228%                   |             |                               |             |                               |
|             |                               | HC452*      | Within 242%                   | HA43N       | Within 295%                   |
| HC53        | Within 264%                   | HC702*      | Within 248%                   | HA83N       | Within 275%                   |
| HC103       | Within 257%                   | HC902*      | Within 228%                   | HA103N      | Within 245%                   |
| HC153       | Within 266%                   |             |                               | HA203N      | Within 210%                   |
| HC203       | Within 257%                   | HC353*      | Within 242%                   | HA303N      | Within 180%                   |
| HC353       | Within 230%                   | HC453*      | Within 248%                   | HA703N      | Within 180%                   |
| HC453       | Within 177%                   | HC703*      | Within 228%                   |             |                               |
| HC703       | Within 189%                   |             |                               |             |                               |

Maximum current command value when adjusting acceleration/deceleration time constant

(Note) The motor indicated with an asterisk indicates the combination with the S-type drive unit.

# (3) Adjusting the in-position width

Because there is a response delay in the servomotor drive due to position loop control, a "settling time" is also required for the motor to actually stop after the command speed from the CNC reaches 0.

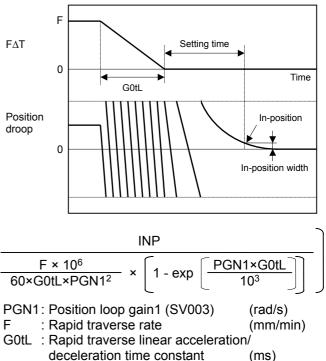
The movement command in the next block is generally started after it is confirmed that the machine has entered the "in-position width" range set for the machine.

Set the precision required for the machine as the in-position width. If a high precision is set needlessly, the cycle time will increase due to a delay in the settling time.

The in-position width is validated with the servo parameter settings, but there may be cases when it is validated with the NC parameters. Refer to each NC Instruction Manual.

| No.   | Abbrev. | Parameter name | Explanation                                                                                                                                                                                                                                          | Setting range      |
|-------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| SV024 |         | width          | Set the in-position detection width.<br>Set the accuracy required for the machine.<br>The lower the setting is, the higher the positioning accuracy gets,<br>however, the cycle time (setting time) becomes longer. The standard<br>setting is "50". | 0 to 32767<br>(μm) |

**POINT** The in-position width setting and confirmation availability depend on the CNC parameters.


## (4) Adjusting the settling time

The settling time is the time required for the position droop to enter the in-position width after the feed command (F $\Delta$ T) from the CNC reaches 0.

The settling time can be shortened by raising the position loop gain or using SHG control. However, a sufficient response (sufficiently large VGN1 setting) for the speed loop is required to carry out stable control.

The settling time during normal control when the CNC is set to linear acceleration/ deceleration can be calculated using the following equation. During SHG control, estimate the settling time by multiplying PGN1 by  $\sqrt{2}$ .

Settling time (ms) = 
$$-\frac{10^3}{PGN1} \cdot ln$$



INP : In-position width (SV024)  $(\mu m)$ 

# 4-3-2 Vibration suppression measures

If vibration (machine resonance) occurs, it can be suppressed by lowering the speed loop gain 1 (VGN1). However, cutting precision and cycle time will be sacrificed. (Refer to "4-2-2 Speed loop gain".) Thus, try to maintain the VGN1 as high as possible, and suppress the vibration using the vibration suppression functions.

If the VGN1 is lowered and adjusted because vibration cannot be sufficiently suppressed with the vibration suppression functions, adjust the entire gain (including the position loop gain) again.

#### <Examples of vibration occurrence>

- A fine vibration is felt when the machine is touched, or a groaning sound is heard.
- Vibration or noise occurs during rapid traverse.

**POINT** Suppress the vibration using the vibration suppression functions, and maintain the speed loop gain (SV005: VGN1) as high as possible.

## (1) Notch filter

This servo drive unit mounts 5 notch filters. Measure the resonance frequency with the current feedback analog output function, and set that frequency in parameter.

However, if the notch filter is set to a particularly low frequency, another resonance frequency that did not vibrate initially may occur. If the notch filter's depth compensation (SV033, nfd1, nfd2) is adjusted so that the filter does not operate unless necessary, the servo control will be stabilized. Notch filter 3 is a filter with frequency fixed to 1125Hz, and has no depth compensation.

## <Setting method>

- [1] Set the resonance frequency in the notch filter frequency (1, 2, 4, 5).
- [2] If the machine starts to vibrate at another frequency, raise (make shallower) the notch filter depth compensation value, and adjust to the optimum value at which the resonance can be eliminated.
- [3] When the vibration cannot be completely eliminated, use also another notch filter for this frequency.

| No.            | Abbrev.      | Parameter name                                             | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Setting range                                    |
|----------------|--------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| SV033          | SSF2         | Servo function<br>selection 2                              | FEDCBA98765432bitMeaning when "0" is sethvxsvxnfd2nf3nfd11Set the filter depth for Notch filter 1 (SV038).2nfd1Value000001010011100101110Depth (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.5deep3DeepSet the filter depth of Notch filter 2 (SV046).Notch filter 3 start (75Set the filter depth of Notch filter 2 (SV046).O000010100111107DeepOutput (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.57DeepOutput (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.57DeepOutput (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.57DeepOutput (dB)Infntly -18.1-12.0-8.5-6.0-4.1-2.5 | ' is set<br>' is set<br>111<br>-1.2<br>Shallow-→ |
| SV038          | FHz1         | Notch filter frequency<br>1                                | Set the vibration frequency to suppress if machine vibration occurs.<br>(Valid at 36 or more) When not using, set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 to 9000<br>(Hz)                                |
| SV046          | FHz2         | Notch filter frequency 2                                   | Set the vibration frequency to suppress if machine vibration occurs.<br>(Valid at 36 or more) When not using, set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 to 9000<br>(Hz)                                |
| SV083          | SSF6         | Servo function<br>selection 6                              | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l1 zck                                           |
| SV087<br>SV088 | FHz4<br>FHz5 | Notch filter<br>frequency 4<br>Notch filter<br>frequency 5 | Set the vibration frequency to suppress if machine vibration occurs.<br>(Valid at 141 or more) When not using, set to "0".<br>To use this function, set to not "0" (normally "1") when turning the power<br>ON. This function cannot be used with adaptive filter.                                                                                                                                                                                                                                                                          | 0 to 2250<br>(Hz)<br>0 to 2250<br>(Hz)           |

## (2) Jitter compensation (Vibration control when motor is stopped.)

The load inertia becomes much smaller than usual if the motor position enters the machine backlash when the motor is stopped. Because this means that an extremely large VGN1 is set for the load inertia, vibration may occur.

Jitter compensation can suppress the vibration that occurs at the motor stop by ignoring the backlash amount of speed feedback pulses when the speed feedback polarity changes.

Increase the number of ignored pulses by one pulse at a time, and set a value at which the vibration can be suppressed. (Because the position feedback is controlled normally, there is no worry of positional deviation.)

When jitter compensation is set to an axis that is not vibrating is set, vibration could be induced, so take care.

## (3) Adaptive filter

The servo drive unit detects the machine resonance point and automatically sets the filter constant. Even if the ball screw and table position relation changes causing the resonance point to change, the filter will track these changes. If the sensitivity to detect the vibration is insufficient and the effect of the filter is not apparent, increase the sensitivity (SV027/bitC, D). The filter coefficient is recalculated when the power is turned ON again, so vibration may occur temporarily. Notch filter 4 and notch filter 5 cannot be used together.

| No.        | Abbrev. | Parameter name                | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |  |  |  |
|------------|---------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|
| SV027 SSF1 |         | Servo function<br>selection 1 | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         afit       zrn2       afse       ovs       Imc       omr       zrn3       vfct       upc       vcnt          Jitter compensation> Removal of vibration when motor is stopped       Explanation       4       vfct       Set the number of compensation pulses of the jitter compensation.       00: Jitter compensation invalid       10: Jitter compensation 2 pulses       01: Jitter compensation 1 pulse       11: Jitter compensation 3 pulses <adaptive filter="">           10: Jitter compensation 3 pulses</adaptive> |                                                             |  |  |  |
|            |         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bit     Meaning when "0" is set     Meaning when "1" is set |  |  |  |

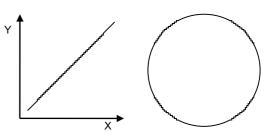
POINT

Jitter compensation vibration suppression is only effective when the motor is stopped.

## (4) Variable speed loop gain control

If vibration occurs when the motor is rotating at a high speed, such during rapid traverse, or if disturbing noise occurs, the state can be improved by lowering the speed loop gain during high-speed rotation. The low-speed region speed loop gain used for cutting feed (G1 feed), etc., is maintained at a high level, so the vibration can be improved without dropping the machining accuracy.

| No.   | Abbrev. | Parameter name                            | Explanation                                                                                                                                                                                                                                                                                                                                                | Setting range        |
|-------|---------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| SV005 | VGN1    | Speed loop gain 1                         | Set the speed loop gain.<br>Set this according to the load inertia size.<br>The higher the setting value is, the more accurate the control will be,<br>however, vibration tends to occur.<br>If vibration occurs, adjust by lowering by 20 to 30%.<br>The value should be determined to be 70 to 80% of the value at the<br>time when the vibration stops. | 1 to 999             |
| SV006 | VGN2    | Speed loop gain 2                         | If the noise is bothersome at high<br>speed during rapid traverse, etc, lower<br>the speed loop gain.<br>As in the right figure, set the speed<br>loop gain of the speed 1.2 times as<br>fast as the motor's rated speed, and<br>use this with SV029 (VCS).<br>When not using, set to "0".                                                                 | -1000 to 1000        |
| SV029 | VCS     | Speed at the change<br>of speed loop gain | If the noise is bothersome at high speed during rapid traverse, etc,<br>lower the speed loop gain.<br>Set the speed at which the speed loop gain changes, and use this with<br>SV006 (VGN2). (Refer to SV006.)<br>When not using, set to "0".                                                                                                              | 0 to 9999<br>(r/min) |


# 4-3-3 Improving the cutting surface precision

If the cutting surface precision or roundness is poor, these can be improved by increasing the speed loop gain (VGN1, VIA) or by using the disturbance observer function.

## <Examples of faults>

POINT

- The surface precision in the 45° direction of a taper or arc is poor.
- The load fluctuation during cutting is large, causing vibration or surface precision defects to occur.



Adjust by raising the speed loop gain equivalently to improve cutting surface precision, even if the measures differ. In this case, it is important how much the machine resonance can be controlled, so adjust making sufficient use of vibration suppression functions.

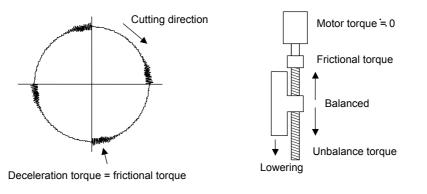
## (1) Adjusting the speed loop gain (VGN1)

If the speed loop gain is increased, the cutting surface precision will be improved but the machine will resonate easily.

The final VGN1 setting should be approx. 70 to 80% of the maximum value where resonance does not occur. (Refer to "4-2-2 (1) Setting the speed loop gain")

# (2) Adjusting the speed loop leading compensation (VIA)

The VIA has a large influence on the position trackability, particularly during high-speed cutting (generally F1000 or more). Raising the setting value improves the position trackability, and the contour precision during high-speed cutting can be improved. For high-speed high-precision cutting machines, adjust so that a value equal to or higher than the standard value can be set. When VIA is set lower than the standard value and set to a value differing between interpolation axes, the roundness may worsen (the circle may distort). This is due to differences occurring in the position trackability between interpolation axes. The distortion can be improved by matching the VIA with the smaller of the values. Note that because the position trackability is not improved, the surface precision will not be improved.


| No.   | Abbrev. | Parameter name                  | Explanation                                                                                                                                                                                                                                                                                                                                                                      | Setting range |
|-------|---------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SV005 | VGN1    | Speed loop gain 1               | Set the speed loop gain.<br>Set this according to the load inertia size.<br>The higher the setting value is, the more accurate the control will be,<br>however, vibration tends to occur.<br>If vibration occurs, adjust by lowering by 20 to 30%.<br>The value should be determined to be 70 to 80% of the value at the time<br>when the vibration stops.                       | 1 to 999      |
| SV008 | VIA     | Speed loop lead<br>compensation | Set the gain of the speed loop integration control.<br>The standard setting is "1364". During the SHG control, the standard<br>setting is "1900". Adjust the value by increasing/decreasing it by about<br>100 at a time.<br>Raise this value to improve contour tracking precision in high-speed<br>cutting. Lower this value when the position droop vibrates (10 to<br>20Hz). | 1 to 9999     |

(Refer to "4-2-2 (2) Setting the speed loop leading compensation")

## (3) Voltage non-sensitive zone (Td) compensation

With the PWM control of the inverter circuit, a dead time (non-energized time) is set to prevent short-circuits caused by simultaneous energizing of the P side and N side transistors having the same phase. The dead time has a non-sensitive zone for particularly low voltage commands. Thus, when feeding with a low speed and a low torque, the control may be unstable.

When an unbalanced axis is lowering, the frictional torque and unbalance torque, and the frictional torque and deceleration torque before the quadrant changes during circle cutting, are balanced. The motor output torque will be approximately zero, and the control accuracy may drop. In this case, the control accuracy can be improved by using the voltage non-sensitive band compensation. Note that this may cause vibration to be increased while the motor is running.



For circle cutting

For unbalance torque

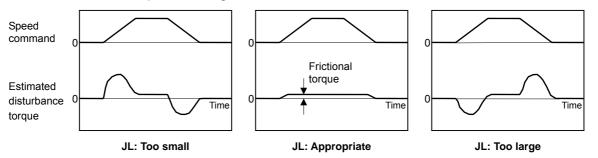
| No.   | Abbrev. | Parameter name | Explanation                                                                                                                                                                                                                                                                                     | Setting range   |
|-------|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| SV030 |         | compensation   | When 100% is set, the voltage equivalent to the logical non-energized time will be compensated.<br>When "0" is set, a 100% compensation will be performed.<br>Adjust in increments of 10% from the default value 100%.<br>If increased too much, vibration or vibration noise may be generated. | 0 to 200<br>(%) |

## (4) Disturbance observer

The disturbance observer can reduce the effect caused by disturbance, frictional resistance or torsion vibration during cutting by estimating the disturbance torque and compensating it. It also is effective in suppressing the vibration caused by speed leading compensation control.

## <Setting method>

- [1] Set SV082/bit7=1.
- [2] Adjust VGN1 to the value where vibration does not occur, and then lower it 10 to 20%.
- [3] Set the load inertia scale (SV037: JL) with a percentage in respect to the motor inertia of the total load inertia.
  - (Refer to next page for measuring the motor shaft conversion load inertia ratio.)
- [4] Set the observer filter band (observer pole) in the disturbance observer filter frequency (SV043: OBS1), and suppress the high frequency disturbance estimate to suppress the vibration. Set "100" as a standard.
- [5] Set the observer gain in disturbance observer gain (SV044: OBS2). The disturbance observer will function here for the first time. Set 100 first, and if vibration does not occur, increase the setting by 50 at a time to increase the observer effect.

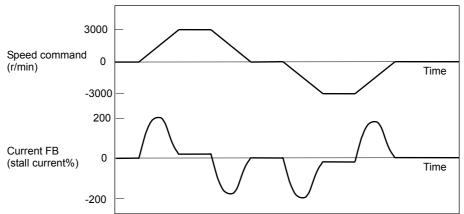

| No.   | Abbrev. | Parameter name                              | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Setting range        |
|-------|---------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| SV037 | JL      | Load inertia scale                          | Set "the motor inertia + motor axis conversion load inertia" in respect to the motor inertia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 to 5000<br>(%)     |
|       |         |                                             | SV037 (JL) = $\frac{JI + Jm}{Jm} \times 100$ $Jn$ : Motor inertia<br>JI : Motor axis conversion load inertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
| SV043 | OBS1    | Disturbance<br>observer filter<br>frequency | Set the disturbance observer filter band.<br>Set to "100" as a standard.<br>To use the disturbance observer, also set SV037 (JL) and SV044 (OBS2).<br>When not using, set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 1000<br>(rad/s) |
| SV044 | OBS2    | Disturbance<br>observer gain                | Set the disturbance observer gain. The standard setting is "100" to "300".<br>To use the disturbance observer, also set SV037 (JL) and SV043 (OBS1).<br>When not using, set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 500<br>(%)      |
| SV082 | V002    | Servo function<br>selection5                | F         E         D         C         B         A         9         8         7         6         5         4         3         2           I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I | 1 0<br>Imc3 Imct     |
|       |         |                                             | bit         Meaning when "0" is set         Meaning when "1"           7         obshj         Normal use         Disturbance observer<br>High-load inertia compa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |

| t |      |    | 1                                                                                                                                                                                                                                                                                                                                                                  |
|---|------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P | OINT | 2. | The estimated disturbance torque can be output to the D/A output even if the disturbance observer gain is zero (OBS2 = 0), and the disturbance observer is not functioning.<br>Sections where the machine is not moving smoothly can be estimated as the disturbance.<br>The lost motion compensation must be readjusted when the disturbance observer is started. |
|   |      | 4. | SV082/bit7 is the characteristics improvement function when load inertia is                                                                                                                                                                                                                                                                                        |
|   |      |    | large. SV082/bit7 can be set when load inertia is small, also.                                                                                                                                                                                                                                                                                                     |

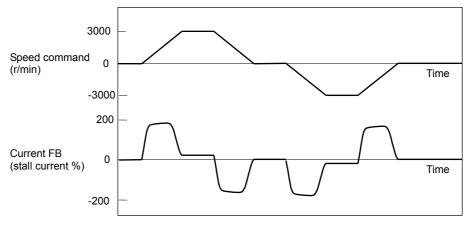
#### <Measuring the load inertia>

If the load inertia is not clear, it can be estimated with the following method.

- [1] Set the torque offset (SV032: TOF) for the unbalance torque. (Refer to "4-3-5 (1) Unbalance torque and frictional torque".)
- [2] Set JL = 100, OBS1 = 600 and OBS2 =0, and reciprocate the axis within the range that it can be moved smoothly. Set the acceleration/deceleration time constant so that the acceleration/deceleration torque is larger than the stall (rated) torque (100% or more).
- [3] Measure the estimated disturbance torque with the D/A output, and raise JL until the disturbance torque during acceleration/deceleration is small (until it cannot be observed). Even if the torque offset is set and JL is an appropriate value, if the axis has a large friction, the frictional torque will remain in the estimated disturbance torque. Judge the JL setting value, with frictional torque remaining, as the machine's load inertia scale as shown below.

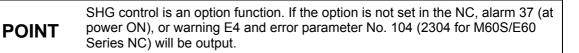



## 4-3-4 Improvement of characteristics during acceleration/deceleration


## (1) SHG control (option function)

Because SHG control has a smoother response during acceleration/deceleration than conventional position controls, the acceleration/deceleration torque (current FB) has more ideal output characteristics (A constant torque is output during acceleration/deceleration.) The peak torque is kept low by the same acceleration/deceleration time constant, enabling the time constant to be shortened.

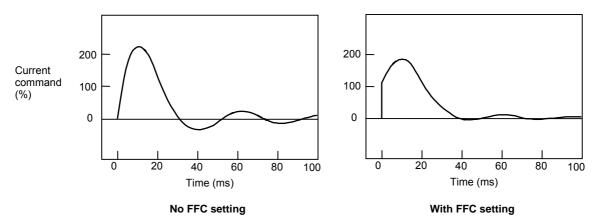
Refer to item "(3) SHG control" in section "4-2-3 Position loop gain" for details on setting SHG control.




Acceleration/deceleration characteristics during conventional control



Acceleration/deceleration characteristics during SHG control


| No.              | Abbrev.          | Parameter name                         | Setting ratio |         | Setti    | ng exa    | mple     |        | Explanation                                  | Setting range |
|------------------|------------------|----------------------------------------|---------------|---------|----------|-----------|----------|--------|----------------------------------------------|---------------|
| SV003<br>(SV049) | PGN1<br>(PGN1sp) | Position loop gain 1                   | 1             | 23      | 26       | 33        | 38       | 47     | Always set with a                            | 1 to 200      |
| SV004<br>(SV050) | PGN2<br>(PGN2sp) | Position loop gain 2                   | 83            | 62      | 70       | 86        | 102      | 125    | combination of<br>these three<br>parameters. | 0 to 999      |
| SV057<br>(SV058) | SHGC<br>(SHGCsp) | SHG control gain                       | 6             | 140     | 160      | 187       | 225      | 281    | parameters.                                  | 0 to 1200     |
| SV008            | VIA              | Speed loop lead<br>compensation        | Set           | 1900 as | s a stan | dard val  | ue durii | ng SHG | control.                                     | 1 to 9999     |
| SV015            | FFC              | Acceleration rate<br>feed forward gain | Set           | 100 as  | a stand  | lard valu | ue durin | g SHG  | control.                                     | 0 to 999      |



### (2) Acceleration feed forward

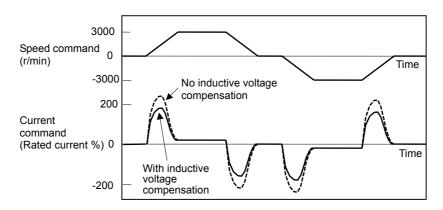
Vibration may occur at 10 to 20 Hz during acceleration/deceleration when a short time constant of 30 ms or less is applied, and a position loop gain (PGN1) higher than the general standard value or SHG control is used. This is because the torque is insufficient when starting or when starting deceleration, and can be resolved by setting the acceleration rate feed forward gain (SV015: FFC). This is also effective in reducing the peak current (torque).

While measuring the current command waveform, increase FFC by 50 to 100 at a time and set the value where vibration does not occur.



Acceleration rate feed forward gain means that the speed loop gain during acceleration/deceleration is raised equivalently. Thus, the torque (current command) required during acceleration/deceleration starts sooner. The synchronization precision will improve if the FFC of the delayed side axis is raised between axes for which high-precision synchronous control (such as synchronous tapping control and superimposition control).

| No.   | Abbrev. | Parameter name    | Explanation                                                                                                                                                                                                                                                                             | Setting range   |
|-------|---------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| SV015 |         | feed forward gain | When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time. | 0 to 999<br>(%) |


**POINT** Overshooting occurs easily when a value above the standard value is set during SHG control.

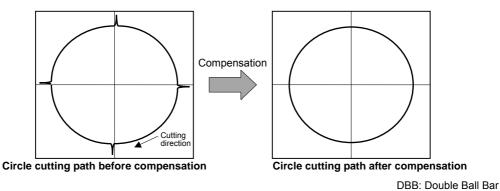
### (3) Inductive voltage compensation

The current loop response is improved by compensating the back electromotive force element induced by the motor rotation. This improved the current command efficiency, and allows the acceleration/deceleration time constant to the shortened.

### <Adjustment method>

1. While accelerating/decelerating at rapid traverse, adjust the inductive voltage compensation gain (SV047: EC) so that the current FB peak is a few % smaller than the current command peak.




#### Inductive voltage compensation

| No.   | Abbrev. | Parameter name | Explanation                                                                                                                                                                       | Setting range   |
|-------|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| SV047 | EC      |                | Set the inductive voltage compensation gain. Set to "100" as a standard.<br>If the current FB peak exceeds the current command peak, lower the gain.                              | 0 to 200<br>(%) |
|       | PO      | INT comper     | urrent FB peak becomes larger than the current command pensation), an overcurrent (alarm 3A) will occur easily. Note that station will occur easily if the load inertia is large. |                 |

## 4-3-5 Improvement of protrusion at quadrant changeover

The response delay (caused by dead band from friction, torsion, expansion/contraction, backlash, etc.) caused when the machine advance direction reverses is compensated with the lost motion compensation (LMC compensation) function.

With this, the protrusions that occur at the quadrant changeover in the DBB measurement method, or the streaks that occur when the quadrant changes during circular cutting can be improved.



The following three compensation types are available for lost motion compensation (LMC compensation).

### [1] LMC compensation type 1

This is a backward compatible (for older models) compensation type. Either type 2 or type 3 should be used on new models.

### [2] LMC compensation type 2

Performs servo internal PI control response delay compensation for the frictional torque reversing condition that occurs during servo reverse travel. Reverse response delay is compensated with adding the torque command set by parameter when a speed and direction change occurs.

LMC compensation type 2 adjustments should be performed with reference to the following items. (1) Unbalance torgue and frictional torgue

- (2) LMC compensation type 2 setting and adjustment
- (3) Lost motion compensation timing adjustment
- (4) Adjustment at feed forward control

### [3] LMC compensation type 3

In addition to frictional torque influence, this type compensates torsion and expansion/contraction influences in the machine system in which compensation amount is changed by travel speed. A mechanical system viscosity coefficient setting further enhances the compensation accuracy even if the travel speed is changed. Adjustment requires a machine end roundness measurement.

LMC compensation type 3 adjustments should be performed with reference to the following items.

- (1) Unbalance torque and frictional torque
- (2) LMC compensation type 3 setting and adjustment

## (1) Unbalance torque and frictional torque

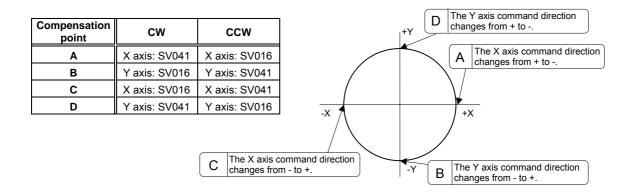
Machine unbalance torque and frictional torque measurements are required before the LMC compensation can be set. However, the horizontal axis unbalance torque is necessarily "0". Carry out the reciprocating operation (approx. F1000) with the measured axis, and the load current % value during constant-speed feed is measured at the NC servo monitor screen. The unbalance torque and frictional torque at that time are expressed by the following formulas.

Unbalance torque (%) = (+ feed load current %) + (- feed load current %) 2

Frictional torque (%) =  $\frac{1}{2}$  (+ feed load current %) - (- feed load current %)

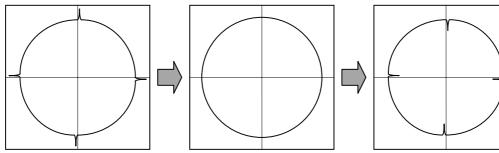
#### - (Example)

Assume that the load current % was -55% in the + direction and -25% in the - direction when JOG feed was carried out at approx. F1000. The unbalance torque and frictional torque are as shown below.


Unbalance torque (%) = 
$$\frac{(-55) + (-25)}{2} = -40\%$$

Friction torque (%) = 
$$\frac{|(-55) - (-25)|}{2} = 15\%$$

#### (2) Setting and adjusting LMC compensation type 2


#### <Setting method>

- [1] Set the servo function selection 1 (SV027)/bit 9. (The LMC compensation type 2 will start).
- [2] Set unbalance torque to the torque offset (SV032).
- [3] Set a value double the friction torque to the lost motion compensation 1 (SV016). The SV016 setting value will be used for compensation in the positive and negative directions when the lost motion compensation 2 (SV041) is 0.
- [4] Set SV041, when changing the compensation amount in the direction for compensation. The setting of the compensation direction is shown below with the setting of CW/CCW in the NC parameter. If compensating only one direction, set -1 to the side not to be compensated.



#### <Adjustment method>

Perform the final adjustment, carrying out the NC sampling measurement (DBB measurement) or actual cutting. If the compensation amount is insufficient, increase LMC1 or LMC2 by 5% at a time. Note that if the setting is too high, biting may occur.



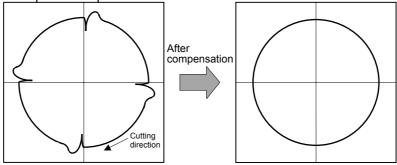
Compensation 0

Optimum

Too high

| compensation 1<br>Lost motion<br>compensation 2<br>Torque offset | Set the compensation amount based on the stall (rated) current of the motor.<br>The standard setting is double of the friction torque. Setting to "0" means the<br>compensation amount is zero.<br>Set this with SV016 (LMC1) only when you wish to set the lost motion<br>compensation amount to be different depending on the command directions.<br>Set to "0" as a standard.<br>This setting is specified when using lost motion compensation.<br>Set the unbalance torque of vertical axis and inclined axis. | -1 to 200<br>(Stall [rated]<br>current %)<br>-1 to 200<br>(Stall [rated]<br>current %)<br>-100 to 100                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| compensation 2<br>Torque offset                                  | compensation amount to be different depending on the command directions.<br>Set to "0" as a standard.<br>This setting is specified when using lost motion compensation.                                                                                                                                                                                                                                                                                                                                            | (Stall [rated]<br>current %)<br>-100 to 100                                                                                                                                                                                                                                                                                                                                             |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Stall [rated] current %)                                                                                                                                                                                                                                                                                                                                                               |
| Servo function<br>selection 1                                    | bit         Meaning when "0" is set         Meaning when "1" is           8         Imc         Set the compensation amount with SV016 (LMC1) and SV041 (LM 9)           9         IO: Lost motion compensation stop         10: Lost motion compensation stop                                                                                                                                                                                                                                                     | s set<br>MC2).                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | selection 1       F       E       D       C       B       A       9       8       7       6       5       4       3       2         aflt       zrn2       afse       ovs       Imc       omr       zrn3       vfct       upc         bit       Meaning when "0" is set       Meaning when "1" is       8       Imc       Set the compensation amount with SV016 (LMC1) and SV041 (LMC1) |

- 1. Set SV082/bit1=0 when using LMC compensation type 2.
- 2. When either parameter SV016: LMC1 or SV041: LMC2 is set to 0, the same amount of compensation is carried out in both the positive and negative direction with the setting value of the other parameter (the parameter not set to 0).
- 3. When the protrusion amount varies according to direction, use LMC2 to adjust it. For compensation in one direction only, set "-1" at the parameter (LMC1 or LMC2) for the direction in which compensation is prohibited.
- **POINT** 4. Even if a TOF is set, the motor's torque output characteristics and the load current displayed at the NC servo monitor will remain unchanged. Only the LMC compensation is affected.
  - 5. The value set based on the friction torque is the standard value for LMC compensation. The optimum compensation value changes with the cutting conditions (cutting speed, cutting radius, blade type, workpiece material, etc.). Be sure to ultimately make test cuts matching the target cutting and determine the compensation amount.


## (3) Adjusting the lost motion compensation timing

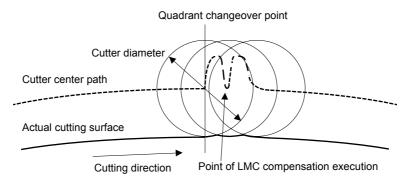
If the speed loop gain has been lowered from the standard setting value because the machine rigidity is low or because machine resonance occurs easily, or when cutting at high speeds, the quadrant protrusion may appear later than the quadrant changeover point on the servo control. In this case, suppress the quadrant protrusion by setting the lost motion compensation timing (SV039: LMCD) to delay the LMC compensation.

### <Adjustment method>

If a delay occurs in the quadrant protrusion in the circle or arc cutting as shown below in respect to the cutting direction when CNC sampling measurement (DBB measurement) or actual cutting is carried out, and the compensation appears before the protrusion position, set the lost motion compensation timing (SV039: LMCD).

While measuring the arc path, increase LMCD by 10 ms at a time, to find the timing that the protrusion and compensation position match.




Before timing delay compensation

After timing delay compensation

| No.   | Abbrev. | Parameter name | Explanation                                                                                                          | Setting range     |
|-------|---------|----------------|----------------------------------------------------------------------------------------------------------------------|-------------------|
| SV039 |         |                | Set this when the lost motion compensation timing does not match. Adjust while increasing the value by 10 at a time. | 0 to 2000<br>(ms) |

When the LMCD is gradually raised, a two-peaked contour may occur at the motor FB position DBB measurement. However, due to the influence of the cutter diameter in cutting such as end milling, the actual cutting surface becomes smooth.

Because satisfactory cutting can be achieved even if this two-peaked contour occurs, consider the point where the protrusion becomes the smallest and finest possible without over compensating (bite-in) as the optimum setting.



## (4) Adjusting for feed forward control

In LMC compensation, a model position considering the position loop gain is calculated based on the position command sent from the CNC, and compensation is carried out when the feed changes to that direction. When the CNC carries out feed forward (fwd) control, overshooting equivalent to the operation fraction unit occurs in the position commands, and the timing of the model position direction change may be mistaken. As a result, the LMC compensation timing may deviate, or compensation may be carried out twice or more.

If feed forward control is carried out and the compensation does not operate correctly, adjust with the non-sensitive band (SV040 (LMCT)) during feed forward control. In this non-sensitive band control, the overshooting set with LMCT is ignored during feed forward control. Instead the model position direction change point is correctly recognized to correctly compensate LMC. This parameter is meaningless when feed forward control is not being carried out.

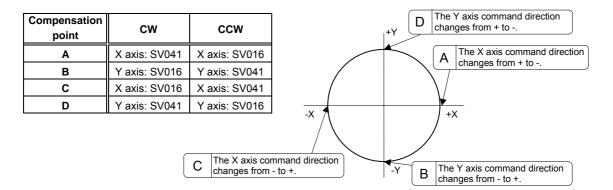
<Adjustment method>

If the compensation timing deviates during feed forward control, increase the LMCT setting by  $1 \mu m$  at a time.

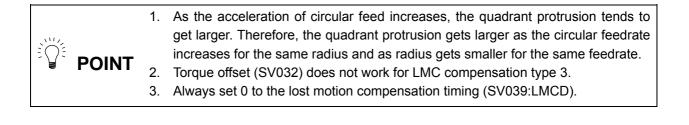
Note that  $2\mu m$  are set even when the LMCT is set to 0.

| No.   | Abbrev. | Parameter name | Explanation                                                                                                                                                                                        | Setting range    |
|-------|---------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SV040 | 2       | compensation   | Set the non-sensitive band of the lost motion compensation in the feed forward control.<br>When "0" is set, the actual value that is set is $2\mu m$ . Adjust by increasing by $1\mu m$ at a time. | 0 to 100<br>(µm) |

## (5) Setting and adjusting LMC compensation type 3


LCM compensation type 3 can be used to accommodate quadrant projection changes that accompany feed rate and circular radius changes which could not be accommodated by LCM compensation type 2. In this case, on a machine model where the travel direction is reversed, the viscosity component is also considered in addition to the friction, with compensation occurring in accordance with the changes in the cutting conditions.

Adjust Compensation parameter (SV016, SV041), a basis of compensation, while measuring roundness at low speed. Then adjust viscous coefficient (SV086) while measuring roundness at high speed.


LMC compensation type 3 parameter adjustments should be made while performing a machine end roundness measurement such as a DDB measurement, etc.

#### <Adjustment method>

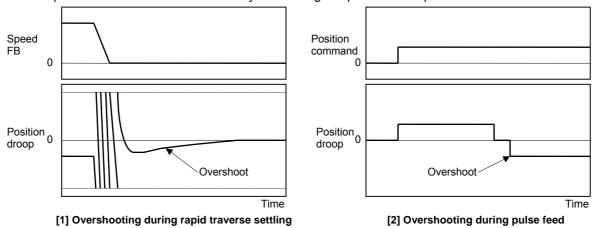
- [1] Set the bit1=1 to servo function selection 5 (SV082). (The LMC compensation type 3 will start).
- [2] Set a value double the friction torque to the lost motion compensation 1 (SV016). The SV016 setting value will be used for compensation in the positive and negative directions when the lost motion compensation 2 (SV041) is 0.
- [3] Set the initial value, 1000 to the lost motion compensation viscous coefficient (SV086).
- [4] Perform a roundness measurement at such speed as radius R=100mm and feedrate F=1000mm/min and adjust SV016 value.
- [5] Set SV041, when changing the compensation amount in the direction for compensation. The setting of the compensation direction is shown below with the setting of CW/CCW in the NC parameter. If compensating only one direction, set –1 to the side not to be compensated.



- [6] Perform a roundness measurement at such speed as radius, R=100mm and feedrate, F=5000mm/min. (Select a condition to be used for the actual cutting according to the machine's specification.) Adjust viscous coefficient (SV086) by reducing it gradually to have minimum quadrant protrusion.
- [7] After adjusting SV086, verify its accuracy by performing roundness measurement at low speed again.



| No.   | Abbrev. | Parameter name                                     | Explanation Setting rang                                                                                                                                                                                                                                                                                            |
|-------|---------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SV027 | SSF1    | Servo function<br>selection 1                      | F         E         D         C         B         A         9         8         7         6         5         4         3         2         1         0           aflt         zrn2         afse         ovs         Imc         omr         zrn3         vfct         upc         vcnt                             |
|       |         |                                                    | bit     Meaning when "0" is set     Meaning when "1" is set       8     Set the compensation amount with SV016 (LMC1) and SV041 (LMC2).       9     00: Lost motion compensation stop     10: Lost motion compensation type 2       01: Lost motion compensation type 1     11: Setting prohibited                  |
| SV016 | LMC1    | Lost motion<br>compensation 1                      | Set the compensation amount based on the stall (rated) current of the motor.<br>The standard setting is double of the friction torque. Setting to "0" means the<br>compensation amount is zero.                                                                                                                     |
| SV041 | LMC2    | Lost motion<br>compensation 2                      | Set this with SV016 (LMC1) only when you wish to set the lost motion -1 to 200 compensation amount to be different depending on the command directions. Set to "0" as a standard. (Stall [rated current %)]                                                                                                         |
| SV082 | SSF5    | Servo function<br>selection5                       | F       E       D       C       B       A       9       8       7       6       5       4       3       2       1       0         bit       Meaning when "0" is set       Meaning when "1" is set       Imc3 Imct         1       Imc3       Lost motion compensation 3 stop       Lost motion compensation 3 start |
| SV086 | LMCc    | Lost motion<br>compensation<br>viscous coefficient | Set the machine system's viscous coefficient when using lost motion 0 to 32767 compensation type 3.                                                                                                                                                                                                                 |


## 4-3-6 Improvement of overshooting

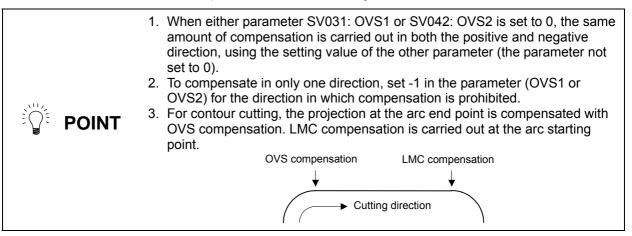
The phenomenon when the machine position goes past or exceeds the command during feed stopping is called overshooting. Overshooting is compensated by overshooting compensation (OVS compensation).

Overshooting occurs due to the following two causes.

[1] Machine system torsion: Overshooting will occur mainly during rapid traverse settling[2] Machine system friction: Overshooting will occur mainly during one pulse feed

Either phenomenon can be confirmed by measuring the position droop.




### (1) Overshooting compensation (OVS compensation)

In OVS compensation, the overshooting is suppressed by subtracting the torque command set in the parameters when the motor stops. There are three types of OVS compensation. Type 3 is the standard method. (Types 1 and 2 are for compatibility with older models, and thus explanations have been omitted.)

OVS compensation type 3 has a compensation effect for the overshooting during either rapid traverse settling or pulse feed. To compensate overshooting during feed forward control, refer to the following section "(2) Adjusting for feed forward control".

#### <Setting and adjustment methods>

- [1] Set the servo function selection 1 (SV027: SSF1)/bit A, B. (OVS compensation type 3 will start.)
- [2] Observe the position droop waveform using the D/A output, and increase the overshooting compensation 1 (SV031: OVS1) value 1% at a time. Set the smallest value where the overshooting does not occur. If SV042 (OVS2) is 0, the overshooting will be compensated in both the forward/reverse directions with the OVS1 setting value.
- [3] If the compensation amount is to be changed in the direction to be compensated, set the + direction compensation value in OVS1 and the direction compensation value in OVS2. If only one direction is to be compensated, set the side not to be compensated as -1. The compensation direction setting will be as reversed with the NC parameter CW/CCW setting.

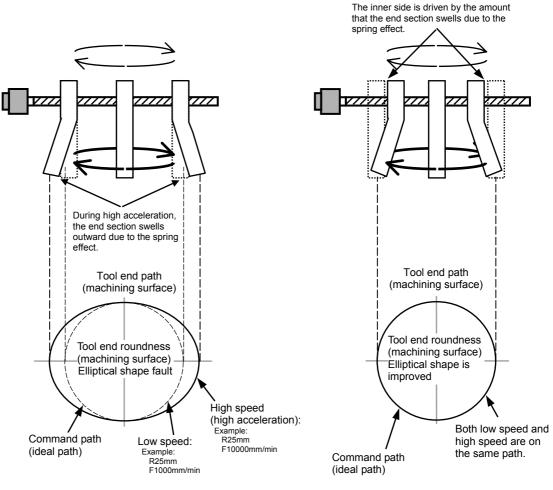


## (2) Adjusting for feed forward control

When using feed forward control (high-speed high-accuracy control), the feed forward control must be stopped (fwd\_g =0) before adjusting the overshooting compensation. After adjusting the overshooting compensation with normal control, set the overshooting compensation non-sensitive zone (SV034 (SSF3)/bitC to F (ovsn) to 1 ( $2\mu$ m) and start up feed forward control.

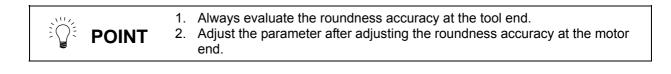
If overshooting compensation is used during feed forward control, the overshooting will increase, or protrusions could appear during arc cutting. This is because, when the NC is carrying out feed forward (fwd) control, overshooting equivalent to the operation fraction unit occurs in the position command, and the OVS compensation is recognized as a change in the command direction, resulting in compensation in the reverse direction. This can be improved by setting the overshooting compensation non-sensitive zone width.

If overshooting does not occur during normal control, and occurs only during feed forward control, adjust the feed forward gain (fwd\_g).


| No.   | Abbrev. | Parameter name                | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Setting range                             |
|-------|---------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| SV031 | OVS1    | Overshooting compensation 1   | Increase in increments of 1%, and find the value where overshooting does not occur. The value is set in both the $\pm$ directions when OVS2 is set to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1 to 100<br>(Stall [rated]<br>current %) |
| SV042 | OVS2    | Overshooting compensation 2   | Set to "0" as a standard.<br>Set this to change the compensation amount according to the direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1 to 100<br>(Stall [rated]<br>current %) |
| SV027 | SSF1    | Servo function<br>selection 1 | F       E       D       C       B       A       9       8       7       6       5       4       3         aflt       zrn2       afse       ovs       Imc       omr       zrn3       vfct       vfct         bit       Meaning when "0" is set       Meaning when "1"       Meaning when "1"       Meaning when "1"       Meaning when "1"         B       OVS       Set the compensation amount with SV031 (OVS1) and SV042 (OVS1)                                                                                                                                                                           | OVS2).<br>ensation type 2                 |
| SV034 | SSF3    | Servo function<br>selection 3 | F       E       D       C       B       A       9       8       7       6       5       4       3       1         ovsn       Image: Set over the se | odel position                             |

**POINT** When using feed forward control (high-speed high-accuracy control), stop the feed forward control (fwd\_g=0) before adjusting the overshooting compensation. If overshooting occurs during subsequent feed forward control, adjust the feed forward gain (fwd\_g).

## 4-3-7 Improvement of the interpolation control path


## (1) Tool end compensation

The tool end compensation function compensates the shape of the tool end during high-speed and high-speed acceleration/deceleration. The spring effect from the tool (spindle) end to the motor (scale) end is compensated. If the machine has a large spring effect, the shape may be fine during low-speed operation. However, at high speeds (specially when using a small radius), the section from the tool (shaft) end to the outer sides of the motor (scale) end could swell, and cause the shape to become elliptical during measurement of the roundness. The tool end compensation function compensates the motor end position according to the acceleration size, so the tool end position is always controlled to the commanded position.



Without tool end compensation

With tool end compensation



### <Adjustment methods>

- [1] Confirm that the motor end circle accuracy measured with the NC sampling function is appropriate.
- [2] In this state, measure the tool end low-speed and high-speed circle path without tool end compensation. The difference of the high-speed circle path and low-speed circle path is the amount that path has swelled due to the spring effect of the machine system. Calculate the SV065 setting value with the following expression using this amount as the compensation amount.

SV065 =  $\frac{\text{Compensation amount [µm] × radius R [mm] × 10}^{9}}{(\text{command speed F [mm/min]})^{2}}$ 

- [3] Set SV027/bit7 to 1, and input the value calculated in step 2 into SV065. Measure the high-speed circle path. If the shape is still elliptical, adjust by increasing/decreasing the SV065 value in 1/10 units.
- [4] Confirm that there is no problem with the low-speed circle path.

#### Example of low-speed and high-speed roundness measurement for adjusting tool end compensation

|                                                 | When using grid encoder     | When using DBB measurement   | Acceleration |
|-------------------------------------------------|-----------------------------|------------------------------|--------------|
| Low speed (reference circle)                    | R=25 [mm], F=500 [mm/min]   | R=100 [mm], F=1000 [mm/min]  | 0.00028G     |
| High-speed (when adjusting compensation amount) | R=25 [mm], F=10000 [mm/min] | R=100 [mm], F=20000 [mm/min] | 0.11G        |

| No.   | Abbrev. | Parameter name                | Explanation                                                                                                                                                                                                                                                                                                                       | Setting range |
|-------|---------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SV027 | SSF1    | Servo function<br>selection 1 | F       E       D       C       B       A       9       8       7       6       5       4       3         aflt       zrn2       afse       ovs       Imc       omr       zrn3       vfct       vfct         bit       Meaning when "0" is set       Meaning when "0" is only and compensation invalid       Tool end compensation |               |
| SV065 | TLC     | constant                      | Set the spring constant of the tool end compensation.<br>In the semi-closed loop control, the tool end compensation amount is<br>calculated with the following equation.<br>Compensation amount = $\frac{Commanded speed F (mm/min)^2 \times SV065}{Radius R (mm) \times 10^9}$ (µm)<br>When not using, set to "0".               |               |

| <ul> <li>POINT</li> <li>1. To confirm the machine's spring element, adjust the electrical end roundness, and then tool end roundness while changing the cutting speed. Confirm that the error increases with the speed.</li> <li>2. The electrical end roundness will have an error on the inner side when tool end compensation is used.</li> </ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|  | If an excessive value is set in the tool end compensation spring constant (SV065), the machine could vibrate when stopping, resulting in a dangerous state. |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------|

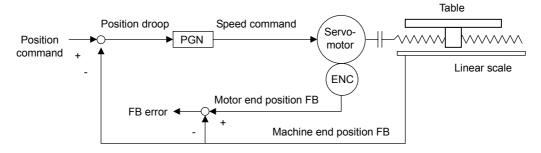
# 4-4 Adjustment during full closed loop control

## 4-4-1 Outline

## (1) Full closed loop control

The servo control is all closed loop control using the detector's feedback. "Full closed loop control" is the system that directly detects the machine position using a linear scale, whereas the general "semi-closed loop" is the one that detects the motor end position.

In a machine that drives a table with a ball screw, the following factors exist between the motor and table end:


- [1] Coupling or ball screw table bracket's backlash
- [2] Ball screw pitch error

These can adversely affect the accuracy. If the table position, which is the tool end, is directly detected with a linear scale, high-accuracy position control which is not affected by backlash or pitch error is possible. However, with the full closed loop system, the machine system is also directly included in the position loop control. Thus, if the machine's rigidity is not high, the gain cannot be increased, and the required high accuracy cannot be attained.

The procedures for adjusting the servo with the full closed loop system are the same as the semi-closed loop system. Vibration or overshooting will occur easily, so the position loop gain is generally lower than the semi-closed loop.

### (2) Overrun detection

With the full closed system, the tool end position feedback (FB) detected with the linear scale is used for the position control. However, the motor end position FB is detected at the same time, and the error of both FB is observed. If this FB error exceeds the servo parameter SV054 setting value, alarm 43 will be detected and the system will stop to prevent overrunning due to a scale FB error from occurring.



#### **Overrun detection control**

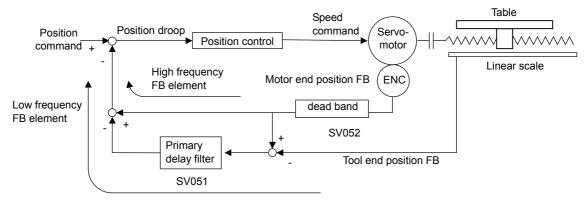
| No.   | Abbrev. | Parameter name                  | Explanation                                                                                                                                                                                                                                                                                                                                                                            | Setting range       |
|-------|---------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| SV054 | _       | width in closed loop<br>control | Set the overrun detection width in the full-closed loop control.<br>If the gap between the motor end detector and the linear scale (tool end<br>detector) exceeds the value set by this parameter, it is judged to be<br>overrun and Alarm 43 will be detected.<br>When "-1" is set, the alarm detection won't be performed. When "0" is<br>set, overrun is detected with a 2mm width. | -1 to 32767<br>(mm) |

## 4-4-2 Speed loop delay compensation

Generally, the tool end position follows the operation later than the motor end position. With full closed loop position loop control, the tool end position is used for position feedback, so the motor end position could advance too far and cause the tool end position to overshoot easily. Speed loop delay compensation suppresses overshooting by weakening the speed loop PI control (weakening advance compensation = delaying). If the compensation is too large and PI control is weakened too far, the positioning time could increase, or the position droop will remain when the motor is stopped.

### <Adjustment method>

- [1] Set the servo function selection 1 (SV027: SSF1)/bit1, bit0 to 10. (Select delay compensation changeover type 2)
- [2] Set the axis unbalance torque to the torque offset (SV032: TOF). (Refer to "4-3-5 (1) Unbalance torque and frictional torque" for details on measuring the unbalance torque.)
- [3] Observe the position droop waveform, and confirm the overshooting. Increase SV007 (VIL) in increments of 5, and adjust so that the overshooting is improved. If set too high, the position droop will remain when the axis is stopped.


| No.   | Abbrev. | Parameter name                   | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Setting range                               |
|-------|---------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| SV007 | VIL     | Speed loop delay<br>compensation | Set this when the limit cycle occurs in the full-closed loop, or overshooting occurs in positioning.<br>Select the control method with SV027 (SSF1)/bit1, 0 (vcnt).<br>Normally, use "Changeover type 2".<br>When you set this parameter, make sure to set the torque offset SV032 (TOF). When not using, set to "0".<br>Changeover type 2 When SV027 (SSF1)/ bit1, 0 (vcnt)=10<br>The delay compensation control works when the command from the<br>NC is "0" and the position droop is "0". Overshooting or the limit cycle<br>that occurs during pulse feeding or positioning can be suppressed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 to 32767                                  |
| SV032 | TOF     | Torque offset                    | Set the unbalance torque of vertical axis and inclined axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -100 to 100<br>(Stall [rated]<br>current %) |
| SV027 | SSF1    | Servo function<br>selection 1    | F       E       D       C       B       A       9       8       7       6       5       4       3         aflt       zrn2       afse       ovs       Imc       omr       zrn3       vfct       vfct         bit       Meaning when "0" is set         0       vcnt       Set the execution changeover type of the speed loop delay compensation.       00: Delay compensation changeover type of the speed loop delay compensation changeover type of the speed loop delay compensation.         0       Delay compensation changeover type of the speed loop delay compensation changeover type of the speed loop delay compensation.         01: Delay compensation changeover type of the speed loop delay changeover type of | sation<br>be 2                              |

**CAUTION** The position droop will remain if SV007 is set too high.

## 4-4-3 Dual feedback control (Optional function)

If the motor and machine coupling or machine system's rigidity is low (ex. large machine, etc.) when using a closed loop system, the response during acceleration/deceleration will vibrate and cause overshooting. This can cause the position loop gain from increasing. The dual feedback function is effective in this case.

To validate the dual feedback function, use position feedback with a motor end detector in ranges with high acceleration to enable stable control. In ranges with low acceleration, use position feedback with the tool end detector (scale). This will make it possible to increase the position loop gain.



**Dual feedback control** 

The state will approach the semi-closed loop system as the primary delay filter's time constant increases, so the position loop gain limit will increase. Note that the limit of the position loop gain increased with the dual feedback function is the same as the position loop gain limit for a semi-closed system that does not use a tool end detector(scale, etc.). In addition, the positioning time will increase as the primary delay filter time constant increases.

| <ol> <li>Dual feedback control is a function that compensates symptoms resulting<br/>from insufficient machine rigidity. If there are items that can be improved on<br/>the machine (improvement of scale installation position, etc.) improve those<br/>first.</li> <li>The position loop gain limit will not increase compared to the semi-closed<br/>loop system even when using dual feedback control</li> </ol> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>loop system even when using dual feedback control.</li> <li>3. Dual feedback control is an optional function. If the option is not set in the NC, alarm 37 (at power ON), or warning E4 and error parameter No. 103 (2303 for M60S/E60 Series NC) will be output.</li> </ul>                                                                                                                                |

### <Adjustment method>

- [1] Set the servo specifications (SV017: SPEC)/bit1 to 1, and turn the NC power ON again.
- [2] Measure the position droop overshooting while increasing the dual feedback control time constant (SV051: DFBT) in increments of 5ms. Adjust to the time constant where overshooting does not occur.
- [3] For the final setting value, set a value 1.5 to 2-fold the value adjusted in 3.

| No.   | Abbrev. | Parameter name                   | Explanation Setting range                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------|---------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SV017 | SPEC*   | Servo specification<br>selection | F       E       D       C       B       A       9       8       7       6       5       4       3         spm       mpt       mpt       mp       abs       vdir       fdir       vfb       set         bit       Meaning when "0" is set       Meaning when "0" abs       Dual feedback control       Dual feedback control |  |  |  |
| SV051 | DFBT    | control time constant            | Set the control time constant in dual feed back.       0 to 9999         When "0" is set, the actual value that is set is 1ms.       (ms)         The higher the time constant is, the closer it gets to the semi-closed control, so the limit of the position loop gain is raised.       (ms)                              |  |  |  |
| SV052 | DFBN    |                                  | initial of the position loop gain is raised.         iet the non-sensitive band in the dual feedback control.       0 to 9999         iet to "0" as a standard.       (μm)                                                                                                                                                  |  |  |  |

## 4-5 Settings for emergency stop

Emergency stop in this section refers to the following states.

- [1] Emergency stop was input (including other axis alarms)
- [2] NC power down was detected
- [3] A servo alarm was detected

### 4-5-1 Deceleration control

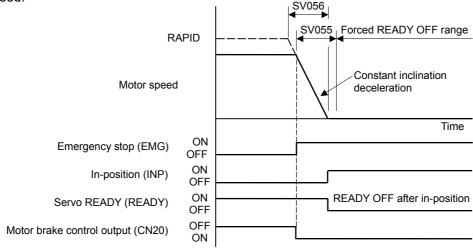
With the MDS-C1-V1/V2 servo drive unit, if the deceleration stop function is validated, the motor will decelerate following the set time constant while maintaining the READY ON state. READY will turn OFF and the dynamic brakes will function after stopping.

If an alarm, for which dynamic brakes are designated as the stopping method, occurs, the motor will stop with the dynamic brakes.

#### <Features>

When the load inertia is large, deceleration stop can be executed at a shorter time than the dynamic brakes.

(The stop time for the normal acceleration/deceleration time constants will be achieved.)


#### (1) Setting the deceleration control time constant

Set the time for stopping from the rapid traverse rate (rapid: axis specification parameter) in the deceleration time constant for emergency stop (SV056: EMGt). The operation stops with the position loop step when 0 is set.

If linear acceleration/deceleration is selected for rapid traverse, the same value as the acceleration/deceleration time constant (G0tL) will be the standard value. If another acceleration/deceleration pattern is selected, set rapid traverse to linear acceleration/deceleration and adjust to a suitable acceleration/deceleration time constant. Use that value as the standard value.

#### <Operation>

When an emergency stop occurs, the motor will decelerate at the same inclination from each speed.





| No.   | Abbrev. | Parameter name                                      | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                       | Setting range           |
|-------|---------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SV055 | EMGx    | Max. gate off delay<br>time after<br>emergency stop | Set a length of time from the point when the emergency stop is input to<br>the point when READY OFF is compulsorily executed.<br>Normally, set the same value as the absolute value of SV056.<br>In preventing the vertical axis from dropping, the gate off is delayed for the<br>length of time set in SV048 if SV055's value is smaller than that of SV048.                                                                                    | 0 to 20000<br>(ms)      |
| SV056 | EMGt    | Deceleration time<br>constant at<br>emergency stop  | In the vertical axis drop prevention time control, set the time constant<br>used for the deceleration control at emergency stop. Set a length of time<br>that takes from rapid traverse rate (rapid) to stopping.<br>Normally, set the same value as the rapid traverse<br>acceleration/deceleration time constant.<br>When executing the synchronous operation, put the minus sign to the<br>settings of both of the master axis and slave axis. | -20000 to<br>20000 (ms) |

#### (2) Deceleration control stop distance

The stopping distance LEMG when the motor is stopped with deceleration control during an emergency stop can be approximated with the following expression. Note that the value will be higher than this if the current is limited during deceleration.

$$L_{EMG} = \frac{F}{PGN1 \times 60} + \frac{1}{2} \times \frac{F}{60} \times \frac{F \times EMGt}{rapid \times 1000} \text{ (mm)}$$

$$F = Feedrate during emergency stop \qquad (mm/min) \\ PGN1 = Position loop gain 1 \qquad (SV003) \qquad (rad/s) \\ EMGt = Deceleration time constant for emergency stop \qquad (SV056) \qquad (ms)$$

| POINT | <ol> <li>Deceleration control will not take place when a servo alarm, for which the<br/>stopping method is dynamic, occurs. The motor will stop with dynamic<br/>braking regardless of the parameter setting.</li> <li>If the power fails and the deceleration time constant is set to a relatively long<br/>time, the braking method may change from deceleration control to dynamic<br/>braking due to a drop in the bus voltage in the drive unit.</li> </ol> |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | If the deceleration control time constant (EMGt) is set to a value longer than the acceleration/deceleration time constant, the overtravel point (stroke end point) may be exceeded.<br>Take care as the axis could collide with the tool end.                                                                                                                                                                                                                   |

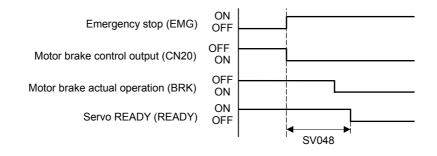
## 4-5-2 Vertical axis drop prevention control

## (1) Vertical axis drop prevention control

The vertical axis drop prevention control is a function that prevents the vertical axis from dropping due to a delay in the brake operation when an emergency stop occurs. The no-control time until the brakes activate can be eliminated by delaying the servo READY OFF state by the time set in the parameters when an emergency stop occurs.

Always use this function together with deceleration control.

### <Setting procedures>


- [1] Apply emergency stop while viewing the current position on the NC screen. Adjust the vertical axis drop prevention time (SV048), and set the minimum delay time at which the axis does not drop.
- [2] Set the same value as the adjusted vertical axis drop prevention time (SV048) for the max. gate off delay time after emergency stop (SV055).
- [3] For the axis for which the vertical drop is to be controlled, set the same value as the acceleration/deceleration time constant for the deceleration control time constant at emergency stop (SV056).
- [4] If the vertical axis is MDS-C1-V2 (2-axis drive unit), set the servo parameters for the other axis in the same unit.

SV048 = Same value as adjusted vertical axis SV048

SV055 = Same value as adjusted vertical axis SV055

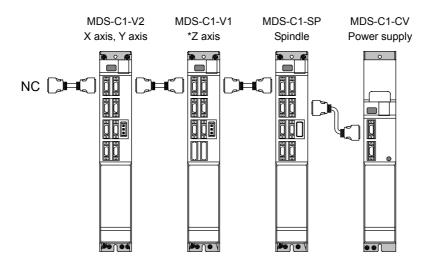
SV056 = Same value as that axis' rapid traverse acceleration/deceleration time constant

- [5] Set the spindle parameter SP033/bitF=1 when the converter that supplies PN power to the vertical axis is controlled by the spindle amplifier.
- [6] If the converter that supplies PN power to the vertical axis is controlled by a different servo amplifier, set the servo parameter setting for that axis as well. (Same as item [4] above).





| <ol> <li>Always set deceleration control when using the vertical axis drop<br/>prevention control setting.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Configure so that the power supply unit is controlled directly by the servo drive unit which controls the spindle drive unit or the vertical axis drop prevention control.</li> <li>If an alarm, for which dynamic brake stopping is designated, occurs with the axis for which vertical axis drop prevention control is active, the function will not activate. To prevent axis dropping under all conditions, provide measures on the machine side by installing a balance unit, etc.</li> </ol> |

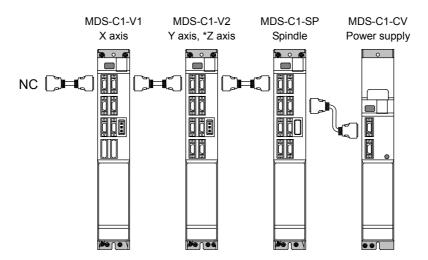

|       | Servo parameter |                                                    |                                                                                                                                                                                                                                                        |                    |  |
|-------|-----------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| No.   | Abbrev.         | Parameter name                                     | Explanation                                                                                                                                                                                                                                            | Setting range      |  |
| SV048 | EMGrt           | Vertical axis drop<br>prevention time              | Input a length of time to prevent the vertical axis from dropping by delaying Ready OFF until the brake works when the emergency stop occurs.<br>Increase the setting by 100ms at a time and set the value where the axis does not drop.               | 0 to 20000<br>(ms) |  |
| SV055 |                 |                                                    |                                                                                                                                                                                                                                                        |                    |  |
| SV056 | EMGt            | Deceleration time<br>constant at<br>emergency stop | In preventing the vertical axis from dropping, the gate off is delayed for the<br>length of time set in SV048 if SV055's value is smaller than that of SV048<br>on time<br>t used for the deceleration control at emergency stop. Set a length of time |                    |  |

#### Spindle parameter

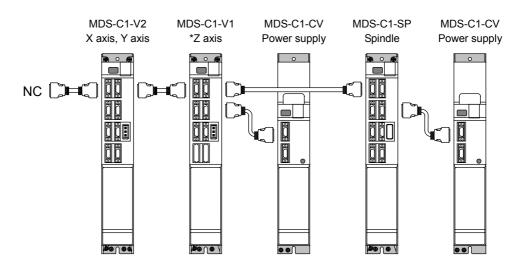
| No.   | Abbrev. | Parameter name     | Explanation Setting ra                                                                                                                                                |                         |  |
|-------|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| SP033 | SFNC1*  | Spindle function 1 | F     E     D     C     B     A     9     8     7     6     5     4     3       poff     hzs     ront     pycal     pychg     pyst     pyoff                          | 2 1 0<br>sftk dflt 1a2m |  |
|       |         |                    | bit         Meaning when "0" is set         Meaning when "           F         poff         Contactor hold at NC power OFF invalid         Contactor hold at NC power |                         |  |

|  |  | <ol> <li>SV048 and SV055 are set for each axis, but when using MDS-C1-V2 (2-axis drive unit), the two axes are simultaneously controlled with the larger setting value for the two axes.</li> <li>If an alarm, for which dynamic brake stopping is designated, occurs with the axis for which vertical axis drop prevention control is active, the function will not activate.</li> <li>A drop amount of several µm to several 10µm will remain due to brake play.</li> </ol> |
|--|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| <ol> <li>Do not set the vertical axis drop prevention time longer than required. The<br/>servo control and brakes could collide, resulting in an overload alarm or<br/>drive unit damage. There is no problem if the overlapping time is within<br/>100ms.</li> </ol>                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Vertical axis drop prevention control (including deceleration control) longer<br/>than 100ms will not be guaranteed during a power failure. The operation<br/>will change to dynamic brakes.</li> <li>If only SV048 and SV055 are set, and SV056 is set to 0, the deceleration<br/>stop will be a stepped stop and could result in collision with the machine.</li> </ol> |



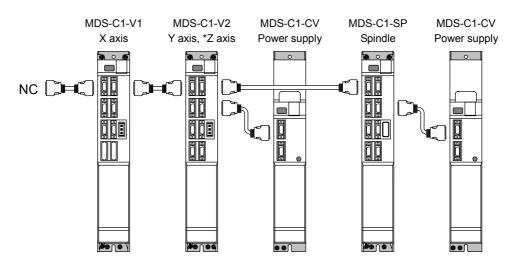

### <Outline of system configurations and corresponding parameter settings>


[1] Spindle controls power supply, vertical axis is a 1-axis unit (vertical axis: Z axis)

| Axis      | X axis | Y axis | Z axis (Vertical axis)                                  | Spindle           |
|-----------|--------|--------|---------------------------------------------------------|-------------------|
| Parameter | MDS-   | C1-V2  | MDS-C1-V1                                               | MDS-C1-SP         |
| SV048     | -      | -      | Set by adjustment                                       |                   |
| SV055     | -      | -      | Same value as SV048                                     | Spindle parameter |
| SV056     | -      | -      | Same value as Z axis<br>rapid traverse time<br>constant | SP033/bitF=1      |

[2] Spindle controls power supply, vertical axis is a 2-axis unit (vertical axis: Z axis)




| Axis      | X axis    | Y axis                                                  | Z axis (Vertical axis)                                  | Spindle                           |  |
|-----------|-----------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------|--|
| Parameter | MDS-C1-V1 | MDS-C1-V2                                               |                                                         | MDS-C1-SP                         |  |
| SV048     | -         | Same value as Z axis $\rightarrow$                      | Set by adjustment                                       |                                   |  |
| SV055     | -         | Same value as Z axis $\rightarrow$                      | Same value as SV048                                     | Spindle parameter<br>SP033/bitF=1 |  |
| SV056     | -         | Same value as Y axis<br>rapid traverse time<br>constant | Same value as Z axis<br>rapid traverse time<br>constant |                                   |  |



[3] Servo controls power supply, vertical axis is a 1-axis unit (vertical axis: Z axis)

| Axis      | X axis    | Y axis | Z axis (Vertical axis)                                  | Spindle              |
|-----------|-----------|--------|---------------------------------------------------------|----------------------|
| Parameter | MDS-C1-V2 |        | MDS-C1-V1                                               | MDS-C1-SP            |
| SV048     | -         | -      | Set by adjustment                                       |                      |
| SV055     | -         | -      | Same value as SV048                                     | No spindle parameter |
| SV056     | -         | -      | Same value as Z axis<br>rapid traverse time<br>constant | setting required     |

[4] Servo controls power supply, vertical axis is a 2-axis unit (vertical axis: Z axis)



| Axis      | X axis    | Y axis                                                  | Z axis (Vertical axis)                                  | Spindle                               |  |
|-----------|-----------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------|--|
| Parameter | MDS-C1-V1 | DS-C1-V1 MDS-C1-V2                                      |                                                         | MDS-C1-SP                             |  |
| SV048     | -         | Same value as Z axis $\rightarrow$                      | Set by adjustment                                       |                                       |  |
| SV055     | -         | Same value as Z axis $\rightarrow$                      | Same value as SV048                                     | No spindle parameter setting required |  |
| SV056     | -         | Same value as Y axis<br>rapid traverse time<br>constant | Same value as Z axis<br>rapid traverse time<br>constant |                                       |  |

# 4-6 **Protective functions**

## 4-6-1 Overload detection

The servo drive unit is equipped with an electronic thermal that protects the servomotor and servo drive unit from overload conditions. The overload 1 alarm (alarm 50) is detected if an overload condition occurs, and the overload 2 alarm (alarm 51) is detected if 95% or more of the maximum current is commanded continuously for 1 second or longer due to a machine collision, etc. The parameters shown below are for machine tool builder adjustment purposes only, and should be kept at their standard settings (SV021=60, SV022=150).

For details concerning the overload protection characteristics, refer to the MDS-C1 Series Specifications Manual (BNP-C3040).

| No.   | Abbrev. | Parameter name                      | Explanation                                                                                                                                                             | Setting range                              |
|-------|---------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| SV021 | OLT     | Overload detection<br>time constant | Set the detection time constant of Overload 1 (Alarm 50).<br>Set to "60" as a standard. (For machine tool builder adjustment.)                                          | 1 to 999<br>(s)                            |
| SV022 | OLL     | Overload detection level            | Set the current detection level of Overload 1 (Alarm 50) in respect to the stall (rated) current.<br>Set to "150" as a standard. (For machine tool builder adjustment.) | 110 to 500<br>(Stall [rated]<br>current %) |

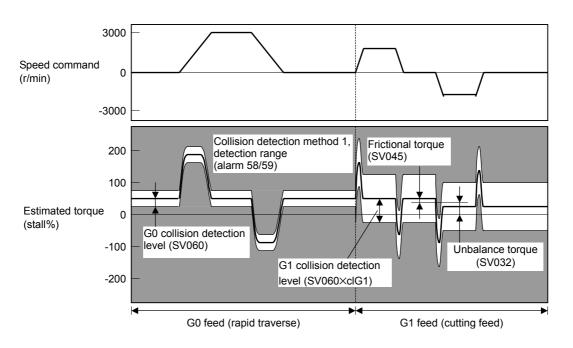
## 4-6-2 Excessive error detection

An excessive error (alarms 52, 53, 54) is detected when the difference between the servo's commanded position and the FB position exceeds the value set by parameter. Separate excessive error detection width can be set for servo ON (SV023) and servo OFF (SV026) statuses. When a wider excessive error detection width than that used for standard control is required in stopper control, etc., the detection width setting can be changed to the SV053 setting value by NC command.

Follow-up control (NC commanded position tracks servo FB position) is used during emergency stop and during a servo OFF command, and so there is no excessive error detection at those times, although the follow-up control during a servo OFF status can be disabled by an NC system parameter setting.

| No.   | Abbrev. | Parameter name                                           | Explanation                                                                                                                                                                                                                                                                    | Setting range      |
|-------|---------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| SV023 | OD1     | Excessive error<br>detection width<br>during servo ON    | Set the excessive error detection width when servo ON. <standard< td="">       Rapid traverse rate         setting value&gt;       OD1=OD2=       (mm/min)       ÷ 2 (mm)         60 × PGN1</standard<>                                                                        | 0 to 32767<br>(mm) |
| SV026 | OD2     | Excessive error<br>detection width<br>during servo OFF   | When "0" is set, the excessive error detection will not be performed.<br>Set the excessive error detection width when servo ON.<br>For the standard setting, refer to the explanation of SV023 (OD1).<br>When "0" is set, the excessive error detection will not be performed. | 0 to 32767<br>(mm) |
| SV053 | OD3     | Excessive error<br>detection width in<br>special control | Set the excessive error detection width when servo ON in a special control (initial absolute position setting, stopper control, etc.).<br>If "0" is set, excessive error detection won't be performed.                                                                         | 0 to 32767<br>(mm) |

## 4-6-3 Collision detection


Collision detection quickly detects a collision of the motor shaft, and decelerates and stops the motor. This suppresses the generation of an excessive torque in the machine tool, and helps to prevent an abnormal state from occurring. Impact at a collision will not be prevented by using this collision detection function, so this function does not necessarily guarantee that the machine tool will not be damaged or that the machine accuracy will be maintained after a collision. The same caution as during regular operation is required to prevent the machine from colliding.

#### (1) Collision detection method 1

The required torque for the command is estimated from the position command issued from the NC, and the disturbance torque is obtained from the difference with the actual torque. When this disturbance torque exceeds the collision detection level set with the parameters, the motor will decelerate to a stop with a torque 80% (standard) value of the motor's maximum torque. After decelerating to a stop, alarm 58 or 59 will occur, and the system will stop.

The collision detection level for rapid traverse (G0) is set with SV060: TLMT. The collision detection level for cutting feed (G1) is set to 0 to 7-fold (SV35.clG1) based on the collision detection level for rapid traverse. When clG1 is set to 0, collision detection method 1 will not function during cutting feed. If SV060 is set to 0, all collision detection (including methods 1 and 2) will not function.

|                                           | Collision detection level setting parameter | Detected alarm |
|-------------------------------------------|---------------------------------------------|----------------|
| During rapid traverse<br>(During G0 feed) | SV060                                       | Alarm 58       |
| During cutting feed<br>(During G1 feed)   | SV060 × c1G1 (SV035)                        | Alarm 59       |



Alarm detection range for collision detection method 1

**CAUTION** The collision detection function does not guarantee safety or machine accuracy when a collision occurs. Thus, the same caution as during regular operation is required to prevent the machine from colliding.

### (2) Collision detection method 2

When the current command reaches the motor's maximum current, the motor will decelerate and stop at a torque 80% (standard value) of the motor's maximum torque. After decelerating to a stop, alarm 5A will occur, and the system will stop. If the acceleration/deceleration time constant is short and incorrect detections easily occur during normal operation, lengthen the acceleration/ deceleration time constant and adjust so that the current is not saturated (does not reach the maximum current) during acceleration.

If the acceleration/deceleration time constant cannot be lengthened, set parameter SV035/bitF (SSF4.c12n) to 1 to ignore collision detection method 2.

| POINT | <ol> <li>Always validate SHG control when using the collision detection function, or<br/>when carrying out SV059 setting value operation.</li> <li>Provide an allowance in the detection level setting to prevent incorrect<br/>detections.</li> <li>All collision detection functions will be disabled when SV60 is set to 0.</li> <li>Collision detection method 2 will function if a value other than 0 is set in<br/>SV060. Note that the detection can be ignored by setting the parameter<br/>(SV035/bitB).</li> <li>The torque estimated gain (SV059) must be readjusted when there are<br/>changes in the detector resolution following the detector replacement, or in<br/>the detector loop gain (PGN) or position control system. (closed loop control<br/>and semi-closed loop has been changed).</li> </ol> |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### <Setting and adjustment methods>

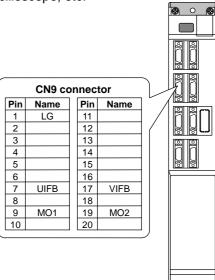
[1] Confirm that SHG control is active. Collision detection function is valid only during SHG control.

- [2] Set the axis unbalanced torque to the torque offset (SV032: TOF). (Refer to "4-3-5 (1) Unbalance torque and frictional torque" for details on measuring the unbalance torque.)
- [3] Measure the frictional torque and set in the frictional torque (SV045: TRUB). Carry out reciprocation operation (approx. F1000) with the axis to be adjusted, and measure the load current % when the axis is fed at the constant speed on the NC SERVO MONITOR screen. This frictional torque is expressed with the following expression.

Frictional torque (%) =  $\frac{(+ \text{ feed load current \%}) - (- \text{ feed load current \%})}{2}$ 

- [4] Set SV035: SSF4.clt (bitF) to 1 for the axis being adjusted, and move in both directions with JOG, etc., at the rapid traverse rate. When the MPOS display on the NC SERVO MONITOR screen has stabilized, set that value for the torque estimated gain (SV059: TCNV). Return SV035: SSF4.clt (bitF) to 0.
- [5] If the acceleration/deceleration time is short, and the current is limited, set SV035: SSF4.c12n (bitB) to 1 to invalidate collision detection method 2.
- [6] Adjust the collision detection level (SV060: TLMT). First set 100. If operation at the rapid traverse rate results in an alarm, increase the setting value by approx. 20. If an alarm does not occur, lower the setting value by approx. 10. When SV035: SSF4.clet (bitA) is set to 1, the estimated disturbance torque peak value for the latest two seconds will appear at MPOS. This value can be used as reference. Set the final setting value to a value approx. 1.5-fold the limit value at which an alarm does not occur.
- [7] Divide the maximum cutting load with the value set for the collision detection level (SV060: TLMT). (Round up the decimal) Set this value in SV035: SSF4.clG1 (bitC-E).

| No.   | Abbrev.                                                        | Parameter name                                   | Explanation                                                                                                                                                                                                                                                                                      | Setting range                                                                                 |  |  |  |
|-------|----------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| SV032 | TOF                                                            | Torque offset                                    | Set the unbalance torque of vertical axis and inclined axis.                                                                                                                                                                                                                                     | -100 to 100<br>(Stall current %)                                                              |  |  |  |
| SV035 | SSF4                                                           | Servo function selection 4                       | F         E         D         C         B         A         9         8         7         6         5         4           clt         clG1         cl2n         clet         cltq         iup         iup                                                                                        | 3 2 1 0<br>tdt                                                                                |  |  |  |
|       | bit Meaning when "0" is set Meaning w                          |                                                  |                                                                                                                                                                                                                                                                                                  |                                                                                               |  |  |  |
|       | 8 Set the retracting torque for collision detection in respect |                                                  |                                                                                                                                                                                                                                                                                                  |                                                                                               |  |  |  |
|       |                                                                |                                                  | A clet latest two sec                                                                                                                                                                                                                                                                            | indard) 11 : 70%<br>ince torque peak of the<br>conds is displayed in<br>servo monitor screen. |  |  |  |
|       |                                                                |                                                  |                                                                                                                                                                                                                                                                                                  | ection method 2 invalid                                                                       |  |  |  |
|       |                                                                |                                                  | C Collision detection method 1<br>D Set the collision detection level during cutting feed                                                                                                                                                                                                        | (G1).                                                                                         |  |  |  |
|       |                                                                |                                                  | E CIG1 The G1 collision detection level=SV060 × cIG1.<br>When cIG1=0, the collision detection method 1 dur<br>function.                                                                                                                                                                          | ing cutting feed won't                                                                        |  |  |  |
|       |                                                                |                                                  | F clt setting value                                                                                                                                                                                                                                                                              | lue of the SV059<br>is displayed in MPOS<br>nonitor screen.                                   |  |  |  |
| SV045 | TRUB<br>(Low<br>order)                                         | Frictional torque                                | When you use the collision detection function, set the frictional to                                                                                                                                                                                                                             | rque. 0 to 100<br>(Stall current %)                                                           |  |  |  |
| SV059 | TCNV                                                           | Collision detection<br>torque estimating<br>gain | Set the torque estimating gain when using the collision detection function.<br>After setting as SV035/bitF(clt)=1 and performing<br>acceleration/deceleration, set the value displayed in MPOS of the NC<br>servo monitor screen.<br>Set to "0" when not using the collision detection function. |                                                                                               |  |  |  |
| SV060 | TLMT                                                           | Collision detection<br>level                     | When using the collision detection function, set the collision detection during the G0 feeding.<br>f "0" is set, none of the collision detection function will work.                                                                                                                             | ction 0 to 999<br>(Stall current %)                                                           |  |  |  |


| 5-1 D/A  | output specifications for spindle drive unit      |  |
|----------|---------------------------------------------------|--|
| 5-1-1    | D/A output specifications                         |  |
| 5-1-2    | Setting the output data                           |  |
|          | Setting the output magnification                  |  |
| 5-2 Spir | ndle control signal                               |  |
| 5-2-1    | Spindle control input (NC to SP)                  |  |
| 5-2-2    | Spindle control output (SP to NC)                 |  |
| 5-3 Adj  | ustment procedures for each control               |  |
| 5-3-1    | Basic adjustments                                 |  |
|          | Adjusting the acceleration/deceleration operation |  |
| 5-3-3    | Adjusting the orientation control                 |  |
|          | Adjusting the synchronous tap control             |  |
| 5-3-5    | Adjusting the C-axis control                      |  |
| 5-3-6    | Adjusting the spindle synchronous control         |  |

# 5-1 D/A output specifications for spindle drive unit

The MDS-C1-SP/SPH/SPX/SPHX/SPM spindle drive unit has a function to D/A output each control data. The spindle adjustment data required to set the spindle parameters matching the machine can be D/A output. The data can be measured with a hi-corder or oscilloscope, etc.

| DIA output specifications    |                                                                                                     |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Item                         | Explanation                                                                                         |  |  |  |
| No. of channels              | 2ch                                                                                                 |  |  |  |
| Output cycle                 | 444µs (min. value)                                                                                  |  |  |  |
| Output precision             | 8bit                                                                                                |  |  |  |
| Output voltage range         | 0V to +5V (zero) to +10V,<br>0V to +10V for meter output                                            |  |  |  |
| Output magnification setting | ±1/256 to ±128-fold                                                                                 |  |  |  |
| Output pin                   | CN9 connector<br>MO1 = Pin 9<br>MO2 = Pin 19<br>GND = Pin 1                                         |  |  |  |
| Function                     | Phase current feedback output function<br>U phase current FB : Pin 7<br>V phase current FB : Pin 17 |  |  |  |





∕⊗∖⊛∖

| No.   | Abbr.                        | Parame        | eter name          | Explanation |                                                                  |                                  |                 |  |
|-------|------------------------------|---------------|--------------------|-------------|------------------------------------------------------------------|----------------------------------|-----------------|--|
| SP253 | DA1NO                        | D/A output ch | annel 1 data No.   | Input the   | No. of the data to be output to                                  | o each D/A output channe         | Ι.              |  |
| SP254 | DA2NO                        | D/A output ch | annel 2 data No.   |             |                                                                  |                                  |                 |  |
| No.   | Οι                           | itput data    | Original data      | unit        | Output magnification<br>standard setting value<br>(SP255, SP256) | Output unit for standard setting | Output<br>cycle |  |
| 0     | ch1: Speedo                  | ometer output | 10V=max. speed (   | Zero=0V)    | 0                                                                | Depends on maximum speed         | 3.55ms          |  |
|       | ch2: Load m                  | eter output   | 10V=120% load (2   | Zero=0V)    | 0                                                                | 30-minute rating 12%/V           | 3.55ms          |  |
| 1     | -                            |               |                    |             |                                                                  |                                  |                 |  |
| 2     | Current con                  | nmand         | Rated 100%=        | 4096        | 8                                                                | 30-minute rating 20%/V           | 3.55ms          |  |
| 3     | Current feed                 | lback         | Rated 100%=        | 4096        | 8                                                                | 30-minute rating 20%/V           | 3.55ms          |  |
| 4     | Speed feed                   | back          | r/min              |             | 13                                                               | 500rpm/V                         | 3.55ms          |  |
| 5     | -                            |               |                    |             |                                                                  |                                  |                 |  |
| 6     | Position dro<br>(lower order |               | 0.001deg=          | 64          | 10 (10.24)                                                       | 0.01deg/V                        | 888µs           |  |
| 7     | Position dro<br>(higher orde |               | 1deg=(64000÷65536) |             | 671                                                              | 10deg/V                          | 888µs           |  |
| 8     | Feedrate (Fa                 | •             | 0.001deg=          | 64          | 173<br>(at 3.5ms communication)                                  | 10deg/min/V                      | 888µs           |  |
| 9     | Feedrate (Fa                 |               | 1deg=(64000÷6      | 65536)      | 629<br>(at 3.5ms communication)                                  | 500rpm/V                         | 888µs           |  |
| 10    | Position cor<br>(lower order |               | 0.001deg=          | 64          | 10 (10.24)                                                       | 0.01deg/V                        | 888µs           |  |
| 11    | Position cor<br>(higher orde |               | 1deg=(64000÷6      | 65536)      | 19 (18.64)                                                       | 360deg/V                         | 888µs           |  |
| 12    | Position FB<br>(lower order  | 16bit)        | 0.001deg=          | 64          | 10 (10.24)                                                       | 0.01deg/V                        | 888µs           |  |
| 13    | Position FB<br>(higher orde  | er 16bit)     | 1deg=(64000÷6      | 65536)      | 19 (18.64)                                                       | 360deg/V                         | 888µs           |  |
| 80    | Control inpu                 | ıt 1          |                    |             |                                                                  |                                  |                 |  |
| 81    | Control inpu                 | ıt 2          |                    |             |                                                                  |                                  |                 |  |
| 82    | Control inpu                 | ıt 3          |                    |             |                                                                  |                                  |                 |  |
| 83    | Control inpu                 | ıt 4          | HEX                |             | Bit correspondence                                               |                                  | 0.55            |  |
| 84    | Control out                  | out 1         |                    |             | Bit correspo                                                     | JILLEHUE                         | 3.55ms          |  |
| 85    | Control out                  | out 2         | 1                  |             |                                                                  |                                  |                 |  |
| 86    | Control out                  | out 3         | 1                  |             |                                                                  |                                  |                 |  |
| 87    | Control out                  | out 4         |                    |             |                                                                  |                                  |                 |  |

## 5-1-3 Setting the output magnification

## (1) Meter output (Data No. 0)

With meter output, the output channel is fixed, and the output voltage range is 0 to 10V in the positive range. Set the magnification with the following parameters. Also, low path filter can be set on the load meter output.

| No.   | Abbr. | Parameter name           | Details                                                                                                                                  | Setting<br>range      | Standard |
|-------|-------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| SP017 | TSP*  | Maximum motor<br>speed   | Set the maximum spindle motor speed.<br>When SP249=0, the motor speed will be the motor rotation<br>speed at the speedometer 10V output. | 1 to 32767<br>(r/min) | 6000     |
| SP094 | LMAV* | Load meter output filter | Set the filter time constant of load meter output.<br>When "0" is set, a filter time constant is set to 100ms.                           | 0 to 32767<br>(2ms)   | 0        |
| SP249 | SMO   | Speedometer speed        | Set the motor rotation speed when the speedometer 10V is output.<br>When set to "0", this parameter becomes the same as SP017 (TSP).     | 0 to 32767<br>(r/min) | 0        |
| SP250 | LMO   | Load meter voltage       | Set the voltage when the load meter 120% is output. When set to "0", this becomes 10V.                                                   | 0 to 10<br>(V)        | 0        |

## (2) Internal data output (Data No. 1 to 13)

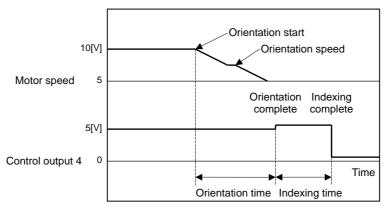
Normally, the standard setting value is set for the output magnification (SP255, SP256). When "0" is set, the magnification will be the same as "256".

$$\mathsf{DATA} \times \frac{\mathsf{SP255}}{256} \times \frac{10 \,[\mathsf{V}]}{256 \,(8 \, \text{bit})} + 5 \,[\mathsf{V}] \,(\text{offset}) = \mathsf{Output voltage} \,[\mathsf{V}]$$

(Example) To output current FB at a 30-minute stall rating 20%/V unit (SP253=3, SP255=8)

$$819.2 \times \frac{8}{256} \times \frac{10}{256} + 5 = 6 [V]$$

| No.   | Abbr.  | Parameter name                    | Details                                                                                                          | Setting<br>range   | Standard |
|-------|--------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------|----------|
| SP255 | DA1MPY |                                   | Set the output magnification with a 1/256 unit.<br>When "0" is set, the magnification will be the same as "256". | -32768 to<br>32767 | 0        |
| SP256 | DA2MPY | DA output channel 2 magnification |                                                                                                                  | (1/256-fold)       | 0        |


#### (3) Control signal output (Data No. 80 to 87)

A hexadecimal display is converted into a decimal and output. The method of calculating the magnification is the same as (2). The status cannot be output for each bit, so output the status for all 16 bits.

(Example) Orientation indexing control

With orientation indexing control, the following operations of the "Control output 4" can be observed as shown on the right:

bit4: Orientation completed bit7: Indexing positioning completed Note that the weight of the D/A output differs for each bit.



Orientation indexing control sequence output

# 5-2 Spindle control signal

The sequence input/output signals exchanged between the NC and spindle drive unit are explained in this section. The status of each signal is displayed on the NC SPINDLE MONITOR screen.

## 5-2-1 Spindle control input (NC to SP)

### (1) Spindle control input 1

| Name                    |    |      |      |         |         |        |        | Det   | ails |        |        |       |       |      |     |     |
|-------------------------|----|------|------|---------|---------|--------|--------|-------|------|--------|--------|-------|-------|------|-----|-----|
| Spindle control input 1 |    |      |      |         |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | F  | Е    | D    | С       | В       | А      | 9      | 8     | 7    | 6      | 5      | 4     | 3     | 2    | 1   | 0   |
|                         | G1 |      |      |         | MAC     | TL3    | TL2    | TL1   | ALMR | PRM    |        |       |       |      | SRV | RDY |
|                         |    | bit  |      |         |         |        |        |       | Det  | tails  |        |       |       |      |     |     |
|                         | 0  | RDY  | REA  | DY C    | DN co   | mmai   | nd     |       |      |        |        |       |       |      |     |     |
|                         | 1  | SRV  | Serv | /0 ON   | l com   | mand   |        |       |      |        |        |       |       |      |     |     |
|                         | 2  |      |      |         |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | 3  |      |      |         |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | 4  |      |      |         |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | 5  |      |      |         |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | 6  | PRM  | Para | amete   | er con  | versio | on cor | nmar  | d    |        |        |       |       |      |     |     |
|                         | 7  | ALMR |      |         | t alarn | n rese | et con | nman  | d    |        |        |       |       |      |     |     |
|                         | 8  | TL1  | Tord | que lir | mit 1   |        |        |       |      |        |        |       |       |      |     |     |
|                         | 9  | TL2  | Tord | que lir | mit 2   |        |        |       |      |        |        |       |       |      |     |     |
|                         | А  | TL3  |      | que lir |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | В  | MAC  | Pole | e posi  | tion d  | etecti | on ch  | eck c | omma | and (o | nly fo | or MD | S-C1- | -SPM | )   |     |
|                         | С  |      |      |         |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | D  |      |      |         |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | Е  |      |      |         |         |        |        |       |      |        |        |       |       |      |     |     |
|                         | F  | G1   | Cutt | ing     |         |        |        |       |      |        |        |       |       |      |     |     |

#### bit0. READY ON command (RDY)

This signal is input when preparations to rotate the motor are completed. The forward run and reverse run commands will not be accepted even if input before this signal turns ON.

#### bit1. Servo ON command (SRV)

This is input for position control, excluding orientation. If this signal is not ON, position control will not be executed even if the spindle control mode selection command's combination indicates the position control mode.

#### bit6. Parameter conversion command (PRM)

This is started when the spindle parameters are converted on the NC screen.

#### bit7. Drive unit alarm reset command (ALMR)

This turns ON while NC reset is input. Spindle alarms that can be reset with NR are reset.

bit8. Torque limit 1 (TL1)

bit9. Torque limit 2 (TL2)

## bitA. Torque limit 3 (TL3)

This signal is used to temporarily reduce the spindle motor's output torque such as when clamping the spindle motor on the machine side. The torque limit is designated in percentage using the motor's short-time rating as 100%.

Set the SP021, SP049 to SP054 torque limit value with a combination of TL1 to 3.

| TL3 | TL2 | TL1 | Torque limit value |
|-----|-----|-----|--------------------|
| 0   | 0   | 1   | SP021              |
| 0   | 1   | 0   | SP049              |
| 0   | 1   | 1   | SP050              |
| 1   | 0   | 0   | SP051              |
| 1   | 0   | 1   | SP052              |
| 1   | 1   | 0   | SP053              |
| 1   | 1   | 1   | SP054              |

| No.   | Abbr. | Parameter name | Details                                                    | Setting<br>range | Standard |
|-------|-------|----------------|------------------------------------------------------------|------------------|----------|
| SP021 | TLM1  | Torque limit 1 | Set the torque limit rate for the torque limit signal 001. | 0 to 120(%)      | 10       |
| SP049 | TLM2  | Torque limit 2 | Set the torque limit rate for the torque limit signal 010. | 0 to 120(%)      | 20       |
| SP050 | TLM3  | Torque limit 3 | Set the torque limit rate for the torque limit signal 011. | 0 to 120(%)      | 30       |
| SP051 | TLM4  | Torque limit 4 | Set the torque limit rate for the torque limit signal 100. | 0 to 120(%)      | 40       |
| SP052 | TLM5  | Torque limit 5 | Set the torque limit rate for the torque limit signal 101. | 0 to 120(%)      | 50       |
| SP053 | TLM6  | Torque limit 6 | Set the torque limit rate for the torque limit signal 110. | 0 to 120(%)      | 60       |
| SP054 | TLM7  | Torque limit 7 | Set the torque limit rate for the torque limit signal 111. | 0 to 120(%)      | 70       |

#### **Related spindle parameters**

### bitB. Pole position check command (MAC) (only for MDS-C1-SPM)

When requesting pole position check from NC, pole position check is performed by turning ON this signal. However, the pole position check is not performed when the check has already completed (control output 1/bitB=1). When SP207 $\neq$ 0 is set, it stars automatically on the spindle drive unit side.

### bitF. Cutting (G1)

This signal is used to determine whether cutting is taking place or not during C-axis control.

# (2) Spindle control input 2

| Name                    |   |     |      |       |        |         |    | Det | ails |       |   |   |   |   |   |   |
|-------------------------|---|-----|------|-------|--------|---------|----|-----|------|-------|---|---|---|---|---|---|
| Spindle control input 2 |   |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | F | Е   | D    | С     | В      | А       | 9  | 8   | 7    | 6     | 5 | 4 | 3 | 2 | 1 | 0 |
|                         |   | DAR |      | PAR   |        |         |    |     |      |       |   |   |   |   |   |   |
|                         |   | bit |      |       |        |         |    |     | Det  | tails |   |   |   |   |   |   |
|                         | 0 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 1 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 2 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 3 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 4 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 5 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 6 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 7 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 8 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | 9 |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | А |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | В |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | С | PAR | PS   | alarm | histo  | ry clea | ar |     |      |       |   |   |   |   |   |   |
|                         | D |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |
|                         | Е | DAR | Alar | m his | tory c | lear    |    |     |      |       |   |   |   |   |   |   |
|                         | F |     |      |       |        |         |    |     |      |       |   |   |   |   |   |   |

# bitC. PS alarm history clear (PAR)

This signal turns ON when clearing alarm history for power supply.

# bitE. Alarm history delete (DAR)

This signal turns ON when clearing alarm history for driver.

# (3) Spindle control input 3

| Dit<br>bit<br>0 So<br>1 So                  | C1<br>C2<br>C3<br>C4                            | Spinc<br>Spinc<br>Spinc                                     | dle co                                                                                                                     | ontrol                                                                                                                                                                                                                                             | A<br>WRN<br>mode                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>GR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br>SC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>SC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>SC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>SC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>SC1                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|---------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| bit<br>0 So<br>1 So<br>2 So<br>3 So<br>4 So | AS L<br>C1 52 5<br>C3 5<br>C4 5                 | Spinc<br>Spinc<br>Spinc                                     | ORC<br>dle co                                                                                                              | WRI                                                                                                                                                                                                                                                | WRN                                                                                                                                                                                                                                                                                                                                                                                | SRI                                                                                                                                                                                                                     | SRN                                                                                                                                                                                                                                                                               | Det                                                                                                                                                                                                                                                                                                                                                                                                                                            | GR2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>SC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| bit<br>0 S(<br>1 S(<br>2 S(<br>3 S(<br>4 S( | C1<br>C2<br>C3<br>C4                            | Spinc<br>Spinc<br>Spinc                                     | dle co                                                                                                                     | ontrol                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SC1                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| 0 S0<br>1 S0<br>2 S0<br>3 S0<br>4 S0        | C2<br>C3<br>C4                                  | Spinc<br>Spinc                                              | dle co                                                                                                                     |                                                                                                                                                                                                                                                    | mode                                                                                                                                                                                                                                                                                                                                                                               | sele                                                                                                                                                                                                                    | - C                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                | ails                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 1 S(<br>2 S(<br>3 S(<br>4 S(                | C2<br>C3<br>C4                                  | Spinc<br>Spinc                                              | dle co                                                                                                                     |                                                                                                                                                                                                                                                    | mode                                                                                                                                                                                                                                                                                                                                                                               | sele                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Details                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| 1 S0<br>2 S0<br>3 S0<br>4 S0                | C2<br>C3<br>C4                                  | Spinc<br>Spinc                                              | dle co                                                                                                                     |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         | ction                                                                                                                                                                                                                                                                             | comn                                                                                                                                                                                                                                                                                                                                                                                                                                           | hand '                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 3 S(<br>4 S(                                | 24                                              | •••••                                                       | dle co                                                                                                                     |                                                                                                                                                                                                                                                    | Spindle control mode selection command 1<br>Spindle control mode selection command 2                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 4 S(                                        |                                                 | Spinc                                                       | Spindle control mode selection command 3                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                             | 25                                              |                                                             | Spindle control mode selection command 4                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                             |                                                 | Spind                                                       | Spindle control mode selection command 5                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                             | R1                                              | Gear                                                        | sele                                                                                                                       | ction                                                                                                                                                                                                                                              | comm                                                                                                                                                                                                                                                                                                                                                                               | and                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 6 G                                         | R2                                              | Gear                                                        | sele                                                                                                                       | ction                                                                                                                                                                                                                                              | comm                                                                                                                                                                                                                                                                                                                                                                               | and                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 7                                           |                                                 |                                                             |                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 8 SF                                        | RN                                              | Forwa                                                       | ard r                                                                                                                      | un sta                                                                                                                                                                                                                                             | art con                                                                                                                                                                                                                                                                                                                                                                            | nmar                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 9 S                                         | RI                                              | Reve                                                        | rse r                                                                                                                      | un sta                                                                                                                                                                                                                                             | art cor                                                                                                                                                                                                                                                                                                                                                                            | nmar                                                                                                                                                                                                                    | nd                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| A W                                         | RN                                              | Index                                                       | king f                                                                                                                     | orwa                                                                                                                                                                                                                                               | rd run                                                                                                                                                                                                                                                                                                                                                                             | comi                                                                                                                                                                                                                    | mand                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| B W                                         | RI                                              | Index                                                       | king r                                                                                                                     | evers                                                                                                                                                                                                                                              | se run                                                                                                                                                                                                                                                                                                                                                                             | comi                                                                                                                                                                                                                    | mand                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| C OI                                        | RC                                              | Orientation start command                                   |                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| D LO                                        |                                                 | L coil selection command (When using coil changeover motor) |                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Ν                                           | S                                               |                                                             |                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         | الم مر م                                                                                                                                                                                                                                                                          | 16 4                                                                                                                                                                                                                                                                                                                                                                                                                                           | ما بنان م                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| E                                           |                                                 |                                                             |                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         | nand                                                                                                                                                                                                                                                                              | (101.1)                                                                                                                                                                                                                                                                                                                                                                                                                                        | -arive                                                                                                                                                                                                                                                                                                                                                                                                                                                          | unit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-mot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | angec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | over)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| M                                           | S                                               |                                                             |                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| F PC                                        |                                                 |                                                             |                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                | .9 001                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .9001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                             | 9 SI<br>A WF<br>B W<br>C OF<br>D LC<br>M<br>E M | 9 SRI<br>A WRN<br>B WRI<br>C ORC<br>D LCS<br>E MS<br>E MCS  | 9 SRI Reve<br>A WRN Index<br>3 WRI Index<br>C ORC Orier<br>D LCS L coil<br>MS < <fc<br>MCS &lt;<fc<br>M co</fc<br></fc<br> | 9     SRI     Reverse r       A     WRN     Indexing f       3     WRI     Indexing r       C     ORC     Orientatio       D     LCS     L coil sele       MS     < <for md<br="">Sub-moto       MCS     &lt;<for md<br="">M coil sele</for></for> | 9         SRI         Reverse run st           A         WRN         Indexing forward           B         WRI         Indexing reverse           C         ORC         Orientation sta           D         LCS         L coil selection           E         MS         < <for mds-c1<br="">Sub-motor sele           MCS         &lt;<for mds-c1<br="">M coil selection</for></for> | 9     SRI     Reverse run start cor       A     WRN     Indexing forward run       3     WRI     Indexing reverse run       C     ORC     Orientation start com       D     LCS     L coil selection comm       K     < | 9       SRI       Reverse run start commar         A       WRN       Indexing forward run command         B       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command         K       < | 9       SRI       Reverse run start command         A       WRN       Indexing forward run command         B       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command (Whe         K       < <for mds-c1-sp="">&gt;       Sub-motor selection command         MCS       &lt;<for mds-c1-spm="">&gt;       M coil selection command (whe</for></for> | 9       SRI       Reverse run start command         A       WRN       Indexing forward run command         B       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command (When usin         MS       < <for mds-c1-sp="">&gt;<br/>Sub-motor selection command (for 1)         MCS       &lt;<for mds-c1-spm="">&gt;<br/>M coil selection command (when usin</for></for> | 9       SRI       Reverse run start command         A       WRN       Indexing forward run command         3       WRI       Indexing reverse run command         3       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command (When using coi         E       MS       < <for mds-c1-sp="">&gt;<br/>Sub-motor selection command (for 1-drive<br/>MCS         MCS       &lt;<for mds-c1-spm="">&gt;<br/>M coil selection command (when using coi</for></for> | 9       SRI       Reverse run start command         A       WRN       Indexing forward run command         3       WRI       Indexing reverse run command         3       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command (When using coil char         K       < <for mds-c1-sp="">&gt;<br/>Sub-motor selection command (for 1-drive unit 2<br/>MCS         K       &lt;<for mds-c1-spm="">&gt;<br/>M coil selection command (when using coil char</for></for> | 9       SRI       Reverse run start command         A       WRN       Indexing forward run command         3       WRI       Indexing reverse run command         3       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command (When using coil changeov         A       MS       < <for mds-c1-sp="">&gt;<br/>Sub-motor selection command (for 1-drive unit 2-mot         MCS       &lt;<for mds-c1-spm="">&gt;<br/>M coil selection command (when using coil changeov</for></for> | 9       SRI       Reverse run start command         A       WRN       Indexing forward run command         3       WRI       Indexing reverse run command         3       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command (When using coil changeover model)         E       MS       < <for mds-c1-sp="">&gt;<br/>Sub-motor selection command (for 1-drive unit 2-motor changeover model)         MCS       &lt;<for mds-c1-spm="">&gt;<br/>M coil selection command (when using coil changeover model)</for></for> | 9       SRI       Reverse run start command         A       WRN       Indexing forward run command         B       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command (When using coil changeover motor)         E       MS       < <for mds-c1-sp="">&gt;<br/>Sub-motor selection command (for 1-drive unit 2-motor changeover motor)         MCS       &lt;<for mds-c1-spm="">&gt;<br/>M coil selection command (when using coil changeover motor)</for></for> | 9       SRI       Reverse run start command         A       WRN       Indexing forward run command         3       WRI       Indexing reverse run command         3       WRI       Indexing reverse run command         C       ORC       Orientation start command         D       LCS       L coil selection command (When using coil changeover motor)         K       < |  |  |  |  |  |  |  |

bit0. Spindle control mode selection command 1 (SC1)

bit1. Spindle control mode selection command 2 (SC2) bit2. Spindle control mode selection command 3 (SC3)

bit3. Spindle control mode selection command 4 (SC4)

bit4. Spindle control mode selection command 5 (SC5)

| SC5 | SC4 | SC3 | SC2 | SC1 | Control mode                         |
|-----|-----|-----|-----|-----|--------------------------------------|
| 0   | 0   | 0   | *   | *   | Speed control                        |
| 0   | 0   | 1   | *   | *   | opeed control                        |
| 0   | 1   | 0   | *   | *   | Synchronous tap control              |
| 0   | 1   | 1   | 0   | 0   | C-axis control, No. 1 gain selection |
| 0   | 1   | 1   | 0   | 1   | C-axis control, No. 2 gain selection |
| 0   | 1   | 1   | 1   | 0   | C-axis control, No. 3 gain selection |
| 0   | 1   | 1   | 1   | 1   | Setting prohibited                   |
| 1   | 0   | 0   | *   | *   | Spindle synchronous control          |
| 1   | 0   | 1   | *   | *   |                                      |
| 1   | 1   | 0   | *   | *   | Setting prohibited                   |
| 1   | 1   | 1   | *   | *   |                                      |

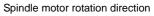
(Note) The asterisk indicates 1 or 0.

# bit5. Gear selection command 1 (GR1)

# bit6. Gear selection command 2 (GR2)

This selects the number of spindle gear stages required to carry out orientation operation or various position control operation.

| GR2 | GR1 | Gear ratio   |
|-----|-----|--------------|
| 0   | 0   | SP025, SP029 |
| 0   | 1   | SP026, SP030 |
| 1   | 0   | SP027, SP031 |
| 1   | 1   | SP028, SP032 |


| No.   | Abbr. | Parameter name                 | Details                                                                    | Setting<br>range | Standard setting |
|-------|-------|--------------------------------|----------------------------------------------------------------------------|------------------|------------------|
| SP025 | GRA1* | Spindle gear teeth<br>count 1  | Set the number of gear teeth of the spindle corresponding to gear 000.     | 1 to 32767       | 1                |
| SP026 | GRA2* | Spindle gear teeth<br>count 2  | Set the number of gear teeth of the spindle corresponding to gear 001.     | 1 to 32767       | 1                |
| SP027 | GRA3* | Spindle gear teeth count 3     | Set the number of gear teeth of the spindle corresponding to gear 010.     | 1 to 32767       | 1                |
| SP028 | GRA4* | Spindle gear teeth count 4     | Set the number of gear teeth of the spindle corresponding to gear 011.     | 1 to 32767       | 1                |
| SP029 | GRB1* | Motor shaft gear teeth count 1 | Set the number of gear teeth of the motor shaft corresponding to gear 000. | 1 to 32767       | 1                |
| SP030 | GRB2* | Motor shaft gear teeth count 2 | Set the number of gear teeth of the motor shaft corresponding to gear 001. | 1 to 32767       | 1                |
| SP031 | GRB3* | Motor shaft gear teeth count 3 | Set the number of gear teeth of the motor shaft corresponding to gear 010. | 1 to 32767       | 1                |
| SP032 | GRB4* | Motor shaft gear teeth count 4 | Set the number of gear teeth of the motor shaft corresponding to gear 011. | 1 to 32767       | 1                |

#### Related spindle parameters

## bit8. Forward run start command (SRN)

This is an operation command. The speed command must also be designated to rotate the motor. If the orientation command is input, the orientation operation will have the priority.

| SRN | Explanation                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------|
|     | The motor rotates in the counterclockwise direction (CCW) looking from the shaft at the commanded speed. |
|     | The motor decelerates to a stop.<br>After stopping, the drive unit's power module turns OFF.             |





Counterclockwise direction

## bit9. Reverse run start command (SRI)

This is an operation command. The speed command must also be designated to rotate the motor. If the orientation command is input, the orientation operation will have the priority.

| SRN     | Explanation                                                                                      |
|---------|--------------------------------------------------------------------------------------------------|
| 1 (ON)  | The motor rotates in the clockwise direction (CW) looking from the shaft at the commanded speed. |
| 0 (OFF) | The motor decelerates to a stop.<br>After stopping, the drive unit's power module turns OFF.     |

Spindle motor rotation direction



# bitA. Indexing forward run command (WRN) bitB. Indexing reverse run command (WRI)

This is valid when the orientation start command is ON.

| WRI   | WRN   | Explanation                                             |
|-------|-------|---------------------------------------------------------|
| 1     | 1     | Setting prohibited.                                     |
| (ON)  | (ON)  |                                                         |
| 0     | 1     | Indexing is carried out in the counterclockwise (CCW)   |
| (OFF) | (ON)  | direction looking from the motor end.                   |
| 1     | 0     | Indexing is carried out in the clockwise (CW) direction |
| (ON)  | (OFF) | looking from the motor end.                             |
| 0     | 0     | Indexing is not carried out.                            |
| (OFF) | (OFF) |                                                         |

## bitC. Orientation start command (ORC)

This signal is used to start orientation. Orientation has a priority when the orientation start command is input.

| ORC    | Explanation                                                                                  |
|--------|----------------------------------------------------------------------------------------------|
| 1 (ON) | Orientation starts regardless of the run command (SRN, SRI).                                 |
|        | When a run command (SRN, SRI) is selected, the rotation starts again at the commanded speed. |

## bitD. L coil selection command (LCS)

This command is input to select the coil method for changing the coil. Note that coil changeover is not possible when orientation is commanded. The coil is fixed when the orientation command is input.

| LCS     | Explanation                         |
|---------|-------------------------------------|
| 1 (ON)  | The low-speed command is selected.  |
| 0 (OFF) | The high-speed command is selected. |

# <<For MDS-C1-SP>>

# bitE. Sub-motor selection command (MS)

This command input signal is used to select sub-motor when changing over 1-drive unit 2-motor (spindle motor/general purpose motor).

| MS    | Explanation             |
|-------|-------------------------|
| 1     | Sub-motor is selected.  |
| (ON)  |                         |
| 0     | Main-motor is selected. |
| (OFF) |                         |

# <<For MDS-C1-SPM>>

# bitE. M coil selection command (MCS)

This command is input to select medium-speed coil when using the medium-speed coil.

| MCS   | Explanation                       |
|-------|-----------------------------------|
| 1     | Medium-speed command is selected. |
| (ON)  |                                   |
| 0     | High-speed command is selected.   |
| (OFF) |                                   |

## bitF. Position changeover mode selection (PCHG)

This command is input to select changeover operation from speed control to position control (synchronous tap control, C-axis control and spindle synchronous control.)

| PCHG  | Explanation                         |
|-------|-------------------------------------|
| 1     | No zero point return is selected.   |
| (ON)  |                                     |
| 0     | With zero point return is selected. |
| (OFF) |                                     |

# (4) Spindle control input 4

| Name                    |     |      |       |        |        |       |       | Det  | ails  |      |     |   |   |   |   |   |
|-------------------------|-----|------|-------|--------|--------|-------|-------|------|-------|------|-----|---|---|---|---|---|
| Spindle control input 4 |     |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | F   | Е    | D     | С      | В      | А     | 9     | 8    | 7     | 6    | 5   | 4 | 3 | 2 | 1 | 0 |
|                         | TLU | IP   |       | OSPC   | PYVC   |       |       |      |       |      |     |   |   |   |   |   |
|                         |     | bit  |       |        |        |       |       |      | Det   | ails |     |   |   |   |   |   |
|                         | 0   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 1   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 2   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 3   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 4   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 5   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 6   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 7   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 8   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | 9   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | А   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | В   | PYVC |       |        | excita |       |       |      |       |      | est |   |   |   |   |   |
|                         | С   | OSPC | Orier | ntatio | on spe | ed ch | nange | over | reque | st   |     |   |   |   |   |   |
|                         | D   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | E   |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |
|                         | F   | TLUP | Spin  | dle h  | olding | force | e up  |      |       |      |     |   |   |   |   |   |
|                         |     |      |       |        |        |       |       |      |       |      |     |   |   |   |   |   |

# bitB. Minimum excitation rate changeover request (PYVC)

This command selects the minimum excitation rate of weak excitation control. When SP033/bit8=1, the minimum excitation rate changes over from SP056 to SP116 by turning ON this signal.

## Related spindle parameters

| No.   | Abbr. | Parameter name                                                                      | Details                                                                                                                                                            | Setting<br>range | Standard |
|-------|-------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|
| SP056 | PYVR  | Variable excitation<br>(min value)                                                  | Set the minimum value of the variable excitation rate.<br>Select a smaller value when gear noise is too high.<br>Lager value is more effective on impact response. | 0 to 100<br>(%)  | 50       |
| SP116 | -     | Minimum excitation<br>value after<br>changeover (2nd<br>minimum excitation<br>rate) | Set the minimum excitation rate when position control input or<br>external input is selected.                                                                      | 0 to 100<br>(%)  | 0        |

# bitC. Orientation speed changeover request (OSPC)

This command selects clamp speed for the orientation changeover operation. When the orientation is started with control input 3/bitC(ORC)=1, the clamp speed changes over from SP005 to SP115 by turning ON this signal.

| No.   | Abbr. | Parameter name    | Details                                                                                                                                                                                                                  | Setting<br>range      | Standard |
|-------|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| SP005 |       | speed clamp value | Set the motor speed limit value to be used when the speed loop<br>is changed to the position loop in orientation mode.<br>When this parameter is set to "0", SP017 (TSP) becomes the<br>limit value.                     | 0 to 32767<br>(r/min) | 0        |
| SP115 | OSP2  |                   | When the orientation clamp speed is changed by the control<br>input, this parameter setting will be used instead of SP005:<br>OSP.<br>Indexing speed clamp valid<br>This parameter is used when (SP097: SPEC0/bit4 = 1). | 0 to 32767<br>(r/min) | 0        |

## Related spindle parameters

## bitF. Spindle holding force up (TLUP)

The disturbance observer starts, and the servo rigidity increases. Refer to "5-3-5 (3) Disturbance observer" for details.

# 5-2-2 Spindle control output (SP to NC)

# (1) Spindle control output 1

| Name                     |        |              |       |        |                    |        |               | Det    | ails   |         |      |       |     |   |     |          |
|--------------------------|--------|--------------|-------|--------|--------------------|--------|---------------|--------|--------|---------|------|-------|-----|---|-----|----------|
| Spindle control output 1 |        |              |       |        |                    |        |               |        |        |         |      |       |     |   |     |          |
|                          | F      | E            | D     | С      | В                  | А      | 9             | 8      | 7      | 6       | 5    | 4     | 3   | 2 | 1   | 0        |
|                          | CL     | . INP        | ZFIN  |        | MAO                | TL3A   | TL2A          | TL1A   | ALM    | PRMA    |      | WRN   |     |   | SON | RON      |
|                          |        | bit          |       |        |                    |        |               |        | Det    | tails   |      |       |     |   |     |          |
|                          | 0      | RON          | In R  | EAD    | Y ON               |        |               |        |        |         |      |       |     |   |     |          |
|                          | 1      | SON          | In se | ervo ( | ON                 |        |               |        |        |         |      |       |     |   |     |          |
|                          | 2      |              |       |        |                    |        |               |        |        |         |      |       |     |   |     |          |
|                          | 3      |              |       |        |                    |        |               |        |        |         |      |       |     |   |     |          |
|                          | 4      | WRN          | In dr | ive u  | nit wa             | rning  |               |        |        |         |      |       |     |   |     |          |
|                          | 5      |              |       |        |                    |        |               |        |        |         |      |       |     |   |     |          |
|                          | 6      | PRMA         |       |        | eter co            |        | sion          |        |        |         |      |       |     |   |     |          |
|                          | 7      | ALM          |       |        | nit ala            |        | <u>al inn</u> | 4      |        |         |      |       |     |   |     |          |
|                          | 8<br>9 | TL1A<br>TL2A |       | ····*  | limit 1            |        | ·····         |        |        |         |      |       |     |   |     |          |
|                          | 9<br>A | TL2A         |       |        | limit 2<br>limit 3 |        |               |        |        |         |      |       |     |   |     |          |
|                          | В      | MAO          |       |        |                    |        |               |        | l (Onl | v for N | MDS- | C1-SI | ⊃M) |   |     |          |
|                          | C      |              | mag   | iiotio | polo               | 000111 |               | 001100 | . (011 | , 101 1 |      | 01.01 | ,   |   |     |          |
|                          | D      | ZFIN         | Z-ph  | ase p  | basse              | d      |               |        |        |         |      |       |     |   |     |          |
|                          | Е      | INP          |       |        | n loop             |        | sitior        | )      |        |         |      |       |     |   |     |          |
|                          | F      | CL           |       |        | urren              |        |               |        |        |         |      |       |     |   |     |          |
|                          |        |              |       |        |                    |        |               |        |        |         |      |       |     |   |     | <u> </u> |

## bit0. In READY ON (RON)

When the READY ON signal is input from the NC, if there is no abnormality, this signal turns on in approx. one second. If the start signal (forward run, reverse run, orientation) is turned ON while this signal is ON, the motor will start rotating. If an alarm occurs in the spindle drive unit, this signal will turn OFF. If the READY ON signal from the NC turns OFF while the spindle motor is rotating, the motor will decelerate to a stop, but this signal will remain ON until the motor stops.

## bit1. In servo ON (SON)

This signal turns ON after position control is switched when performing position control except for the orientation.

## bit4. In drive unit warning (WRN)

This signal turns ON when a warning is occurring in the spindle drive unit.

## bit6. In parameter conversion (PRMA)

The parameters sent from the NC are converted into effective parameters for spindle control.

## bit7. In drive unit alarm (ALM)

This signal turns ON when an alarm is occurring in the spindle drive unit.

## bit8. In torque limit 1 signal input (TL1A)

bit9. In torque limit 2 signal input (TL2A)

# bitA. In torque limit 3 signal input (TL3A)

The respective signal turns ON when the torque limit signal 1 to 3 is input.

## bitB. Magnetic pole position checked (MAO)

This signal turns ON when magnetic pole position is checked.

## bitD. Z-phase passed (ZFIN)

This signal turns ON when the Z-phase is passed for the first time after servo ON during position control.

# bitE. In position loop in-position (INP)

During position loop control, this signal turns ON if the position droop drops below the value set with SP153 (CINP) during C-axis control, SP185 (SINP) during spindle synchronous control, and SP217 (TINP) during synchronous tap control.

| No.   | Abbr. | Parameter name                                       | Details                                                                                                       | Setting<br>range       | Standard |
|-------|-------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------|----------|
| SP153 | CINP  | C-axis control<br>in-position width                  | Set the position error range for outputting the in-position signal<br>during C-axis control.<br>(HEX setting) | FFFF                   | 03E8     |
| SP185 | SINP  |                                                      | Set the position error range for output of the in-position signal in the spindle synchronous control mode.    | 1 to 2880<br>(1/16deg) | 16       |
| SP217 |       | Synchronized<br>tapping control<br>in-position width | Set the position error range for output of the in-position during<br>synchronized tapping control.            | 1 to 2880<br>(1/16deg) | 16       |

#### Related spindle parameters

## bitF. Limiting current (CL)

This signal turns ON if a load higher than the spindle's excessive load withstand level is applied during spindle motor rotation. This may also turn ON during motor acceleration/deceleration.

| Name                     |        |      |      |        |        |         |       | Det | ails |       |   |   |   |   |   |   |
|--------------------------|--------|------|------|--------|--------|---------|-------|-----|------|-------|---|---|---|---|---|---|
| Spindle control output 2 |        |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | F      | Е    | D    | С      | В      | Α       | 9     | 8   | 7    | 6     | 5 | 4 | 3 | 2 | 1 | 0 |
|                          |        | DARA |      | PARA   |        |         |       |     |      |       |   |   |   |   |   |   |
|                          |        | bit  |      |        |        |         |       |     | Det  | tails |   |   |   |   |   |   |
|                          | 0      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | 1      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | 2      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | 3      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | 4      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | 5<br>6 |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | о<br>7 |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | 8      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | 9      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | A      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | В      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | С      | PARA | In F | 'S ala | rm hi  | story   | clear |     |      |       |   |   |   |   |   |   |
|                          | D      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          | Е      | DARA | In a | larm ł | nistor | y in cl | ear   |     |      |       |   |   |   |   |   |   |
|                          | F      |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |
|                          |        |      |      |        |        |         |       |     |      |       |   |   |   |   |   |   |

# (2) Spindle control output 2

# bitC. In PS alarm history clear (PARA)

This signal turns ON while clearing power supply alarm history.

# bitE. In alarm history clear (DARA)

This signal turns ON while clearing drive alarm history.

## (3) Spindle control output 3

| Name                     |   |      |       |         |       |                  |          | Det     | ails   |         |         |       |       |      |      |      |
|--------------------------|---|------|-------|---------|-------|------------------|----------|---------|--------|---------|---------|-------|-------|------|------|------|
| Spindle control output 3 |   |      |       |         |       |                  |          |         |        |         |         |       |       |      |      |      |
|                          | F | Е    | D     | С       | В     | А                | 9        | 8       | 7      | 6       | 5       | 4     | 3     | 2    | 1    | 0    |
|                          |   |      | LCSA  | ORCA    | WRIA  | WRNA             | SRIA     | SRNA    |        | GR2A    | GR1A    | SC5A  | SC4A  | SC3A | SC2A | SC1A |
|                          |   | bit  |       |         |       |                  |          |         | De     | tails   |         |       |       |      |      |      |
|                          | 0 | SC1A | Inpu  | itting  | spind | le cor           | ntrol m  | node s  | select | ion co  | omma    | nd 1  | signa | I    |      |      |
|                          | 1 | SC2A | Inpu  | itting  | spind | le cor           | ntrol m  | node s  | select | ion co  | omma    | nd 2  | signa | l    |      |      |
|                          | 2 | SC3A | Inpu  | itting  | spind | le cor           | ntrol m  | node s  | select | ion co  | omma    | nd 3  | signa | I    |      |      |
|                          | 3 | SC4A | Inpu  | itting  | spind | le cor           | ntrol m  | node s  | select | ion co  | omma    | nd 4  | signa | I    |      |      |
|                          | 4 | SC5A | Inpu  | itting  | spind | le cor           | ntrol m  | node s  | select | ion co  | omma    | nd 5  | signa | I    |      |      |
|                          | 5 | GR1A | Inpu  | itting  | gear  | select           | ion co   | omma    | nd 1   | signal  |         |       |       |      |      |      |
|                          | 6 | GR2A | Inpu  | itting  | gear  | select           | ion co   | omma    | nd 2   | signa   |         |       |       |      |      |      |
|                          | 7 |      |       |         |       |                  |          |         |        |         |         |       |       |      |      |      |
|                          | 8 | SRNA | Mote  | or in f | orwai | d run            |          |         |        |         |         |       |       |      |      |      |
|                          | 9 | SRIA | Mote  | or in I | evers | e run            |          |         |        |         |         |       |       |      |      |      |
|                          | А | WRNA | In fo | rward   | d run | indexi           | ng       |         |        |         |         |       |       |      |      |      |
|                          | В | WRIA |       |         |       | indexi           | <u> </u> |         |        |         |         |       |       |      |      |      |
|                          | С | ORCA |       |         |       |                  |          | ind sig |        |         |         |       |       |      |      |      |
|                          | D | LCSA |       |         |       |                  |          | g the   | coil c | hange   | eover   | moto  | r)    |      |      |      |
|                          | E | MSA  |       |         |       | I-SP><br>electio |          | r 1-dri | ve ur  | nit 2-m | notor o | chang | jeove | r)   |      |      |
|                          |   | MCSA |       |         |       | I-SPN<br>ion (v  |          | using   | coil c | hange   | eover   | moto  | r)    |      |      |      |
|                          | F |      |       |         |       |                  |          |         |        |         |         |       |       |      |      |      |
|                          | · |      |       |         |       |                  |          |         |        |         |         |       |       |      |      |      |

- bit0. Inputting spindle control mode selection command 1 signal (SC1A)
- bit1. Inputting spindle control mode selection command 2 signal (SC2A)
- bit2. Inputting spindle control mode selection command 3 signal (SC3A)
- bit3. Inputting spindle control mode selection command 4 signal (SC4A)
- bit4. Inputting spindle control mode selection command 5 signal (SC5A)

The respective signal turns ON when the spindle control mode selection command 1 to 5 is input.

## bit5. Inputting gear selection command 1 signal (GR1A)

# bit6. Inputting gear selection command 2 signal (GR2A)

The respective signal turns ON when the gear selection command 1 or 2 is input.

## bit8. Motor in forward run (SRNA)

This signal turns ON while the start signal is input and the motor is rotating in the CCW direction looking from the motor shaft. This signal may turn ON and OFF if the motor speed is several r/min or less.

#### bit9. Motor in reverse run (SRIA)

This signal turns ON while the start signal is input and the motor is rotating in the CW direction looking from the motor shaft. This signal may turn ON and OFF if the motor speed is several r/min or less.

# bitA. In forward run indexing (WRNA)

# bitB. In reverse run indexing (WRIA)

The corresponding output signal turns ON while forward run indexing (WRN) or reverse run indexing (WRI) is input to the spindle drive unit.

### bitC. In orientation start command signal (ORCA)

This signal turns ON while the orientation start command (ORC) is input to the spindle drive unit.

## bit D. L coil selected (LCSA)

This signal turns ON while the L coil selection signal (LCA) is input to the spindle drive unit.

### <<For MDS-C1-SP>>

# bitE. In sub-motor selection (MSA)

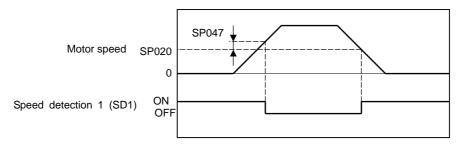
This signal turns ON when selecting sub-motor with 1-drive unit 2-motor specification.

### <<For MDS-C1-SPM>>

## bitE. In M coil selection (MCSA)

This signal turns ON when selecting medium-speed coil in case of using the medium-speed coil.

# (4) Spindle control output 4


| Name                     |     |        |      |          |        |          |        | Det  | ails  |        |       |       |    |   |     |     |    |
|--------------------------|-----|--------|------|----------|--------|----------|--------|------|-------|--------|-------|-------|----|---|-----|-----|----|
| Spindle control output 4 |     |        |      |          |        |          |        |      |       |        |       |       |    |   |     |     |    |
|                          | F   | Е      | D    | С        | В      | А        | 9      | 8    | 7     | 6      | 5     | 4     | 3  | 2 | 2   | 1   | 0  |
|                          | ORF | 2 TLUA | ATA  | OSPA     | PYVA   |          | SD2    | MTC  | WRCF  | MKC    | SYSA  | ORCF  | ZS | U | s s | SD1 | CD |
|                          |     | bit    |      |          |        |          |        |      | De    | tails  |       |       |    |   |     |     |    |
|                          | 0   | CD     | Curi | rent d   | etecti | on       |        |      |       |        |       |       |    |   |     |     |    |
|                          | 1   | SD1    | Spe  | ed de    | tectio | n 1      |        |      |       |        |       |       |    |   |     |     |    |
|                          | 2   | US     | Up-t | o-spe    | ed     |          |        |      |       |        |       |       |    |   |     |     |    |
|                          | 3   | ZS     | Zero | spee     | ed     |          |        |      |       |        |       |       |    |   |     |     |    |
|                          | 4   | ORCF   | Orie | ntatic   | on con | nplet    | е      |      |       |        |       |       |    |   |     |     |    |
|                          | 5   | SYSA   | Syn  | chron    | ous s  | peed     | matc   | h    |       |        |       |       |    |   |     |     |    |
|                          | 6   | MKC    |      | nging    |        |          |        |      |       |        |       |       |    |   |     |     |    |
|                          | 7   | WRCF   |      | <u> </u> |        | <u> </u> | mplet  |      |       |        |       |       |    |   |     |     |    |
|                          | 8   | MTC    |      | ······   |        | ······   | -drive | unit | 2-mot | or cha | angeo | over) |    |   |     |     |    |
|                          | 9   | SD2    | Spe  | ed de    | tectio | n 2      |        |      |       |        |       |       |    |   |     |     |    |
|                          | A   |        | -    |          |        | -        |        |      |       |        |       |       |    |   |     |     |    |
|                          | В   | PYVA   |      |          |        |          | citati |      |       | ange   | over  |       |    |   |     |     |    |
|                          | С   | OSPA   |      |          | ·····  |          | hange  |      |       |        |       |       |    |   |     |     |    |
|                          | D   | ATA    |      |          |        |          | nent ( |      |       | S-C1   | -SPN  | 1)    |    |   |     |     |    |
|                          | E   | TLUA   |      |          |        |          | e incr |      |       |        |       |       |    |   |     |     |    |
|                          | F   | ORF2   | 2nd  | orien    | tation | com      | pletec |      |       |        |       |       |    |   |     |     |    |

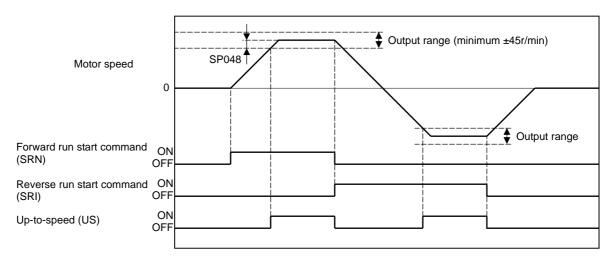
## bit0. Current detection (CD)

This signal turns ON when the start signal (forward run, reverse run, orientation) is ON, and the current flowing to the motor is approx. 110% or more of the rating. (The motor output (current) guarantee value is 120% of the rating.)

# bit1. Speed detection 1 (SD1)

This signal turns ON when the motor speed drops below the value set with parameter SP020 (SDTS). The ON to OFF hysteresis width is set with parameter SP047 (SDTR). This signal turns ON when the motor's speed is less than the set speed regardless of the input signal state.




Speed detection 1 (SD1) sequence

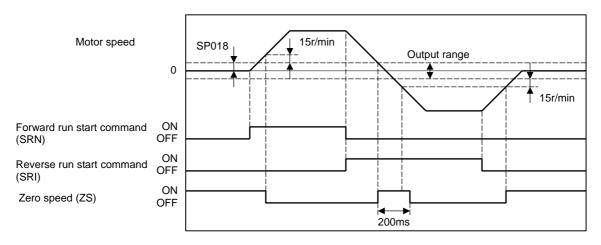
| No.   | Abbr. | Parameter name                 | Details                                                                                                                 | Setting<br>range      | Standard |
|-------|-------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| SP020 | SDTS* | Speed detection set value      | Set the motor speed for which speed detection output is performed.<br>Usually, the setting value is 10% of SP017 (TSP). | 0 to 32767<br>(r/min) | 600      |
| SP047 | SDTR* | Speed detection<br>reset value | Set the reset hysteresis width for a speed detection set value defined in SP020 (SDTS).                                 | 0 to 1000<br>(r/min)  | 30       |

#### **Related spindle parameters**

# bit2. Up-to-speed (US)

This signal turns ON when the start command signal (forward run, reverse run) is ON, and the motor speed has reached a range of  $\pm 15\%$  (standard value) of the speed command value. This signal turns OFF when the start command signal turns OFF. The up-to-speed output range can be set with the parameter SP048 (SUT). Even though the setting value is small, the output will be  $\pm 45r/min$ . Pay attention when speed command value is small.




Up-to-speed (US) sequence

Related spindle parameter

| No.   | Abbr. | Parameter name | Details                                                                                                | Setting<br>range | Standard |
|-------|-------|----------------|--------------------------------------------------------------------------------------------------------|------------------|----------|
| SP048 | SUT*  |                | Set the speed deviation rate with respect to the commanded speed for output of the speed reach signal. | 0 to 100<br>(%)  | 15       |

# bit3. Zero speed (ZS)

Regardless of the input signal state, this signal turns ON when the motor speed drops below the value set with parameter SP018 (ZSP). Once this signal turns ON, it will not turn OFF for at least 200ms. When switching ON to OFF, hysteresis width is 15r/min. Note that if the parameter SP018 (ZSP) setting value is too small (approx. 10r/min or less), this signal may not be output even if the motor is stopped.



#### Zero speed (ZS) sequence

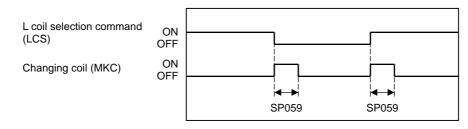
#### Related spindle parameter

| No.   | Abbr. | Parameter name   | Details                                                          | Setting<br>range     | Standard |
|-------|-------|------------------|------------------------------------------------------------------|----------------------|----------|
| SP018 | ZSP*  | Motor zero speed | Set the motor speed for which zero-speed output is<br>performed. | 1 to 1000<br>(r/min) | 50       |

# bit4. Orientation complete (ORCA)

This signal turns ON when the orientation command is input, and the spindle position is reached the set range (within the in-position range) in respect to the target stop position. This signal turns OFF when orientation is completed and the spindle position deviates from the in-position range, but it will turn ON again when the spindle position enters the in-position range again. If the orientation command is turned OFF, this signal will turn OFF even if the spindle position is within the in-position range. The in-position range can be set with parameter SP004 (OINP).

#### Related spindle parameter


| No.   | Abbr. | Parameter name | Details                                                                              |                        | Standard |
|-------|-------|----------------|--------------------------------------------------------------------------------------|------------------------|----------|
| SP004 |       |                | Set the position error range in which an orientation<br>completion signal is output. | 1 to 2880<br>(1/16deg) | 16       |

## bit5. Synchronous speed match (SYSA)

This signal turns ON during spindle synchronous control, when the mode can be changed from the speed operation mode to the spindle synchronous operation mode.

## bit6. Changing coil (MKC)

When using the coil changeover motor, this signal turns ON for the time set in parameter SP059 (MKT) when the L coil selection command is turned ON or OFF. The coil is not changed when the orientation command is input, so this signal will not turn ON even if the L coil selection signal is turned ON or OFF. During orientation control, this signal will turn ON when the orientation command turns OFF and the coil changeover operation takes place. Do not turn the start signal ON or OFF while this signal is ON.



# Changing coil (MKC) sequence

#### **Related spindle parameter**

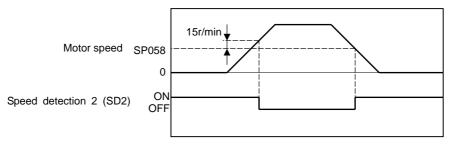
| No.   | Abbr. | Parameter name      | Details                                                                                                                                                                          | Setting<br>range    | Standard |
|-------|-------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|
| SP059 |       | base shut-off timer | Set the base shut-off time for contactor switching at coil<br>changeover.<br>Note that the contactor may be damaged with burning if the<br>value of this parameter is too small. | 50 to 10000<br>(ms) | 150      |

# bit7. Index positioning completed (WRCF)

This signal turns ON during indexing operation when the spindle position reaches the in-position range in respect to the target stop position. Once this signal turns ON it will remain ON regardless of the spindle position until the orientation signal turns OFF or the next indexing operation signal is input.

This signal will turn OFF for the time set with parameter SP103 (FTM) when the indexing operation signal is input even if the current stop point and the next indexing position are in the in-position range.

#### Related spindle parameter


| No.   | Abbr. | Parameter name      | Details                                                                                                                                                                            | Setting<br>range   | Standard |
|-------|-------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|
| SP103 |       | completion OFF time | Set the time for forcedly turn OFF the index positioning completion signal (different from the orientation completion signal) after the leading edge of the indexing start signal. | 0 to 10000<br>(ms) | 200      |

# bit8. In 1-drive unit 2-motor changeover (MTC)

This signal turns ON during motor changeover with 1-drive unit 2-motor specification.

# bit9. Speed detection 2 (SD2)

This signal turns ON when the motor speed drops below the value set with parameter SP058 (SDT2). The ON to OFF hysteresis width is fixed at 15r/min. This signal turns ON when the motor speed drops below the set speed regardless of the input signal state.



#### Speed detection 2 (SD2) sequence

#### Related spindle parameter

| No.   | Abbr. | Parameter name                  | Details                                                     | Setting<br>range      | Standard |
|-------|-------|---------------------------------|-------------------------------------------------------------|-----------------------|----------|
| SP058 | -     | Speed detection setting value 2 | Set the motor speed for carry out speed detection 2 output. | 0 to 32767<br>(r/min) | 0        |

# bitB. In minimum weak excitation value changeover (PYDA)

This signal turns ON in response to minimum excitation changeover request (control input 4/bitB).

## bitC. Orientation speed changeover state (OSPA)

This signal turns ON in response to orientation speed (control input 4/bitB).

# bitD. In automatic adjustment (ATA)

This signal turns ON while the spindle is starting during Z-phase automatic adjustment of the PLG with MDS-C1-SPM.

# bitE. Spindle holding force increased (TLUA)

This signal turns ON while the spindle holding force up (TLUP) signal is input.

# bitF. 2nd orientation complete (ORF2)

When orientation complete advance is valid, this signal turns ON as in-position width determined by required SP004 is reached.



Sequence of 2nd orientation completed (ORF2)

#### **Related spindle parameters**

| No.   | Abbr.  | Parameter name                        | Details Setting range                                                                                                                                                                                        | Standard    |     |                                                 |          |
|-------|--------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-------------------------------------------------|----------|
| SP004 | OINP   | Orientation<br>in-position width      | Set the position error range in which an orientation completion1 to 2880signal is output.(1/16deg)                                                                                                           | 16          |     |                                                 |          |
| SP101 | DINP*  | Orientation advance in-position width | When using the orientation completed advance function, set the<br>in-position width that is larger than the normal in-position width<br>defined in SP004 (OINP).1 to 2880<br>(1/16deg)                       | 16          |     |                                                 |          |
| SP097 | SPECO* | Orientation<br>specification          | F     E     D     C     B     A     9     8     7     6     5     4     3     2     1       ostp     orze     ksft     gchg     ips2     zdir     vg8x     mdir     fdir     oscl     pyfx     dmin     odi2 | 0<br>2 odi1 |     |                                                 |          |
|       |        |                                       |                                                                                                                                                                                                              |             | bit | bit Meaning when set to 0 Meaning when set to 1 | Standard |
|       |        |                                       | 2 dmin Orientation completion Orientation completion advance valid                                                                                                                                           | 0           |     |                                                 |          |
|       |        |                                       | A ips2 2nd orientation completion 2nd orientation completion valid                                                                                                                                           | 0           |     |                                                 |          |
|       |        |                                       |                                                                                                                                                                                                              |             |     |                                                 |          |

# 5-3 Adjustment procedures for each control

# 5-3-1 Basic adjustments

## (1) Items to check during trial operation

- [1] Directly couple the motor and machine, and check the control status during machine run-in.
- [2] Check that the command speed and actual speed match. If the speeds do not match, check spindle parameters again.
  - (Especially check SP017, SP034, SP040 and SP257 to SP384.)
- [3] Check the NC parameters Slimit1 to 4, Smax 1 to 4, and Smini.
- [4] Is the rotation smooth?
- [5] Is there any abnormal noise?
- [6] Are there any abnormal odors?
- [7] Has the bearing temperature risen abnormally?

## (2) Adjusting the spindle rotation speed

The rotation speed is received as digital signals from the NC, and thus does not need to be adjusted. If the spindle rotation speed does not match the commanded value due to a dimensional error, such as the pulley diameter, adjust the parameters with the following method.

[1] Set the spindle specification parameter slimit.

Slimit = SP017  $\times$  (deceleration rate between motor and spindle)

[2] Set the S command to half of the maximum spindle rotation speed, and then measure the spindle rotation speed.

If the speeds do not match, change the Slimit value in small increments until the speed matches.

- [3] Set the S command to the maximum spindle rotation speed, and check whether the spindle rotation speed matches.
- [4] In machines involving gear changeover, etc., change the gears, and then adjust with steps [1] to [3] above.

# 5-3-2 Adjusting the acceleration/deceleration operation

# (1) Calculating the theoretical acceleration/deceleration time

Each theoretical acceleration/deceleration time is calculated for each output range based on the spindle motor output characteristics as shown on the right. Note that the load torque (friction torque, etc.) is 0 in this calculation expression, so the acceleration/deceleration time can be known as a rough guide, but this calculation result differs from the acceleration/deceleration time of the actual machine.

# (a) Maximum motor output during acceleration/deceleration: Po

During acceleration/deceleration operation, the motor can output at 120% of the short-time rating. Thus, the motor output Po in the constant output range during acceleration/deceleration follows the expression below.

Po = (Short-time rated output)  $\times$  1.2 [W]

# (b) Total load inertia: Jall

The inertia of the total load which is accelerated and decelerated follows the expression below.

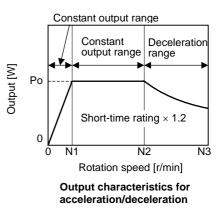
 $J_{all} = (Motor inertia) + (motor shaft conversion load inertia) [kg•m<sup>2</sup>] (Caution 1)$ 

The acceleration/deceleration time until the rotation speed "N" to be required is calculated for each motor output range as shown below, using the values obtained in (a) and (b).

# (c) Acceleration/deceleration time for constant torque range: t1…0 to N [r/min] (0≤N≤N1) (For N>N1, apply N=N1 and also calculate t2 or t3.)

t1 = 
$$\frac{1.097 \times 10^{-2} \times J_{all} \times N1 \times N}{Po}$$
 [s] (Caution 1)

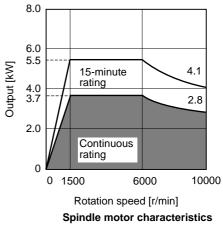
# (d) Acceleration/deceleration time for constant output range: t2...N1 to N [r/min] (N1<N≤N2) (For N>N2, apply N=N2 and also calculate t3.)


$$t2 = \frac{1.097 \times 10^{-2} \times J_{all} \times (N^2 - N1^2)}{2 \times Po}$$
 [s] (Caution 1)

(e) Acceleration/deceleration time in deceleration output range: t3…N2 to N [r/min] (N2<N≤N3)

t3 = 
$$\frac{1.097 \times 10^{-2} \times J_{all} \times (N^3 - N2^3)}{3 \times Po \times N2}$$
 [s] (Caution 1)

Based on the above expressions, the acceleration/deceleration time: t from 0 to N3 [r/min] is: t = t1 + t2 + t3 [s] (Caution 2)


|  | <ol> <li>Note that the inertia (J) is a quarter of "GD<sup>2</sup>".</li> <li>Ex.) When "GD<sup>2</sup>" is 0.2 [kg·m<sup>2</sup>], the inertia is "0.2 ÷ 4 = 0.05 [kg·m<sup>2</sup>]".</li> <li>If the AC input power voltage to the power supply is low, or if the input power impedance is high, the acceleration/deceleration time may be long. (Especially, the acceleration/deceleration time of the deceleration output range may be long.)</li> </ol> |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



# [Calculation example]

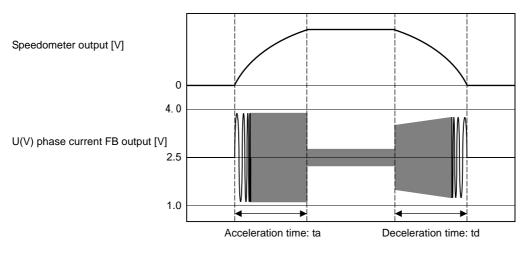
Calculate the acceleration/deceleration time from 0 to 10000[r/min] for an spindle motor having the output characteristics shown on the right when the motor inertia is 0.059 [kg·m<sup>2</sup>], and when the motor shaft conversion load inertia is 0.2 [kg•m<sup>2</sup>].

- Po = (Short-time rated output) x 1.2 = 5500 x 1.2 = 6600 [W]
- J<sub>all</sub> = (Motor inertia) + (load inertia) = 0.0148 + 0.05 =0.0648 [kg⋅m²]



$$t1 = \frac{1.097 \times 10^{-2} \times J_{all} \times N1^{2}}{Po} = \frac{1.097 \times 10^{-2} \times 0.0648 \times 1500^{2}}{6600} = 0.242 \text{ [s]}$$

$$t2 = \frac{1.097 \times 10^{-2} \times J_{all} \times (N2^{2} - N1^{2})}{2 \times Po} = \frac{1.097 \times 10^{-2} \times 0.0648 \times (6000^{2} - 1500^{2})}{2 \times 6600} = 1.818 \text{ [s]}$$


$$t3 = \frac{1.097 \times 10^{-2} \times J_{all} \times (N3^{3} - N2^{3})}{3 \times Po \times N2} = \frac{1.097 \times 10^{-2} \times 0.0648 \times (10000^{3} - 6000^{3})}{3 \times 6600 \times 6000} = 4.691 \text{ [s]}$$

Thus,

t = t1 + t2 + t3 = 0.242 + 1.818 + 4.691 = 6.751 [s]

## (2) Measuring the acceleration/deceleration waveforms

Measure the acceleration/deceleration waveforms by using the spindle drive unit's D/A output function and check if theoretical acceleration/deceleration time is within  $\pm 15\%$ . Refer to "5-1 D/A output specifications for spindle drive unit" for details on D/A output functions. Phase current FB output can be measured by the waveform for either U or V phase FB.



Acceleration/deceleration waveforms of spindle motor

When acceleration/deceleration time does not match the theoretical value (an error rate 15% or more), check the following items.

- [1] There may be an error in calculating load inertia for the motor axis conversion used when calculating the theoretical acceleration/deceleration time. Check the load inertia again.
- [2] When acceleration time is long and deceleration time is short, friction torque is thought to be large. Check load meter value at the maximum speed (spindle monitor screen). If the load is 10% or more, friction torque is thought to be relatively large. Mechanical friction, such as bearing friction or timing belt friction, is assumed to be large. Measure the acceleration/ deceleration time again following trial run.
- [3] Even if the problems above are not found, when acceleration/deceleration time does not match, there may be a possibility of using spindle motor and spindle drive unit that are not specified, or using wrong parameters. Check the spindle motor type and spindle drive unit type again, as well as the spindle parameter settings.

| POINT | <ol> <li>There are cases where acceleration/deceleration waveforms change depending<br/>on the spindle temperature. Check the waveforms when the spindle temperature<br/>is high (after continuous operation) and when it is low.</li> <li>Conduct "3-5 Initial adjustment of spindle PLG" beforehand.</li> </ol> |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# (3) Adjustment when the load inertia is large

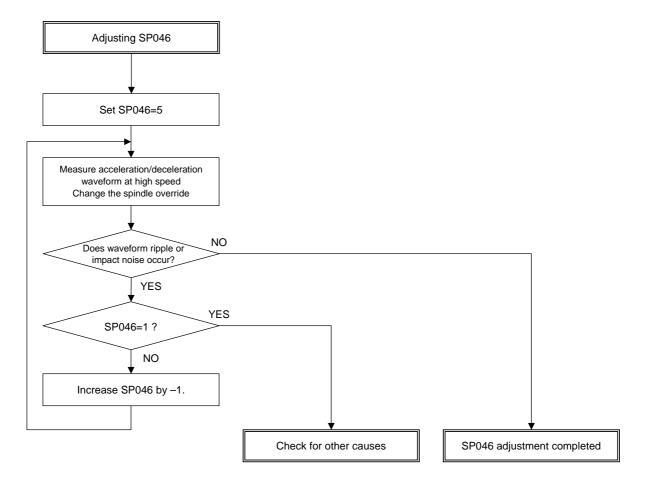
When the load inertia is large and acceleration time is 10s or more, excessive speed deviation alarm (ALM23) may occur because the time in which deviation between speed command and speed FB, which is the actual spindle motor rotation speed, exists is prolonged. In this case, increase speed cushion 1 (SP019). When the acceleration time is 10s or less, use the standard value 30 (300ms).

Alarm can be avoided by adjusting excessive speed deviation timer (SP055). However, in this case, alarm detection will be delayed during constant speed operation.

In order to improve current ripple waveforms during acceleration/deceleration, adjust by using speed command dual cushion explained later.

| No.   | Abbr. | Parameter name                  | Details                                                                                                                                                           | Setting<br>range     | Standard |
|-------|-------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| SP019 | CSN1* | Speed cushion 1                 | Set the time constant for a speed command from "0" to the maximum speed.<br>(This parameter is invalid during position loop control.)                             | 1 to 32767<br>(10ms) | 30       |
| SP055 | SETM* | Excessive speed deviation timer | Set the timer value until the excessive speed deviation alarm is output.<br>The value of this parameter should be longer than the acceleration/deceleration time. | 0 to 60<br>(s)       | 12       |

## (4) Adjustment when machine system vibration (noise) is generated


When machine components such as gears produce vibration and noise, a machine resonance suppressing filter (notch filter) can be set to eliminate the vibration. At the SP070 parameter, specify the frequency of the vibration to be eliminated. This filter is enabled during all positioning control modes, including speed control, orientation control, and synchronous tap control. If vibration is generated or increased by setting this filter at low speeds, set a machine resonance suppressing filter activation speed (SP076) to prevent the vibration.

When noise from the spindle motor seems excessive, a low-pass filter (SP213) can be set to reduce the noise level. The low-pass filter frequency should be set as high as possible, as a low frequency setting can impair spindle control.

| No.   | Abbr. | Parameter name                                             | Details                                                                                                                                                                                                                                                                                        | Setting<br>range      | Standard |
|-------|-------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| SP070 | FHz   | Machine resonance<br>suppression filter<br>frequency       | When machine vibration occurs in speed and position control,<br>set the frequency of the required vibration suppression.<br>Note that a value of 100Hz or more is set.<br>Set to "0" when not used.                                                                                            | 0 to 3000<br>(Hz)     | 0        |
| SP076 | FONS  | Machine resonance<br>suppression filter<br>operation speed | When the vibration increases in motor stop (ex. in orientation<br>stop) when the machine vibration suppression filter is operated<br>by SP070, operate the machine vibration suppression filter at a<br>speed of this parameter or more.<br>When set to "0", this is validated for all speeds. | 0 to 32767<br>(r/min) | 0        |
| SP213 | LPF   | Low path filter                                            | <for mds-c1-sp="" sph="" spm=""><br/>Set to reduce the noise generated from the spindle motor<br/>Set the band of the low path filter</for>                                                                                                                                                    | 0 to 2250<br>(rad/s)  | 0        |
|       |       |                                                            | <for mds-c1-spx="" sphx=""><br/>Not used. Set to "0".</for>                                                                                                                                                                                                                                    | 0                     | 0        |

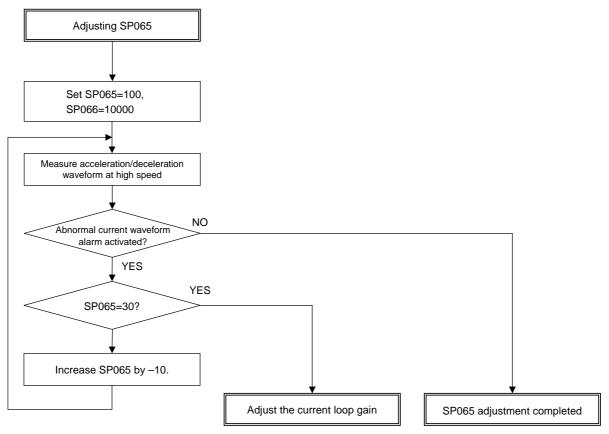
## (5) Adjusting speed command dual-cushion

When a deceleration start causes rippling in the phase current FB waveform, or when a spindle override change causes gear impact noise, the speed command dual-cushion (SP046) setting should be adjusted. The smaller the SP046 setting value, the longer the acceleration/deceleration time. Therefore, set SP046 value as high as possible, while observing the phase current FB waveform, or while listening to the impact noise. (Setting upper limit = 5)



| No.   | Abbr. | Parameter name                | Parameter name Details Setting range                                                                                                                                                                                                                                                                                                                  |           | Standard |
|-------|-------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| SP046 | CSN2* | Speed command<br>dual cushion | For an acceleration/deceleration time constant defined in<br>SP019 (CSN1), this parameter is used to provide smooth<br>movement only at the start of acceleration/deceleration.<br>As the value of this parameter is smaller, it moves smoother but<br>the acceleration/deceleration time becomes longer.<br>To make this parameter invalid, set "0". | 0 to 1000 | 0        |

# (6) Adjusting speed loop gain

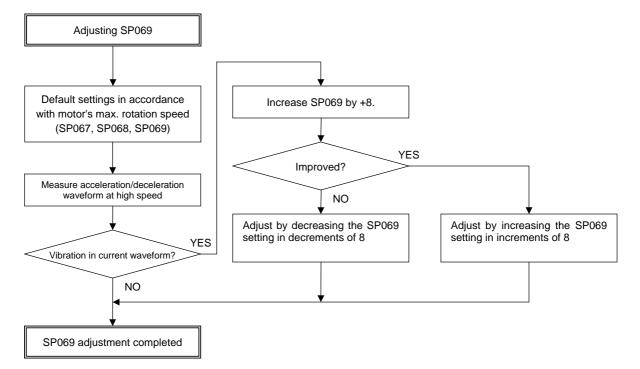

The speed loop gain adjustment is made to improve the high-speed range characteristics for speeds of 10,000r/min and higher. Use only the motor-specific standard settings for the basic parameters (SP022, SP023).

If the problems shown below occur during constant-speed operation at a speed of 10,000r/min or higher, adjust the target value of variable speed loop proportional gain (SP065) and the change starting speed of variable speed loop proportional gain (SP066) parameter settings.

1) A swell or spike appears in the current waveform

2) An overvoltage condition (alarm 32) occurs

If the maximum speed is 10,000 r/min or less, or if no improvement is seen after adjusting the speed loop gain, then adjust the current loop gain.




| No.   | Abbr.  | Parameter name                                                          | Details                                                                                                                                     | Setting<br>range      | Standard |
|-------|--------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| SP022 | VGNP1* | Speed loop gain<br>proportional term<br>under speed control             | Basically, use standard setting value set for each motor.                                                                                   | 0 to 1000             | 63       |
| SP023 |        | Speed loop gain<br>integral term under<br>speed control                 |                                                                                                                                             | 0 to 1000             | 60       |
| SP065 | VCGN1* | Target value of<br>variable speed loop<br>proportional gain             | Set the magnification of speed loop proportional gain with respect to SP022 (VGNP1) at the maximum motor speed defined in SP017 (TSP).      | 0 to 100<br>(%)       | 100      |
| SP066 |        | Change starting<br>speed of variable<br>speed loop<br>proportional gain | Set the speed when the<br>speed loop proportional<br>gain change starts.<br>Set 10,000 normally.<br>SP022 ×<br>(SP065/100)<br>0 SP066 SP017 | 0 to 32767<br>(r/min) | 0        |

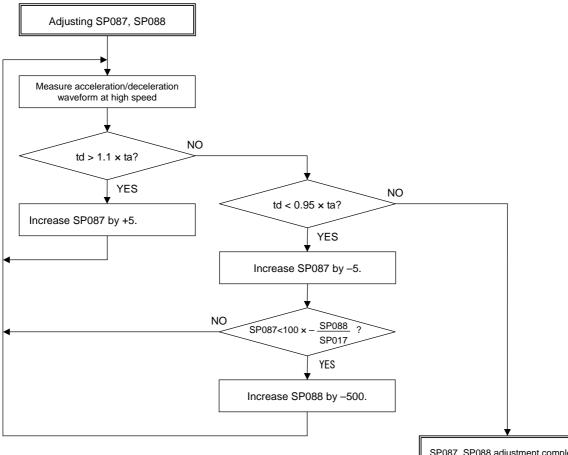
# (7) Adjusting current loop gain

Although the default setting value is usually appropriate, an adjustment may be required if slight vibration occurs at high spindle motor rotating. In such cases, adjust the target value of variable current loop gain (SP069) parameter setting while observing the current waveform in the high-speed range. Adjust until the output waveform to the spindle motor stabilizes.

Set the change starting/ending speed of variable current loop gain (SP067 and SP068) parameters in accordance with the motor's maximum rotation speed.



| No.   | Abbr.  | Parameter name                                            |                                                                                                                      |                                                       | Details                                                                                                         |          |                 | Setting<br>range          | Standard |
|-------|--------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|-----------------|---------------------------|----------|
| SP067 | VIGWA* | Change starting<br>speed of variable<br>current loop gain | Set the speed where                                                                                                  | 0 to 32767<br>(r/min)                                 | 0                                                                                                               |          |                 |                           |          |
| SP068 | VIGWB* | Change ending<br>speed of variable<br>current loop gain   | Set the speed where                                                                                                  | et the speed where the current loop gain change ends. |                                                                                                                 |          |                 |                           |          |
| SP069 | VIGN*  | Target value of<br>variable<br>current loop gain          | Set the magnificatio<br>and excitation comp<br>in SP068 (VIGWB).<br>When this paramete<br>SP069 × (1/16) fol<br>1-fo | onent) fo<br>er is set to                             | r a change of the second se | ge endin | g speed defined | 0 to 32767<br>(1/16-fold) | 0        |
|       |        |                                                           | SP017(TSP)                                                                                                           | S                                                     | etting valu                                                                                                     | ie       | 1               |                           |          |
|       |        |                                                           | Maximum moto                                                                                                         |                                                       | SP068                                                                                                           | SP069    |                 |                           |          |
|       |        |                                                           | speed                                                                                                                | (VIGWA)                                               | (VIGWB)                                                                                                         | (VIGN)   |                 |                           |          |
|       |        |                                                           | 0 to 6000                                                                                                            | 0                                                     | 0                                                                                                               | 0        |                 |                           |          |
|       |        |                                                           | 6001 to 8000                                                                                                         | 5000                                                  | 8000                                                                                                            | 45       |                 |                           |          |
|       | 1      |                                                           | 8001 or more                                                                                                         | 5000                                                  | 10000                                                                                                           | 64       |                 |                           |          |


## (8) Adjusting excitation rate

If the motor noise is excessive during constant-speed operation, adjust the variable excitation (SP056) value downward in decrements of 10 from the standard setting of 50 (setting lower limit = 25). The SP033/bit9 parameter setting is an effective way to reduce noise for high-speed operation only (it lowers the excitation rate for high-speed operation only).

| No.   | Abbr.  | Parameter name                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                |       |      |        |       | Deta | ils    |       |      |       |       |       |                 | etting<br>ange | I    | Stand | ard |
|-------|--------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------|-------|------|--------|-------|------|-------|-------|-------|-----------------|----------------|------|-------|-----|
| SP056 | PYVR   | Variable excitation<br>(min value) | Sel                                                                                                                                                                                                       | Set the minimum value of the variable excitation rate.       0 to 10         Select a smaller value when gear noise is too high.       (%)         arger value is more effective on impact response.       (%) |       |      |        |       |      |        |       |      |       |       | )     | 50              |                |      |       |     |
| SP033 | SFNC1* | Spindle function 1                 | <fo< td=""><td>or MI</td><td>DS-C</td><td>1-SP</td><td>/SPH/</td><td>/SPX</td><td>/SPH</td><td>Х&gt;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></fo<> | or MI                                                                                                                                                                                                          | DS-C  | 1-SP | /SPH/  | /SPX  | /SPH | Х>     |       |      |       |       |       |                 |                |      |       |     |
|       |        |                                    |                                                                                                                                                                                                           | F                                                                                                                                                                                                              | Е     | D    | С      | В     | А    | 9      | 8     | 7    | 6     | 5     | 4     | 3               | 2              | 1    | 0     |     |
|       |        |                                    |                                                                                                                                                                                                           | poff                                                                                                                                                                                                           | hzs   |      | ront   |       |      | pycal  | pychg | pyst | pyoff |       |       |                 | sftk           | dflt | 1a2m  |     |
|       |        |                                    |                                                                                                                                                                                                           | b                                                                                                                                                                                                              | oit   |      | Mean   | ing v | /hen | set to | 0     |      | Mea   | aning | whe   | n set           | to 1           |      | Stand | ard |
|       |        |                                    |                                                                                                                                                                                                           | 9                                                                                                                                                                                                              | pycal | (Cor | nventi | onal  | spec | ficati | ons)  | me   |       | valid | for m | ecele<br>ninimi | ratior<br>um   | ו    | 0     |     |
|       |        |                                    |                                                                                                                                                                                                           | 1                                                                                                                                                                                                              |       |      |        |       |      |        |       | •    |       |       |       |                 |                |      |       |     |

## (9) Adjusting deceleration time

When the deceleration time "td" is significantly different from the acceleration time "ta" (td < 0.95 × ta,  $1.1 \times 1a < td$ ) and no problem with the acceleration time, adjust the deceleration time by changing the target value of variable torque limit magnification at deceleration (SP087) setting. In cases, however, where the variable torque characteristic cannot be lowered to the SP087 level, adjust by changing the speed for starting change of variable torque limit magnification at deceleration (SP088) setting.



SP087, SP088 adjustment completed

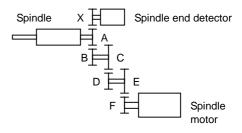
| No.   | Abbr. | Parameter name                                                                               | Details                                                                         | Setting<br>range      | Standard |
|-------|-------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|----------|
| SP087 | DIQM* | Target value of<br>variable torque limit<br>magnification at<br>deceleration                 | Set the minimum value of variable torque limit at deceleration.                 | 0 to 150<br>(%)       | 75       |
| SP088 | DIQN* | Speed for starting<br>change of variable<br>torque limit<br>magnification at<br>deceleration | Set the speed where the torque limit value at deceleration<br>starts to change. | 0 to 32767<br>(r/min) | 3000     |

# 5-3-3 Adjusting the orientation control

## (1) Confirming the default parameters

Set the default parameters for each detector used in orientation control.

#### (a) Motor PLG


Motor PLG orientation is possible only when the spindle and motor are coupled, or when they are coupled 1:1 with gears (timing belt). The SP025 (GRA1) to SP032 (GRB4) parameters can be set only to 1. The PLG with Z-phase must be mounted on the motor to be used.

#### (b) Spindle end detector

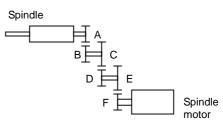
An accurate gear ratio (pulley ratio) is required from the motor shaft to the spindle end detector rotary axis.

Make sure that the correct number of gear teeth is set in SP025 (GRA1) to SP032 (GRB4).

SP025 to SP028=A  $\times$  C  $\times$  E SP029 to SP032=B  $\times$  D  $\times$  F



Spindle configuration when using spindle end detector


Set the gear ratio (A:X) between the spindle and spindle end detector in SP096 (EGAR).

| No.   | Abbr. | Parameter name     |               | D                                                                                                              | etai | ils           |                              |  | Setting<br>range | Standard |  |  |
|-------|-------|--------------------|---------------|----------------------------------------------------------------------------------------------------------------|------|---------------|------------------------------|--|------------------|----------|--|--|
| SP096 | EGAR* | Encoder gear ratio |               | Set the gear ratio between the spindle end and the detector end (except for the motor PLG) as indicated below. |      |               |                              |  |                  |          |  |  |
|       |       |                    | Setting value | Gear ratio<br>(deceleration)                                                                                   |      | Setting value | Gear ratio<br>(acceleration) |  |                  |          |  |  |
|       |       |                    | 0             | 1:1                                                                                                            |      | -1            | 1:2                          |  |                  |          |  |  |
|       |       |                    | 1             | 1 : 1/2                                                                                                        |      | -2            | 1:4                          |  |                  |          |  |  |
|       |       |                    | 2             | 1 : 1/4                                                                                                        |      | -3            | 1:3                          |  |                  |          |  |  |
|       |       |                    | 3             | 1 : 1/8                                                                                                        |      |               |                              |  |                  |          |  |  |
|       |       |                    | 4             | 1 : 1/16                                                                                                       |      |               |                              |  |                  |          |  |  |
|       |       |                    |               |                                                                                                                | 4    |               |                              |  |                  |          |  |  |

## (c) Magnetic sensor

An accurate gear ratio (pulley ratio) is required from the motor shaft to the detector rotary axis. Make sure that the correct number of gear teeth is set in SP025 (GRA1) to SP032 (GRB1).

SP025 to SP028=A  $\times$  C  $\times$  E SP029 to SP032=B  $\times$  D  $\times$  F



The SP123 (MGD0) to SP125 (MGD2) parameters are set as shown below according to the magnetic sensor type.

Spindle configuration when using magnetic sensor

| Туре                 | Magnetic sensor type                 |              | Parameter setting | 3            |
|----------------------|--------------------------------------|--------------|-------------------|--------------|
| туре                 | Magnetic sensor type                 | SP123 (MGD0) | SP124 (MGD1)      | SP125 (MGD2) |
| Standard             | MAGNETIC SENSOR<br>BKO-C1810H01-3    | 542          | 768               | 384          |
| High-speed standard  | MAGNETIC SENSOR<br>BKO-C1730H01.2.6  | 042          | 100               | 004          |
| High-speed compact   | MAGNETIC SENSOR<br>BKO-C1730H01.2.9  |              |                   |              |
|                      | MAGNETIC SENSOR<br>BKO-C1730H01.2.41 |              |                   |              |
| High-speed ring type | MAGNETIC SENSOR<br>BKO-C1730H01.2.42 | 500          | 440               | 220          |
| nigh-speed ning type | MAGNETIC SENSOR<br>BKO-C1730H01.2.43 |              |                   |              |
|                      | MAGNETIC SENSOR<br>BKO-C1730H01.2.44 |              |                   |              |



When using the magnetic sensor, orientation control cannot be carried out with a machine having a gear ratio between the spindle motor and spindle exceeding 1:31.

| The default orientation control parameters for each detector are as shown below. Confirm that the | ese |
|---------------------------------------------------------------------------------------------------|-----|
| parameters are correctly set according to the machine specifications.                             |     |

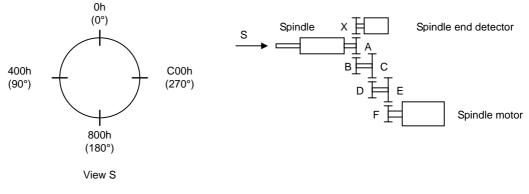
| No.   | Abbr.  | Parameter name                                                          |               | meter settings for d        |                                |
|-------|--------|-------------------------------------------------------------------------|---------------|-----------------------------|--------------------------------|
| NO.   | ADDr.  | Farameter name                                                          | (a) Motor PLG | (b) Spindle end<br>detector | (c) Magnetic<br>sensor         |
| SP001 | PGM    | Magnetic sensor and motor PLG orientation position loop gain            | 100           | -                           | 100                            |
| SP002 | PGE    | Encoder orientation position loop gain                                  | -             | 100                         | -                              |
| SP004 | OINP   | Orientation in-position width                                           | 16            | 16                          | 16                             |
| SP005 | OSP*   | Orientation mode speed clamp value                                      | 0             | 0                           | 0                              |
| SP006 | CSP    | Orientation mode deceleration rate                                      | 20            | 20                          | 20                             |
| SP007 | OPST   | In-position shift amount for orientation                                | 0             | 0                           | 0                              |
|       |        |                                                                         |               |                             |                                |
| SP025 | GRA1*  | Spindle gear teeth count 1                                              | 1             | *                           | *                              |
| SP026 | GRA2*  | Spindle gear teeth count 2                                              | 1             | *                           | *                              |
| SP027 | GRA3*  | Spindle gear teeth count 3                                              | 1             | *                           | *                              |
| SP028 |        | Spindle gear teeth count 4                                              | 1             | *                           | *                              |
| SP029 |        | Motor shaft gear teeth count 1                                          | 1             | *                           | *                              |
| SP030 |        | Motor shaft gear teeth count 2                                          | 1             | *                           | *                              |
| SP031 |        | Motor shaft gear teeth count 3                                          | 1             | *                           | *                              |
| SP032 |        | Motor shaft gear teeth count 4                                          | 1             | *                           | *                              |
|       |        |                                                                         |               |                             |                                |
| SP037 | SFNC5* | Spindle function 5                                                      | 0004          | 0001                        | 0002                           |
| SP096 | EGAR*  | Encoder gear ratio                                                      | -             | *                           | -                              |
| SP097 |        | Orientation specification                                               | 0000          | 0000                        | 0000                           |
| SP098 | VGOP*  | Speed loop gain proportional term in orientation mode                   | 63            | 63                          | 63                             |
| SP099 | VGOI*  | Speed loop gain integral term in orientation mode                       | 60            | 60                          | 60                             |
| SP100 | VGOD*  | Speed loop gain delay advance term in orientation mode                  | 15            | 15                          | 15                             |
| SP101 | DINP*  | Orientation advance in-position width                                   | 16            | 16                          | 16                             |
| SP102 |        | Excessive error value in orientation mode                               | 32767         | 32767                       | 32767                          |
| SP103 | FTM*   | Index positioning completion OFF time timer                             | 200           | 200                         | 200                            |
| SP104 | TLOR*  | Torque limit value after orientation completed                          | 100           | 100                         | 100                            |
| SP105 | IQGO*  | Current loop gain magnification 1 in orientation mode                   | 100           | 100                         | 100                            |
| SP106 | IDGO*  | Current loop gain magnification 2 in orientation mode                   | 100           | 100                         | 100                            |
| SP107 | CSP2   | Deceleration rate 2 in orientation mode                                 | 0             | 0                           | 0                              |
| SP108 | CSP3   | Deceleration rate 3 in orientation mode                                 | 0             | 0                           | 0                              |
| SP109 | CSP4   | Deceleration rate 4 in orientation mode                                 | 0             | 0                           | 0                              |
|       |        |                                                                         |               |                             |                                |
| SP114 | OPER   | Orientation pulse miss check value                                      | 0             | 0                           | 0                              |
| SP115 | OSP2   | Orientation control speed clamp value 2                                 | 0             | 0                           | 0                              |
| SP116 | OPYVR  | Minimum excitation value after changeover (2nd minimum excitation rate) | 0             | 0                           | 0                              |
| SP117 | ORUT   | Fixed control constant                                                  | 0             | 0                           | 0                              |
| SP118 | ORCT   | Orientation control number of retry times                               | 0             | 0                           | 0                              |
| SP119 | MPGH   | Orientation control position loop gain H coil magnification             | 0             | 0                           | 0                              |
| SP120 | MPGL   | Orientation control position loop gain L coil magnification             | 0             | 0                           | 0                              |
| SP121 | MPCSH  | Orientation deceleration rate H coil magnification                      | 0             | 0                           | 0                              |
| SP122 |        | Orientation deceleration rate L coil magnification                      | 0             | 0                           | 0                              |
| SP123 |        | Magnetic sensor output peak value                                       | -             | -                           | Standard: 54<br>Small type: 50 |
| SP124 | MGD1   | Magnetic sensor linear zone width                                       | -             | -                           | Standard: 76<br>Small type: 4  |
| SP125 | MGD2   | Magnetic sensor changeover point                                        | -             | -                           | Standard: 38<br>Small type: 2  |

(Note 1) \*: Set according to machine specifications, -: Setting irrelevant
 (Note 2) Parameters with an asterisk in the Abbrev. column (such as OSP\*) are validated when the NC power is turned ON again.

|       |       |                                                                               | Default para  | ameter settings for de | tector in use          |
|-------|-------|-------------------------------------------------------------------------------|---------------|------------------------|------------------------|
| No.   | Abbr. | Parameter name                                                                | (a) Motor PLG | (b) Spindle detector   | (c) Magnetic<br>sensor |
| SP126 | MPGM  | Orientation position loop gain M coil magnification                           | 0             | 0                      | 0                      |
| SP127 | MPCSM | Orientation deceleration rate M coil magnification                            | 0             | 0                      | 0                      |
| SP128 | OXKPM | After orientation completion,<br>Position loop gain magnification<br>(M coil) | 0             | 0                      | 0                      |
|       |       |                                                                               | -             |                        |                        |
| SP225 | OXKPH | Position loop gain magnification after orientation<br>completed (H coil)      | 0             | 0                      | 0                      |
| SP226 | OXKPL | Position loop gain magnification after orientation<br>completed (L coil)      | 0             | 0                      | 0                      |
| SP227 | OXVKP | Speed loop proportional gain magnification after<br>orientation completed     | 0             | 0                      | 0                      |
| SP228 | ΟΧΥΚΙ | Speed loop cumulative gain magnification after<br>orientation completed       | 0             | 0                      | 0                      |

(Note 1) \*: Set according to machine specifications, -: Setting irrelevant
 (Note 2) Parameters with an asterisk in the Abbrev. column (such as OSP\*) are validated when the NC power is turned ON again.

## (2) Adjusting the orientation deceleration control


## [1] Polarity setting of sensor

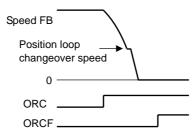
Input the orientation command (ORC) when the machine is in the normal state. Confirm that the operation stops at one point and the orientation complete signal (ORCF) turns ON even when the operation is unstable. If the excessive error alarm (alarm 52) occurs, or if the operation does not stop and repeats forward/reverse run at a low-speed when using the magnetic sensor orientation specifications, change the value for SP097/bit5 or bit6. If the excessive error alarm occurs even after changing this value, carry out step [3].

| No.   | Abbr.  | Parameter name |    |        |         |         |       |         |         | Detai | ls   |         |         |         |        |      |      |        |
|-------|--------|----------------|----|--------|---------|---------|-------|---------|---------|-------|------|---------|---------|---------|--------|------|------|--------|
| SP097 | SPECO* | Orientation    |    |        |         |         |       |         |         |       |      |         |         |         |        |      |      |        |
|       |        | specification  | F  | :   E  | :   D   | C       | В     | A       | 9       | 8     | 7    | 6       | 5       | 4       | 3      | 2    | 1    | 0      |
|       |        |                | os | tp orz | ze ksft | gchg    |       | ips2    | zdir    |       | vg8x | mdir    | fdir    | Oscl    | pyfx   | dmin | odi2 | odi1   |
|       |        |                |    | bit    |         | Mean    | ing w | hen se  | et to 0 |       |      | Mea     | aning   | when    | set to | 1    | St   | andard |
|       |        |                | 5  | fdir   | Spind   | le end  | deteo | tor po  | larity: | +     | Spin | dle er  | nd dete | ector p | olarit | y: – |      | 0      |
|       |        |                | 6  | mdir   | Magn    | etic se | nsor  | olarity | /: +    |       | Mag  | netic s | senso   | r polar | ity: – |      |      | 0      |
|       |        |                |    |        |         |         |       |         |         |       |      |         |         |         |        |      |      |        |

## [2] Adjustment of orientation stop position

Next, adjust the in-position shift amount for orientation control: SP007 (OPST) so that the axis stops at the target stop point. If the stop position command data is input from the spindle end detector, or from an external source during motor PLG orientation, the operation will stop according to the given data as shown in the drawing below regardless of the detector's mounting direction. The 0° position shown below is the position shifted by SP007 (OPST).



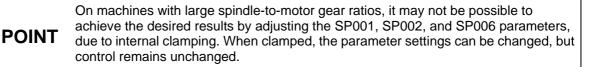

#### Orientation stop position

**(Note)** The external stop position command data is read in at the rising edge of the orientation start, so always change the value before inputting the orientation start command. Any changes to the value will be invalid if made after orientation has started.

| No.   | Abbr. | Parameter name                                 | Details                                                                                                                                                                                                                            | Setting<br>range                    | Standard |
|-------|-------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------|
| SP007 |       | In-position shift<br>amount for<br>orientation | <ul> <li>Set the stop position for orientation.</li> <li>(1) Motor PLG, spindle end detector:<br/>Set the value by dividing 360° by 4096.</li> <li>(2) Magnetic sensor:<br/>Divide -5° to +5° by 1024 and put 0° for 0.</li> </ul> | (1) 0 to 4095<br>(2) -512 to<br>512 | 0        |

# [3] Adjustment of position loop gain deceleration rate

Adjust the orientation time and vibration. Refer to the following table and adjust the parameters according to the apparent state. When using the motor PLG and magnetic sensor, adjust the position loop gain with SP001 (PGM). When using the spindle end detector, adjust SP002 (PGE). Adjust SP006 (CSP) after adjusting SP001 and PS002. When performing coil change over, each coil can be adjusted individually. (Refer to the next page.)




#### Adjusting the orientation control

| State                                  | Paramete                   | er adjustment                   |
|----------------------------------------|----------------------------|---------------------------------|
| oute                                   | SP001/SP002                | SP006                           |
| The operation overshoots when stopping | Decrease the setting value | Decrease the setting value      |
| The orientation time is long           | Increase the setting value | Increase the setting value      |
| Hunting occurs when stopping           | Decrease the setting value | Do not change the setting value |
| An excessive error alarm occurs        | Decrease the setting value | Decrease the setting value      |

To adjust the shortest orientation time for each gear, adjust deceleration rate for each gear by SP107 (CSP2) to SP109 (CSP4) in the same manner. If an excessive error alarm occurs when the gear ratio is 1:10 or more, and the state is not improved with the above adjustments, adjust the speed clamp value (SP005) as described later.

| No.   | Abbr. | Parameter name                                                     | Details                                                                                                                                                                                                                                      | Setting range           | Standard |
|-------|-------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|
| SP001 | PGM   | Magnetic sensor,<br>motor PLG<br>orientation position<br>loop gain | The orientation time will be shorter when the value is increased,<br>and the servo rigidity will increase. On the other hand, the<br>vibration will increase, and the machine will sway easily.                                              | 0 to1000<br>(0.1rad/s)  | 100      |
| SP002 | PGE   | Encoder orientation<br>position loop gain                          | <for mds-c1-sp="" sph="" spm=""><br/>The orientation time will be shorter when the value is increased,<br/>and the servo rigidity will increase. On the other hand, the<br/>vibration will increase, and the machine will sway easily.</for> | 0 to 1000<br>(0.1rad/s) | 100      |
|       |       |                                                                    | <for mds-c1-spx="" sphx=""><br/>Set the position loop gain for spindle end PLG orientation.</for>                                                                                                                                            |                         |          |
| SP006 | CSP   | Orientation mode deceleration rate                                 | As the set value is larger, the orientation time becomes shorter.<br>However, the machine becomes likely to overshoot.                                                                                                                       | 1 to 1000               | 20       |
| SP107 | CSP2  | Deceleration rate 2<br>in orientation control<br>mode              | Set the deceleration rate in orientation mode corresponding to<br>the gear 001.<br>When this parameter is set to "0", same as SP006 (CSP).                                                                                                   | 0 to 1000               | 0        |
| SP108 | CSP3  | Deceleration rate 3<br>in orientation control<br>mode              | Set the deceleration rate in orientation mode corresponding to<br>the gear 010.<br>When this parameter is set to "0", same as SP006 (CSP).                                                                                                   | 0 to 1000               | 0        |
| SP109 | CSP4  | Deceleration rate 4<br>in orientation control<br>mode              | Set the deceleration rate in orientation mode corresponding to the gear 011.<br>When this parameter is set to "0", same as SP006 (CSP).                                                                                                      | 0 to 1000               | 0        |



[4] Position loop gain and deceleration rate adjustment at coil changeovers

When using a coil changeover motor, the position loop gain and deceleration rate can be set for each coil.

Coil-specific orientation control position loop gain

Compensation magnification values are set for each coil by the SP119, SP120 and SP126 settings, relative to each coil's SP001 or SP002 position loop gain reference value. If a "0" is set, the SP001 (SP002) setting is adopted.

Effective position loop gain (H-coil) = SP001 (SP002) ×  $\frac{SP119}{256}$ 

Effective position loop gain (L-coil) = SP001 (SP002) ×  $\frac{SP120}{256}$ 

#### <<Only for MDS-C1-SPM>>

Effective position loop gain (M-coil) = SP001 (SP002) ×  $\frac{SP126}{256}$ 

| No.   | Abbr. | Parameter name                                                    | Details                                                                                                                    | Setting range             | Standard |
|-------|-------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| SP119 | -     | Orientation control<br>position loop gain H<br>coil magnification | Set the compensation magnification of the orientation position loop gain for the H coil.                                   | 0 to 2560<br>(1/256-fold) | 0        |
| SP120 | -     | Orientation control<br>position loop gain L<br>coil magnification | Set the compensation magnification of the orientation position loop gain for the L coil.                                   | 0 to 2560<br>(1/256-fold) | 0        |
| SP126 |       | Orientation position<br>loop gain M coil<br>magnification         | <for mds-c1-spm=""><br/>Set the compensation magnification of the orientation position<br/>loop gain for the M coil.</for> | 0 to 2560<br>(1/256-fold) | 0        |

## • Coil-specific orientation control deceleration rate

Compensation magnification values are specified for each coil by the SP121, SP122 and SP127 settings, relative to each coil's SP006 deceleration rate reference value. If a "0" is set, the SP006 setting is adopted.

Effective deceleration rate (H coil) = SP006 ×  $\frac{SP121}{256}$ 

Effective deceleration rate (L coil) = SP006 ×  $\frac{SP122}{256}$ 

#### <<Only for MDS-C1-SPM>>

Effective deceleration rate (M coil) = SP006 ×  $\frac{SP127}{256}$ 

| No.   | Abbr. | Parameter name                                           | Details                                                                                                                   | Setting<br>range          | Standard |
|-------|-------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| SP121 |       |                                                          | Set the compensation magnification of the orientation deceleration rate for the H coil.                                   | 0 to 2560<br>(1/256-fold) | 0        |
| SP122 |       | Orientation<br>deceleration rate L<br>coil magnification | Set the compensation magnification of the orientation deceleration rate for the L coil.                                   | 0 to 2560<br>(1/256-fold) | 0        |
| SP127 |       | Orientation<br>deceleration rate M<br>coil magnification | <for mds-c1-spm=""><br/>Set the compensation magnification of the orientation<br/>deceleration rate for the M coil.</for> | 0 to 2560<br>(1/256-fold) | 0        |

# [5] Speed clamp value adjustment

The orientation control mode's position loop control changing speed is determined automatically, based on the position loop gain, the deceleration rate, and the gear ratio, etc. A changing speed that is too high can be limited by the orientation mode changing speed limit value (SP005) setting. A change to the orientation motor speed clamp value 2 (SP115) occurs at control input 4/bitC.

| No.   | Abbr. | Parameter name                        | Details                                                                                                                                                                                                                  | Setting range         | Standard |
|-------|-------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| SP005 | OSP*  | Orientation mode<br>speed clamp value | Set the motor speed limit value to be used when the speed loop<br>is changed to the position loop in orientation mode.<br>When this parameter is set to "0", SP017 (TSP) becomes the<br>limit value.                     | 0 to 32767<br>(r/min) | 0        |
| SP115 |       |                                       | When the orientation clamp speed is changed by the control<br>input, this parameter setting will be used instead of SP005:<br>OSP.<br>Indexing speed clamp valid<br>This parameter is used when (SP097: SPEC0/bit4 = 1). | 0 to 32767<br>(r/min) | 0        |

For MDS-C1-SPH, SP037/bitD=1 setting can be used to set a clamp speed that is the same as the spindle end speed. At gear changes, too, the spindle speed is clamped at the same speed. The clamp speed parameter is the same as that used to set the motor speed.

| No.   | Abbr.  | Parameter name     | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Setting<br>range | Standard                       |
|-------|--------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|
| SP037 | SFNC5* | Spindle function 5 | F       E       D       C       B       A       9       8       7       6       5       4         splg       dplg       ospcl       noplg       noplg       nsno       nosg       1       1         bit       Meaning when set to 0       Meaning when set to 0 </td <td>3 2 1<br/>plgo ma</td> <td>I 0<br/>goenco<br/>Standard<br/>0</td> | 3 2 1<br>plgo ma | I 0<br>goenco<br>Standard<br>0 |

#### (3) Adjustments during orientation stop

#### [1] Position loop gain adjustment

Stop position accuracy can be improved by increasing the post-orientation servo rigidity. To increase the post-orientation position loop gain, enable a gain change by the SP097/bitC parameter setting, then set the desired position loop gain magnification. A separate position loop gain (other than that used during deceleration) can be set for operation that begins from the orientation completed ON status that follows orientation deceleration control.

The effective position loop gain values for each coil are calculated using the formulas shown below. If a magnification setting of "0" is set, a "256" setting is adopted.

Effective position loop gain (H coil) = SP001 (SP002) ×  $\frac{SP119}{256}$  ×  $\frac{SP225}{256}$ 

Effective position loop gain (L coil) = SP001 (SP002) ×  $\frac{SP120}{256}$  ×  $\frac{SP226}{256}$ 

#### <<Only for MDS-C1-SPM>>

Effective position loop gain (M coil) = SP001 (SP002) × 
$$\frac{SP126}{256}$$
 ×  $\frac{SP128}{256}$ 

| No.   | Abbr.  | Parameter name                                                                      | Details                                                                                                                                                                                                                                                                            | Setting<br>range          | Standard |
|-------|--------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| SP001 | PGM    | Magnetic sensor,<br>motor PLG<br>orientation position<br>loop gain                  | The orientation time will be shorter when the value is increased,<br>and the servo rigidity will increase. On the other hand, the<br>vibration will increase, and the machine will sway easily.                                                                                    | 0 to1000<br>(0.1rad/s)    | 100      |
| SP002 | PGE    | Encoder orientation<br>position loop gain                                           | <for mds-c1-sp="" sph="" spm=""><br/>The orientation time will be shorter when the value is increased,<br/>and the servo rigidity will increase. On the other hand, the<br/>vibration will increase, and the machine will sway easily.<br/><for mds-c1-spx="" sphx=""></for></for> | 0 to 1000<br>(0.1rad/s)   | 100      |
|       |        |                                                                                     | Set the position loop gain for spindle end PLG orientation.                                                                                                                                                                                                                        |                           |          |
| SP097 | SPECO* | Orientation<br>specification                                                        | F     E     D     C     B     A     9     8     7     6     5     4       ostp     orze     ksft     gchg     ips2     zdir     vg8x     mdir     fdir     oscl                                                                                                                    | 3 2 1<br>pyfx dmin odi    | -        |
|       |        |                                                                                     | bit Meaning when set to 0 Meaning whe                                                                                                                                                                                                                                              | en set to 1               | Standard |
|       |        |                                                                                     | C gchg Gain changeover during orientation Gain changeover<br>invalid orientation valid                                                                                                                                                                                             | during                    | 0        |
| SP225 | ОХКРН  | Position loop gain<br>magnification after<br>orientation<br>completed<br>(H coil)   | If gain changeover is valid (SP097: SPEC0/bitC=1) during<br>orientation, set the position loop gain magnification (H coil)<br>changed to after orientation completed.                                                                                                              | 0 to 2560<br>(1/256-fold) | 0        |
| SP226 | OXKPL  | Position loop gain<br>magnification after<br>orientation<br>completed (L coil)      | If gain changeover is valid (SP097: SPEC0/bitC=1) during<br>orientation, set the position loop gain magnification (L coil)<br>changed to after orientation complete.                                                                                                               | 0 to 2560<br>(1/256-fold) | 0        |
| SP128 | ОХКРМ  | After orientation<br>completion,<br>Position loop gain<br>magnification<br>(M coil) | <for mds-c1-spm=""><br/>Set the switched M coil position loop gain magnification after<br/>orientation when gain switching is enabled (SP097: SPEC0/<br/>bitC=1).</for>                                                                                                            | 0 to 2560<br>(1/256-fold) | 0        |

### [2] Speed loop gain adjustment

In the same manner as for the position loop gain, a speed loop gain can be set separately from the one used during deceleration for a operation that begins from the orientation completed ON status, following orientation deceleration control. Although the servo lock rigidity can be improved by increasing the speed loop gain during stop, vibration tends to be generated. To change the post-orientation speed loop gain, enable a gain change by SP097/bitC=1 parameter setting, then set the desired speed loop proportional gain magnification and integral gains should be increased at the same rate, and should be decreased if vibration occurs.

The effective speed loop gains are common to all coils, and are calculated using the formulas shown below. If a magnification setting of "0" is set, a "256" setting is adopted.

Effective speed loop proportional gain = SP098 ×  $\frac{SP227}{256}$ Effective speed loop integral gain = SP099 ×  $\frac{SP228}{256}$ 

| No.   | Abbr. | Parameter name                                                                     | Details                                                                                                                                                                                                                                                                         | Setting<br>range          | Standard |
|-------|-------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| SP098 | VGOP* | Speed loop gain<br>proportional term in<br>orientation control<br>mode             | ain erm in in orientation control mode.       0         when the gain is increased, rigidity is improved in the orientation stop but vibration and sound become larger.       0         ontrol loop       Set the speed loop integral gain in orientation control mode.       0 |                           | 63       |
| SP099 | VGOI* | Orientation control<br>mode speed loop<br>gain integral term                       | Set the speed loop integral gain in orientation control mode.                                                                                                                                                                                                                   | 0 to 1000                 | 60       |
| SP227 | OXVKP | Speed loop<br>proportional gain<br>magnification after<br>orientation<br>completed | If gain changeover is valid (SP097: SPEC0/bitC=1) during<br>orientation control, set the magnification of each gain changed<br>to after orientation completed.                                                                                                                  | 0 to 2560<br>(1/256-fold) | 0        |
| SP228 | ΟΧνκι | Speed loop<br>cumulative gain<br>magnification after<br>orientation<br>completed   |                                                                                                                                                                                                                                                                                 | 0 to 2560<br>(1/256-fold) | 0        |

### [3] Speed loop delay compensation adjustment

This adjustment selects the delay compensation control used at normal orientation stops for tool changes, etc. Because the full-closed loop control used by the spindle end detector, etc., is prone to overshooting at stops, the speed loop gain delay advance term (SP100) value is adjusted upward.

SP100 value that is too high, however, will result in stop position inconsistency, particularly on high-friction machines. In cases where stop position accuracy is required on spindles with high frictional torques, set SP100=0, and select PI control.

<Examples of using PI control>

- Positioning a workpiece with a lathe
- A machine that indexes a 5-plane machining attachment

| No.   | Abbr. | Parameter name                                                       | Details                                                                                                                      | Setting<br>range | Standard |
|-------|-------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|----------|
| SP100 |       | Orientation control<br>mode speed loop<br>gain delay advance<br>term | Set a loop gain delay advance gain in orientation control mode.<br>When this parameter is set to "0", PI control is applied. | 0 to 1000        | 15       |

**POINT** When forward and reverse run stop positions differ even with PI control, machine's backlash may be large. In such cases, accuracy can be improved by setting orientation positioning direction as one direction only (unidirectional). (Refer to spindle parameter SP097/bit0, 1)

#### [4] Torque limit adjustment

The torque during post-orientation stops is limited by the parameter shown below. In case of performing a mechanical lock at orientation stops, be sure to lower the torque limit value to avoid interference between the spindle motor and the machine.

If a torque limit is commanded by a spindle control input 1 even during an orientation stop, however, the torque limit will be applied.

| No.   | Abbr. | Parameter name    | Details                                                                                                                                                                   | Setting<br>range | Standard |
|-------|-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|
| SP104 |       | after orientation | Set the torque limit value after orientation completed.<br>If the external torque limit signal is input, the torque limit value<br>set by this parameter is made invalid. | 0 to 120<br>(%)  | 100      |

## (4) Setting orientation positioning accuracy check

The positioning accuracy at orientation control is checked by the parameters shown below. An error is detected if the positioning pulse error amount from the reference position (Z-phase) exceeds the orientation control pulse miss check value (SP114). When an error is detected, the spindle continues rotating until the next reference position is detected, and a positioning retry then occurs. The "A9" warning is activated during the positioning retry, and the "5C" alarm is activated if the number of retries exceeds the number of orientation retry times (SP118).

| No.   | Abbr. | Parameter name                                   | Details                                                                                                                                                                                                                                                                                                  | Setting range                   | Standard |
|-------|-------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|
| SP114 | OPER  | Orientation control<br>pulse miss check<br>value | An alarm "5C" will occur if the pulse miss value at the<br>orientation stop exceeds this setting value. (Note that this is<br>invalid when set to "0".)<br>In this parameter, set the value to fulfill the following conditions.<br>SP114 setting value > 1.5 × SP004<br>(orientation in-position width) | 0 to 32767<br>(360deg<br>/4096) | 0        |
| SP118 | ORCT  |                                                  | Set the number of times to retry when an orientation or<br>feedback error occurs.<br>The warning (A9) is issued while retrying orientation, and an<br>alarm (5C) is issued when the set number of times is exceeded.                                                                                     | 0 to 100<br>(time)              | 0        |

# (5) Troubleshooting

|   | Cause                                     | Investigation item                                                                                                          | Remedy                                                      | Remarks                   |
|---|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------|
| 1 | Parameter setting<br>values are incorrect | The orientation detector and parameter do not match.         SP037 (SFNC5)         Motor PLG                                | Correctly set SP037 (SFNC5).                                |                           |
| 2 | The specification are not correct         | Motor PLG orientation is attempted<br>with standard motor instead of motor<br>with Z phase.                                 | Change to a motor having a PLG-built-in motor with Z phase. | For motor PLG orientation |
| 3 | Incorrect wiring                          | The connector pin numbers are<br>incorrect,<br>The inserted connector number is<br>incorrect.<br>The cable is disconnected. | Correct the wiring.<br>Replace the cable.                   |                           |

# [1] Orientation does not take place (motor keeps rotating)

# [2] The motor overtravels and stops. (The motor sways when stopping.)

|   | Cause                                  | Investigation item                                                                                                 | Remedy                                      | Remarks                                                                                                 |
|---|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1 | Parameter setting values are incorrect | The gear ratio parameters:<br>SP025 (GRA1) to SP032 (GRB4) are<br>incorrect.                                       | Correctly set SP025 (GRA1) to SP032 (GRB4). |                                                                                                         |
|   |                                        | The phenomenon is improved when<br>the deceleration rate for orientation<br>parameter SP006 (CSP) is halved.       | Readjust SP006 (CSP)                        | This also applies to:<br>SP107 (CSP2)<br>SP108 (CSP3)<br>SP109 (CSP4)<br>SP121 (MPCSH)<br>SP122 (MPCSL) |
|   |                                        | The phenomenon is improved when<br>the position loop gain parameters<br>SP001 (PGM) and SP002 (PGE) are<br>halved. | Readjust SP001 (PGM), SP002<br>(PGE).       | This also applies to:<br>SP119 (MPGH)<br>SP120 (MPGL)                                                   |
|   |                                        | The orientation stop direction is set to one direction (CCW or CW).                                                | Set the SP097 (SPECO) /bit 0, 1 to "0".     |                                                                                                         |

# [3] The stopping position deviates.

|   | Cause                                                   | Investigation item                                                                                                                                      | Remedy                                                                                                                                              | Remarks                              |
|---|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1 | Mechanical cause                                        | The stopping position is not deviated with the encoder axis.                                                                                            | There is backlash or slipping, etc.,<br>between the spindle and encoder.<br>The gear ratio between the<br>spindle and encoder is not 1:1 or<br>1:2. | For spindle end detector orientation |
|   |                                                         |                                                                                                                                                         | There is backlash or slipping<br>between the spindle and motor.<br>The gear ratio between the<br>spindle and motor is not 1:1.                      | For motor PLG orientation            |
| 2 | Noise                                                   | The position detector's cable is relayed with a terminal block (connector), etc.                                                                        | Do not relay the cable.                                                                                                                             |                                      |
|   |                                                         | The position detector cable's shield is not treated properly.                                                                                           | Properly treat the shield.                                                                                                                          |                                      |
|   |                                                         | The peeled section of signal wire at<br>the position detector cable's connector<br>section is large. (A large section is not<br>covered by the shield.) | Keep the peeled section to 3cm or<br>less when possible. Keep the<br>peeled section as far away from<br>the power cable as possible.                |                                      |
| 3 | The magnetic sensor installation direction is incorrect | Check the relation of the magnet and sensor installation.                                                                                               | Correct the relation of the magnet and sensor installation.                                                                                         | For magnetic sensor orientation.     |

| [/] | The stanning position does r | ot change aven when the  | position shift | poromotor is obongod  |
|-----|------------------------------|--------------------------|----------------|-----------------------|
| [4] | The stopping position does r | iol change even when the | position sint  | parameter is changed. |

|   | Cause                                  | Investigation item                                                    | Remedy                                                                                                                                                                | Remarks |
|---|----------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1 | Parameter setting values are incorrect | 2048 when the gear ratio between the spindle and encoder was 1:2 (one | If the gear ratio on the left is<br>established between the spindle<br>and encoder, the position shift<br>amount for one spindle rotation is<br>2048 instead of 4096. |         |

# [5] The machine vibrates when stopping.

|   | Cause                                   | Investigation item                                                          | Remedy                                                                                                                                                                                         | Remarks |
|---|-----------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1 | Parameter setting values are incorrect  | The gear ratio parameters SP025<br>(GRA1) to SP032 (GRB4) are<br>incorrect. | Correctly set SP025 (GRA1) to SP032 (GRB4).                                                                                                                                                    |         |
| 2 | The orientation<br>adjustment is faulty | The vibration frequency is several Hz.                                      | Decrease the position loop gain<br>parameters SP001 (PGM) and<br>SP002 (PGE).<br>Increase the current loop gain for<br>orientation parameters SP105<br>(IQGO) and SP106 (IDGO).                |         |
|   |                                         | The vibration frequency is 10Hz or more.                                    | Decrease the speed loop gain for<br>orientation parameters SP098<br>(VGOP) and SP099 (VGOI).<br>Decrease the current loop gain for<br>orientation parameters SP105<br>(IQGO) and SP106 (IDGO). |         |

# [6] The orientation complete signal is not output

|   | Cause                                                                               | Investigation item                                                                                                                                  | Remedy                                                                                                                            | Remarks |  |  |  |
|---|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| 1 | The machine's load is heavy                                                         | The in-position parameter SP004 (OINP) is too small.                                                                                                | Review the in-position range, and increase SP004 (OINP).                                                                          |         |  |  |  |
|   |                                                                                     | State is improved if delay<br>compensation control is stopped<br>during orientation stopping.<br>(State is improved when changed to<br>PI control). | Review the values set for the<br>speed loop gain for orientation<br>parameters SP098 (VGOP),<br>SP099 (VGOI) and SP100<br>(VGOD). |         |  |  |  |
| 2 | Carry out the items for [1] Orientation does not take place (motor keeps rotating). |                                                                                                                                                     |                                                                                                                                   |         |  |  |  |

## 5-3-4 Adjusting the synchronous tap control

### (1) Confirming the default parameters

Confirm that the parameters are correctly set according to the machine specifications. Pay special attention to the following points.

#### (a) Position loop gain

The position loop gain must be the same as the servo axis used for interpolation control during synchronous tap control.

| Position loop gain for synchronous tap control   | SP009 = SV049 |
|--------------------------------------------------|---------------|
| Position loop gain 2 for synchronous tap control | SP221 = SV050 |
| Position loop gain 3 for synchronous tap control | SP222 = SV058 |

#### (b) High-gain servo synchronous compensation

The synchronous tap control specifications SP193/bit8 must be set according to the specification of the servo drive unit used for interpolation control during synchronous tap control.

Synchronous compensation valid = High-gain servo :

MDS-C1-V1/V2 (for high-gain setting), MDS-B-V14/V24

Synchronous compensation invalid = Standard servo :

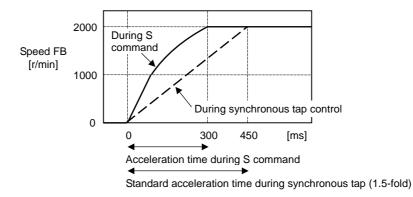
MDS-C1-V1/V2 (for standard setting), MDS-B-V1/V2, MDS-B-SVJ2

#### <Spindle parameters>

| No.   | Abbrev. | Parameter name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit     | Setting<br>range | Standard<br>value                       |
|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-----------------------------------------|
| SP009 | PGT     | Synchronized tapping Position loop gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rad/s    | 1 to 100         | 15                                      |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                  |                                         |
| SP193 | SPECT*  | Synchronized tapping specifications<br>(The standard value is set according to the servo drive for interpolation<br>control.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HEX      | 0000 to<br>FFFF  | Standard:<br>0000<br>High-gain:<br>0100 |
| SP194 | VGTP*   | Synchronized tapping speed loop gain proportional term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 0 to 1000        | 63                                      |
| SP195 | -       | Synchronized tapping speed loop gain integral term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0 to 1000        | 60                                      |
| SP196 | VGTD*   | Synchronized tapping speed loop gain delay advance term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0 to 1000        | 15                                      |
| SP197 |         | Fixed control constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 0                | 0                                       |
| SP198 | VCGT*   | Synchronized tapping target value of variable speed loop proportional gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %        | 0 to 100         | 100                                     |
| SP199 | VCST*   | Over the extension of the extension of the tension of the tension of the extension of the e |          | 0 to 32767       | 0                                       |
| SP200 | FFC1*   | Synchronized tapping acceleration feed forward gain (gear 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %        | 0 to 1000        | 0                                       |
| SP201 | FFC2*   | Synchronized tapping acceleration feed forward gain (gear 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %        | 0 to 1000        | 0                                       |
| SP202 | FFC3*   | Synchronized tapping acceleration feed forward gain (gear 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %        | 0 to 1000        | 0                                       |
| SP203 | FFC4*   | Synchronized tapping acceleration feed forward gain (gear 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %        | 0 to 1000        | 0                                       |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |                                         |
| SP214 | TZRN    | Synchronized tapping zero point return speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r/min    | 0 to 500         | 50                                      |
| SP215 | TPDT    | Synchronized tapping zero point return deceleration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pulse    | 0 to 10000       | 1                                       |
| SP216 | -       | Synchronized tapping zero point return shift amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0 to 4095        | 0                                       |
| SP217 | TINP    | Synchronized tapping in-position width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/16 deg | 1 to 2880        | 16                                      |
| SP218 | TODR*   | Synchronized tapping excessive error width (1pulse=0.088deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pulse    | 0 to 32767       | 32767                                   |
| SP219 | IQGT*   | Synchronized tapping current loop gain magnification 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %        | 0 to 1000        | 100                                     |
| SP220 | IDGT*   | Synchronized tapping current loop gain magnification 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %        | 0 to 1000        | 100                                     |
| SP221 |         | Synchronized tapping position loop gain 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rad/s    | 0 to 999         | 0                                       |
| SP222 | PG3T    | Synchronized tapping position loop gain 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rad/s    | 0 to 999         | 0                                       |

#### <Servo parameters>

| No.   | Io. Abbrev. Parameter name |                                                     | Unit  | Setting<br>range | Standard value |
|-------|----------------------------|-----------------------------------------------------|-------|------------------|----------------|
| SV049 | PGN1sp                     | Position loop gain 1 in spindle synchronous control | rad/s | 1 to 200         | 15             |
| SV050 | PGN2sp                     | Position loop gain 2 in spindle synchronous control | rad/s | 0 to 999         | 0              |
| SV058 | SHGCsp                     | SHG control gain in spindle synchronous control     | rad/s | 0 to 1200        | 0              |




Always adjust the synchronous tap control after adjusting the operation and acceleration/deceleration time with the speed command, and adjusting the servo axis controlled in synchronization with the spindle during synchronous tap control.

#### (2) Adjusting the acceleration/deceleration time constant

Synchronous tap synchronizes the operation with the servo. Generally, the spindle takes longer to accelerate and decelerate, so the acceleration/deceleration time constant is determined on the spindle side. Measure the acceleration time for the S command, and set a value 1.5-fold that as the standard value.

If the spindle maximum rotation speed is 2000r/min during synchronous tap operation, first carry out 2000r/min acceleration/deceleration with the S command as shown below. Then, measure the total acceleration/deceleration time in a linear, 2-step or 3-step state. The time constant for synchronous tap operation is 450ms which is 1.5-fold 300ms.



Measuring the acceleration time during S command



When carrying out synchronous tap operation with a motor capable of coil changeover, either the high-speed coil or low-speed coil is used. Fix the coil being used, and measure the acceleration time by issuing the S command in this case.

### (3) Synchronous tap trial operation

Carry out trial operation after setting the parameters. Carry out dry operation without tapping or a workpiece, and confirm the amount that the spindle moves in respect to the servo axis. If an alarm occurs when there is no load, check the cause with the following table.

| Fault                                                         | Cause                                                                                                                        | Remedy                                                                                                                                        |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Excessive error<br>alarm occurs<br>(ALM52)                    | The synchronous tap detector direction is set in reverse.                                                                    | Check the SP193/bit5 setting.<br>0 = Forward run, 1 = Reverse run                                                                             |
|                                                               | The motor cannot follow because the tap time constant is too short.                                                          | Readjust the tap time constant.<br>Set a value double the value for the S command.                                                            |
| Overcurrent alarm<br>occurs (ALM32)                           | The motor cannot follow because the tap time constant is too short.                                                          | Readjust the tap time constant.<br>Set a value double the value for the S command.                                                            |
|                                                               | The speed loop gain is too high for<br>synchronous tap control (Is there vibration<br>when changing to synchronous control?) | The SP194 setting value is too large.<br>Set 100% as the standard.                                                                            |
|                                                               | The current loop gain is too high during synchronous tap control.                                                            | The SP219, SP220 setting value is too large.<br>Set 100% as the standard.                                                                     |
| The spindle rotation<br>movement amount<br>does not match the | The closed loop and semi-closed loop settings for spindle control are incorrect.                                             | Check which detector's FB is being used.<br>Spindle ENC = full closed loop: SP193/bit0 =0<br>Motor PLG = semi-closed loop: SP193/bit0 =1      |
| command                                                       | The gear ratio setting is incorrect.                                                                                         | Check the machine gear ratio.<br>Number of gear teeth on spindle side : SP025 to SP028<br>Number of gear teeth on motor side : SP029 to SP032 |

Troubleshooting for synchronous tap trial operation

## (4) Adjusting the parameters

Adjust the following parameters while measuring the synchronous error between the servo and spindle. The servo axis speed loop gain is valid for all control, so adjust the speed loop gain only on the spindle side. Adjust mainly the lost motion compensation parameters on the servo side. When these have already been adjusted when measuring the roundness, etc., they do not need to be adjusted again. If the acceleration/deceleration is delayed for one of the axes, set the acceleration feed forward gain for the delayed axis to compensate the synchronous delay.

| Spindle | adjustment | parameters |
|---------|------------|------------|
|---------|------------|------------|

| No.   | Abbr. | Parameter name                                                                | Details                                                                                                                                                                                           | Setting<br>range | Standard |
|-------|-------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|
| SP194 | VGTP* | Synchronized<br>tapping control<br>speed loop gain<br>proportional term       | Set the speed loop proportional gain in synchronized tapping mode.                                                                                                                                | 0 to 1000        | 63       |
| SP195 | VGTI* | Synchronized<br>tapping control<br>speed loop gain<br>integral term           | Set the speed loop integral gain in synchronized tapping mode.                                                                                                                                    | 0 to 1000        | 60       |
| SP200 | FFCI* | Synchronized<br>tapping control<br>acceleration feed<br>forward gain (gear 1) | Set the acceleration feed forward gain for selection of gear 000<br>during synchronized tapping.<br>This parameter should be used when an error of relative<br>position to Z-axis servo is large. | 0 to 1000<br>(%) | 0        |
| SP201 | FFC2* | (Gear 2)                                                                      |                                                                                                                                                                                                   |                  | 0        |
| SP202 | FFC3* | (Gear 3)                                                                      |                                                                                                                                                                                                   |                  | 0        |
| SP203 | FFC4* | (Gear 4)                                                                      |                                                                                                                                                                                                   |                  | 0        |

#### Spindle adjustment parameters

| No.   | Abbr. | Parameter name                      |                                 | Details Setting range                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |                         |                 |   |  |
|-------|-------|-------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|-------------------------|-----------------|---|--|
| SV027 | SSF1  | Servo function<br>selection 1       |                                 | FEDCBA98765432afitzrn2afseovsImcomrzrn3vfctupcbitMeaning when set to 0Meaning when set to 0Meaning when set to 0bitSet the compensation amount with SV016 (LMC1) and SV04*9ImcSet the compensation stop<br>01: Lost motion compensation type 110: Lost motion compensation<br>11: Setting prohibited |  |  |  |  |  |  | upc<br>n set to<br>V041 | L<br>0 1<br>(LN | , |  |
| SV016 | LMC1  | Lost motion<br>compensation 1       | The sta                         | Set the compensation amount based on the stall (rated) current of the motor1 to 200<br>The standard setting is double of the friction torque. Setting to "0" means the compensation amount is zero. (Stall [rated] current %)                                                                        |  |  |  |  |  |  |                         |                 |   |  |
| SV041 | LMC2  | Lost motion<br>compensation 2       | comper                          | Set this with SV016 (LMC1) only when you wish to set the lost motion<br>compensation amount to be different depending on the command directions. (Stall [rated]<br>normally, set to "0".                                                                                                             |  |  |  |  |  |  |                         |                 |   |  |
| SV015 | FFC   | Acceleration rate feed forward gain | to the a<br>control,<br>To adju | When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG (%) Control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time.          |  |  |  |  |  |  |                         |                 |   |  |

| POINT | <ol> <li>Stop the machine error compensation function (backlash compensation, pitch error compensation, etc.) when measuring the synchronous error.</li> <li>The servo's speed loop gain has an effect on all control, so do not adjust it for synchronous tap. The spindle parameters are dedicated for synchronous tap control, so improve the synchronization accuracy by adjusting the spindle parameters when possible.</li> </ol> |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**CAUTION** The above spindle parameters adjusted when adjusting the synchronous tap are all validated when the NC power is turned ON again.

#### (5) Synchronous tap cutting operation

After adjusting the parameters, mount the tap and workpiece, and carry out actual cutting. Various elements affect the tap cutting. Even if the synchronous accuracy (electrical accuracy) is good up to this point, it may not enable cutting with a sufficient accuracy. Check the items in the following table and improve the cutting accuracy.

|     | Investigation item                                            | Remedy                                                                                                          |
|-----|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1.  | The cutting chip discharge is poor (cutting chips get caught) | Use a spiral tape (recommended) with good cutting chip discharge performance                                    |
|     |                                                               | Adjust the cutting speed to an appropriate value                                                                |
| 2.  | The tap cutting performance is poor                           | Replace the tap                                                                                                 |
| 3.  | The tap hole diameter is too large                            | Set the tap hole diameter to an appropriate size                                                                |
| 4.  | The spindle PLG waveform adjustment is<br>insufficient        | Readjust the offset and gain                                                                                    |
| 5.  | The servo axis backlash compensation<br>amount is incorrect   | Adjust the backlash compensation amount                                                                         |
| 6.  | The servo axis pitch error compensation amount is incorrect   | Adjust the pitch error compensation amount                                                                      |
| 7.  | The acceleration/deceleration time constant is short          | Increase the acceleration/deceleration time constant to improve the accuracy                                    |
| 8.  | The tap depth is too deep for the tap diameter                | Set the tap depth to up to 3-times the tap diameter                                                             |
| 9.  | The spindle center deviates                                   | Check the tap mounting state                                                                                    |
| 10. | The spindle backlash is too large                             | Improve the machine side                                                                                        |
| 11. | The spindle load inertia is too large (3-times or more)       | Try using fixed position loop excitation (SP193/bit3 = 1)<br>Note that vibration noise will be generated easily |
| 12. | The cutting load is large (50% or more)                       | The tap hole is too small $\rightarrow$ Check the tap mounting state                                            |
|     |                                                               | The spindle center deviates $\rightarrow$ Check the tap mounting state                                          |
|     |                                                               | The tap cutting performance is poor $\rightarrow$ Replace the tap                                               |
|     |                                                               | Try using fixed position loop excitation (SP193/bit3 = 1)                                                       |

#### Investigation items for improving cutting accuracy

If the tap breaks, investigate the following items.

#### Investigation items when tap breaks

| Investigation item                                       | Remedy                                                       |
|----------------------------------------------------------|--------------------------------------------------------------|
| 1. The program's screw pitch and tap pitch do not match. | Set the program to the tap.                                  |
| 2. The tap center deviation is large                     | Check the accuracy of the spindle and the tap mounting state |
| 3. The tap hole is too shallow                           | Drill the tap hole to an appropriate depth                   |
| 4. The tap hole is too small                             | Drill the tap hole to an appropriate size                    |

# 5-3-5 Adjusting the C-axis control

### (1) Confirming the default parameters

Confirm that the parameters are correctly set according to the machine specifications. When carrying out interpolation control with the servo axis, set the following parameters according to the servo axis specifications.

### (a) Position loop gain

When carrying out interpolation control with the servo axis using C-axis control, the C-axis control and position loop gain for each mode must be set to match the servo axis used for interpolation control. During C-axis control in this case, the operation is always controlled with the same position loop gain.

| C-axis non-cutting position loop gain           | SP003 = SV003 |
|-------------------------------------------------|---------------|
| First position loop gain for cutting on C-axis  | SP130 = SV003 |
| Second position loop gain for cutting on C-axis | SP131 = SV003 |
| Third position loop gain for cutting on C-axis  | SP132 = SV003 |
| Stop position loop gain for cutting on C-axis   | SP133 = SV003 |
| C-axis position loop gain 2                     | SP165 = SV004 |
| C-axis position loop gain 3                     | SP166 = SV057 |

### (b) High-gain servo synchronous compensation

Set C-axis control specification SP129/bit3 according to the specifications of the servo drive unit used for interpolation control with C-axis control.

Synchronous compensation valid = High-gain servo: MDS C1 V(1)/(2) (for high gain setting) MDS B V(1)/(2)

MDS-C1-V1/V2 (for high-gain setting), MDS-B-V14/V24

Synchronous compensation invalid = Standard servo:

MDS-C1-V1/V2 (for standard setting), MDS-B-V1/V2, MDS-B-SVJ2

### (2) Gain parameters

The position loop gain and speed loop gain can be set according to each control state. Note that when using SHG control for C-axis control, or when carrying out interpolation control with the servo axis, the same value must be set in the position loop gain (SP003, SP130, SP131, SP132, SP133) for each control state.

| Control state<br>Parameter    | During<br>non-cutting<br>(rapid traverse) | No.1 gain<br>selection for<br>cutting control | No.2 gain<br>selection for<br>cutting control | No.3 gain<br>selection for<br>cutting control | When cutting<br>is stopped |
|-------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------|
| Speed loop proportional gain  | SP134                                     | SP137                                         | SP140                                         | SP143                                         | SP146                      |
| Speed loop integral gain      | SP135                                     | SP138                                         | SP141                                         | SP144                                         | SP147                      |
| Speed loop delay compensation | SP136                                     | SP139                                         | SP142                                         | SP145                                         | SP148                      |
| Position loop gain            | SP003                                     | SP130                                         | SP131                                         | SP132                                         | SP133                      |
| Position loop gain 2          |                                           |                                               | SP165                                         |                                               |                            |
| Position loop gain 3          |                                           |                                               | SP166                                         |                                               |                            |

#### Gain parameter settings for C-axis control



In order to perform C-axis interpolation with the servo axis, the position loop gain settings for each C-axis control mode must match that of the servo axis where interpolation occurs. If the servo axis is performing SHG control, the SP165 and SP166 settings apply to all control modes. Therefore, the position loop gain values for each control mode (SP003, SP130, SP131, SP132 and SP133) must be the same as the position loop gain (SV003) for all the servo axes.

# < Spindle parameters>

|       | Abbr.  | Parameter name                                                                                                  | Unit                   | Setting<br>range | Standard<br>value                       |
|-------|--------|-----------------------------------------------------------------------------------------------------------------|------------------------|------------------|-----------------------------------------|
| SP003 | PGC0   | C-axis non-cutting position loop gain                                                                           | rad/s                  | 1 to 100         | 15                                      |
| SP129 | SPECC* | C-axis specifications<br>(The standard value is set according to the servo drive for interpolation<br>control.) | HEX                    | 0000 to<br>FFFF  | Standard:<br>0000<br>High-gain:<br>0008 |
| SP130 | PGC1   | First position loop gain for cutting on C-axis                                                                  | rad/s                  | 1 to 100         | 15                                      |
| SP131 | PGC2   | Second position loop gain for cutting on C-axis                                                                 | rad/s                  | 1 to 100         | 15                                      |
| SP132 | PGC3   | Third position loop gain for cutting on C-axis                                                                  | rad/s                  | 1 to 100         | 15                                      |
| SP133 | PGC4   | Stop position loop gain for cutting on C-axis                                                                   | rad/s                  | 1 to 100         | 15                                      |
| SP134 | VGCP0* | C-axis non-cutting speed loop gain proportional item                                                            |                        | 0 to 5000        | 63                                      |
| SP135 | VGCI0* | C-axis non-cutting speed loop gain integral item                                                                |                        | 0 to 5000        | 60                                      |
| SP136 | VGCD0* | C-axis non-cutting speed loop gain delay advance item                                                           |                        | 0 to 5000        | 15                                      |
| SP137 | VGCP1* | First speed loop gain proportional item for C-axis cutting                                                      |                        | 0 to 5000        | 63                                      |
| SP138 | VGCI1* | First speed loop gain integral item for cutting on C-axis                                                       |                        | 0 to 5000        | 60                                      |
| SP139 | VGCD1* | First speed loop gain delay advance item for cutting on C-axis                                                  |                        | 0 to 5000        | 15                                      |
| SP140 | VGCP2* | Second speed loop gain proportional item for cutting on C-axis                                                  |                        | 0 to 5000        | 63                                      |
| SP141 | VGCI2* | Second speed loop gain integral item for cutting on C-axis                                                      |                        | 0 to 5000        | 60                                      |
| SP142 | VGCD2* | Second speed loop gain delay advance item for cutting on C-axis                                                 |                        | 0 to 5000        | 15                                      |
| SP143 | VGCP3* | Third speed loop gain proportional item for cutting on C-axis                                                   |                        | 0 to 5000        | 63                                      |
| SP144 | VGCI3* | Third speed loop gain integral item for cutting on C-axis                                                       |                        | 0 to 5000        | 60                                      |
| SP145 | VGCD3* | Third speed loop gain delay advance item for cutting on C-axis                                                  |                        | 0 to 5000        | 15                                      |
| SP146 | VGCP4* | Speed loop gain proportional item for stop of cutting on C-axis                                                 |                        | 0 to 5000        | 63                                      |
| SP147 | VGCI4* | Speed loop gain integral item for stop of cutting on C-axis                                                     |                        | 0 to 5000        | 60                                      |
| SP148 | VGCD4* | Speed loop gain delay advance item for stop of cutting on C-axis                                                |                        | 0 to 5000        | 15                                      |
| SP149 | CZRN   | C-axis zero point return speed                                                                                  | r/min                  | 1 to 500         | 50                                      |
| SP150 | CPDT   | C-axis zero point return deceleration point                                                                     |                        | 1 to 1000        | 1                                       |
| SP151 | CPSTL  | C-axis zero point return shift amount (low byte)                                                                | 1/1000                 | 00000000         | 0000                                    |
| SP152 | CPSTH  | C-axis zero point return shift amount (high byte)                                                               | deg<br>(HEX)           | to<br>FFFFFFF    | 0000                                    |
| SP153 | CINP   | C-axis in-position width                                                                                        | 1/1000<br>deg<br>(HEX) | 0000 to<br>FFFF  | 03E8                                    |
| SP154 | CODRL* | Excessive error width on C-axis (low byte)                                                                      | 1/1000                 | 00000000         | D4C0                                    |
| SP155 | CODRH* | Excessive error width on C-axis (high byte)                                                                     | deg<br>(HEX)           | to<br>FFFFFFF    | 0001                                    |
| SP156 | OVSH   | C-axis overshoot compensation                                                                                   | 0.1%                   | 0 to 1000        | 0                                       |
| SP159 | CPY0   | C-axis non-cutting variable excitation ratio                                                                    | %                      | 0 to 100         | 50                                      |
| SP160 | CPY1   | C-axis cutting variable excitation ratio                                                                        | %                      | 0 to 100         | 100                                     |
|       |        | Current loop gain magnification 1 for non-cutting on C-axis                                                     | %                      | 1 to 1000        | 100                                     |
|       | IDGC0* | Current loop gain magnification 2 for non-cutting on C-axis                                                     | %                      | 1 to 1000        | 100                                     |
|       | IQGC1* | Current loop gain magnification 2 for hon-cutting on C-axis                                                     | %                      | 1 to 1000        | 100                                     |
|       | IDGC1* | Current loop gain magnification 2 for cutting on C-axis                                                         | %                      | 1 to 1000        | 100                                     |
| SP165 | PG2C   | C-axis position loop gain 2                                                                                     | rad/s                  | 0 to 999         | 0                                       |
|       | 1020   |                                                                                                                 | idu/s                  | 0 10 999         | 0                                       |

# <Servo parameters>

| No.   | Abbr. | Parameter name       |       | Setting range | Standard<br>value |
|-------|-------|----------------------|-------|---------------|-------------------|
| SV003 | PGN1  | Position loop gain 1 | rad/s | 1 to 200      | 33                |
| SV004 | PGN2  | Position loop gain 2 | rad/s | 0 to 999      | 0                 |
| SV057 | SHGC  | SHG control gain     | rad/s | 0 to 1200     | 0                 |

### (3) Disturbance observer

The disturbance observer estimates the disturbance torque and compensates accordingly, thereby minimizing cutting time disturbance, frictional resistance, and torsion vibration. It is also effective in suppressing vibration that is caused by speed advance compensation control.

The disturbance observer function is enabled in all control modes (not just the C-axis control) during a spindle control input 4/bitF=1 (increased spindle hold force). The position loop gain and speed loop gain settings are set separately during disturbance observer operation.

#### <Setting method>

- [1] Calculate the inertia for all axes including the spindle motor, then set the motor inertia rate as the disturbance observer load inertia rate (SP233) value.
- [2] Set the disturbance observer low path filter frequency (SP234) to the observer filter band (observer pole) value to suppress the estimated high-frequency disturbance and vibration. The standard setting is "100".
- [3] Set the disturbance observer gain (SP235) to the observer gain value. This activates the disturbance observer function. Begin with a setting of "100", then, if no vibration occurs, increase the setting value in increments of "50" to increase the compensation efficacy.
- [4] If the disturbance observer setting facilitates vibration, decrease the speed loop gain proportional item for increased spindle holding force (SP168) and the speed loop gain integral item for increased spindle holding force (SP169) values by 10 to 20% at the same rate.
- [5] Although the position loop gain can be set individually by the position loop gain for increased spindle holding force (SP167) setting during disturbance observer operation, it should be set to the same value as the other settings if the interpolation servo axis is performing SHG control.

| No.   | Abbr. | Parameter name                                                                  | Details                                                                                                                                                                                                        | Setting range        | Standard |
|-------|-------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| SP167 | PGU*  | Position loop gain for<br>increased spindle<br>holding force                    | Set the position loop gain for when the disturbance observer is valid.                                                                                                                                         | 0 to 100<br>(rad/s)  | 15       |
| SP168 | VGUP* | Speed loop gain<br>proportional item for<br>increased spindle<br>holding force  | Set the speed loop gain proportional item for when the disturbance observer is valid.                                                                                                                          | 0 to 5000            | 63       |
| SP169 | VGUI* | Speed loop gain<br>integral item for<br>increased spindle<br>holding force      | Set the speed loop gain integral item for when the disturbance observer is valid.                                                                                                                              | 0 to 5000            | 60       |
| SP170 | VGUD* | Speed loop gain<br>delay advance item<br>for increased spindle<br>holding force | Set the speed loop gain delay advance item for when the disturbance observer is valid.                                                                                                                         | 0 to 5000            | 15       |
| SP233 | JL*   | Disturbance<br>observer Load inertia<br>rate                                    | Set "the motor inertia + motor axis conversion load inertia" in<br>respect to the motor inertia.<br>SP233 (JL)= $\frac{JI+Jm}{Jm} \times 100$<br>Jm : Motor inertia<br>JI : Motor axis conversion load inertia | 0 to 5000<br>(%)     | 0        |
| SP234 | OBS1* | Disturbance<br>observer low path<br>filter frequency                            | Set the frequency of the low path filter for when the disturbance observer is valid.                                                                                                                           | 0 to 1000<br>(rad/s) | 0        |
| SP235 | OBS2* | Disturbance<br>observer gain                                                    | Set the gain for the disturbance observer.                                                                                                                                                                     | 0 to 500<br>(%)      | 0        |

POINT

Disturbance observer control is valid in all control modes during a spindle control input 4/bitF.

## 5-3-6 Adjusting the spindle synchronous control

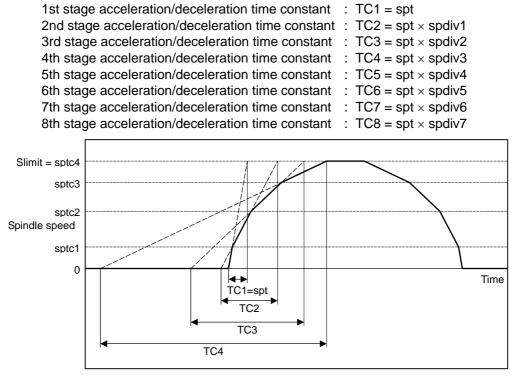
### (1) Confirming the default parameters

Confirm that the parameters are correctly set according to the machine specifications. The parameters are set with the following conditions for spindles used for synchronous control.

#### (a) Position loop gain

The same value must be set for the spindle drive units used for synchronous control.

Spindle synchronous position loop gain: SP010Spindle synchronous position loop gain 2: SP189


Spindle synchronous position loop gain 3 : SP190

#### <Spindle parameters>

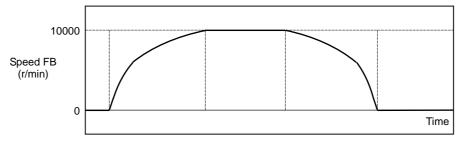
| No.   | Abbr.  | Parameter name                                                                     | Unit     | Setting range   | Standard value |
|-------|--------|------------------------------------------------------------------------------------|----------|-----------------|----------------|
| SP010 | PGS    | Spindle synchronization position loop gain                                         | rad/s    | 1 to 100        | 15             |
|       |        |                                                                                    |          |                 |                |
| SP177 | SPECS* | Spindle synchronous specifications                                                 | HEX      | 0000 to<br>FFFF | 0000           |
| SP178 | VGSP*  | Spindle synchronous speed loop gain proportional term                              |          | 0 to 1000       | 63             |
| SP179 | VGSI*  | Spindle synchronous speed loop gain integral term                                  |          | 0 to 1000       | 60             |
| SP180 | VGSD*  | Spindle synchronous speed loop gain delay advance term                             |          | 0 to 1000       | 15             |
| SP181 | VCGS*  | Spindle synchronous Target value of variable speed loop proportional gain          | %        | 0 to 100        | 100            |
| SP182 | VCSS*  | Spindle synchronous Change starting speed of variable speed loop proportional gain | r/min    | 0 to 32767      | 0              |
| SP183 | SYNV   | Spindle synchronous Sync matching speed                                            | r/min    | 0 to 1000       | 20             |
|       |        |                                                                                    |          |                 |                |
| SP185 | SINP   | Spindle synchronous In-position width                                              | 1/16 deg | 1 to 2880       | 16             |
| SP186 | SODR*  | Spindle synchronous Excessive error width (1pulse=0.088deg)                        | pulse    | 0 to 32767      | 32767          |
| SP187 | IQGS*  | Spindle synchronous Current loop gain magnification 1                              | %        | 0 to 1000       | 100            |
| SP188 | IDGS*  | Spindle synchronous Current loop gain magnification 2                              | %        | 0 to 1000       | 100            |
| SP189 | PG2S   | Spindle synchronous Position loop gain 2                                           | rad/s    | 0 to 999        | 0              |
| SP190 | PG3S   | Spindle synchronous Position loop gain 3                                           | rad/s    | 0 to 999        | 0              |

### (2) Setting the multi-step acceleration/deceleration time constant

For acceleration/deceleration control during spindle synchronous control, the acceleration/ deceleration time constant can be set up to eight steps according to the spindle rotation speed. The acceleration/deceleration time constant (acceleration time from 0 to limit rotation speed slimit) for each step is set as shown below based on the time constant set for the first step.

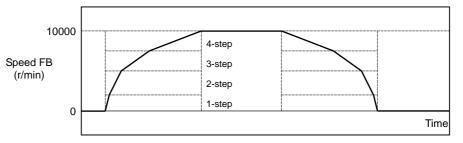


Multi-step acceleration/deceleration control for spindle synchronous control (for 4-step setting)


| No.  | Abbr. | Parameter name                                                                     | Details                                                                                                                                                               | Setting range         |
|------|-------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 3049 | spt   | Spindle synchronization acceleration/deceleration time constant                    | Set the acceleration/deceleration time<br>constant for when the spindle<br>synchronization command's rotation<br>speed changes during spindle<br>synchronous control. | 0 to 9999<br>(ms)     |
| 3054 | sptc1 | Spindle synchronization multi-step<br>acceleration/deceleration changeover speed 1 | Set the spindle speed for changing the Nth step's acceleration/deceleration                                                                                           | 0 to 99999<br>(r/min) |
| 3055 | sptc2 | Spindle synchronization multi-step<br>acceleration/deceleration changeover speed 2 | time constant.                                                                                                                                                        |                       |
| 3056 | sptc3 | Spindle synchronization multi-step<br>acceleration/deceleration changeover speed 3 |                                                                                                                                                                       |                       |
| 3057 | sptc4 | Spindle synchronization multi-step<br>acceleration/deceleration changeover speed 4 |                                                                                                                                                                       |                       |
| 3058 | sptc5 | Spindle synchronization multi-step<br>acceleration/deceleration changeover speed 5 |                                                                                                                                                                       |                       |
| 3059 | sptc6 | Spindle synchronization multi-step<br>acceleration/deceleration changeover speed 6 |                                                                                                                                                                       |                       |
| 3060 | sptc7 | Spindle synchronization multi-step<br>acceleration/deceleration changeover speed 7 |                                                                                                                                                                       |                       |

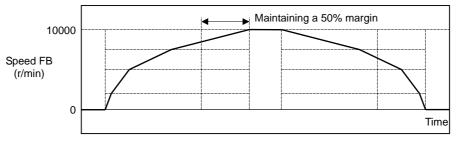
#### <Spindle specification parameters>

| No.  | Abbr.  | Parameter name                                     | Details                                                                                                                                                                 | Setting range |
|------|--------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 3061 | spdiv1 | Magnification for time constant changeover speed 1 | Set the acceleration/deceleration time                                                                                                                                  | 0 to 127      |
| 3062 | spdiv2 | Magnification for time constant changeover speed 2 | constant in the spindle synchronization                                                                                                                                 |               |
| 3063 | spdiv3 | Magnification for time constant changeover speed 3 | multi-step acceleration/deceleration                                                                                                                                    |               |
| 3064 | spdiv4 | Magnification for time constant changeover speed 4 | changeover speed sptc (N) to sptc<br>(N+1) range.                                                                                                                       |               |
| 3065 | spdiv5 | Magnification for time constant changeover speed 5 | Set the time that the spindle speed                                                                                                                                     |               |
| 3066 | spdiv6 | Magnification for time constant changeover speed 6 | accelerates from 0 to slmit as a                                                                                                                                        |               |
| 3067 | spdiv7 | Magnification for time constant changeover speed 7 | magnification in respect to the spindle<br>synchronization<br>acceleration/deceleration time<br>constant (spt).<br>When spdiv7 is set, the range is sptc7<br>to slimit. |               |


#### (3) Adjusting the multi-step acceleration/deceleration time constants

[1] Measure the acceleration/deceleration waveform to the spindle's maximum rotation speed using S command operation. (No. 1 spindle, No. 2 spindle)




Example of spindle acceleration/deceleration waveform

[2] Calculate the multi-step acceleration/deceleration pattern based on the acceleration/ deceleration waveform for the spindle with a long acceleration/deceleration time.



Calculation of multi-step acceleration/deceleration

[3] Set the actual acceleration/deceleration time constant in the parameters while maintaining a 50% margin from each time constant calculated in step [2].



Setting the multi-step acceleration/deceleration parameters

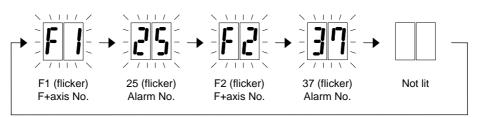
[4] Try spindle synchronous acceleration/deceleration operation with the actual machine, and confirm that the speed is accelerated or decelerated at 50% or less of the load meter value. If the load meter value exceeds 50%, adjust the time constant again.

| 6-1 Points of caution and confirmation                                     |      |
|----------------------------------------------------------------------------|------|
| 6-1-1 LED display when alarm or warning occurs                             |      |
| 6-2 Protective functions list of units                                     |      |
| 6-2-1 List of alarms                                                       |      |
| 6-2-2 List of warnings                                                     |      |
| 6-3 Troubleshooting                                                        | 6-10 |
| 6-3-1 Troubleshooting at power ON                                          | 6-10 |
| 6-3-2 Troubleshooting for each alarm No                                    | 6-11 |
| 6-3-3 Troubleshooting for each warning No.                                 |      |
| 6-3-4 Parameter numbers during initial parameter error                     |      |
| 6-3-5 Troubleshooting the spindle system when there is no alarm or warning | 6-45 |

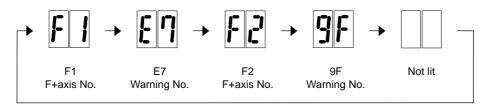
# 6-1 Points of caution and confirmation

If an error occurs in the servo drive unit or spindle drive unit, the warning or alarm will occur. When a warning or alarm occurs, check the state while observing the following points, and inspect or remedy the unit according to the details given in this section.

### <Points of confirmation>


- [1] What is the alarm code display?
- [2] Can the error or trouble be repeated? (Check alarm history)
- [3] Is the motor and servo drive unit temperature and ambient temperature normal?
- [4] Are the servo drive unit, control unit and motor grounded?
- [5] Was the unit accelerating, decelerating or running at a set speed? What was the speed?
- [6] Is there any difference during forward and backward run?
- [7] Was there a momentary power failure?
- [8] Did the trouble occur during a specific operation or command?
- [9] At what frequency does the trouble occur?
- [10] Is a load applied or removed?
- [11] Has the drive unit been replaced, parts replaced or emergency measures taken?
- [12] How many years has the unit been operating?
- [13] Is the power supply voltage normal? Does the state change greatly according to the time band?

|  | <ul> <li>This power supply unit uses a large capacity electrolytic capacitor. When the CHARGE lamp on the front of the power supply unit is lit, voltage is still present at the PN terminal (TE2). Do not touch the terminal block in this state.</li> <li>Before replacing the unit, etc., always confirm that there is no voltage at the PN terminal (TE2) with a tester or wait at least 15 minutes after turning the main power OFF.</li> <li>The conductivity in the unit cannot be checked.</li> <li>Never carry out a megger test on the drive unit or power supply unit as the unit could be damaged.</li> </ul> |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


## 6-1-1 LED display when alarm or warning occurs

### (1) Servo and spindle drive unit

The axis No. and alarm/warning No. alternate on the display. The display flickers when an alarm occurs.



LED display during servo alarm or spindle alarm



LED display during servo warning or spindle warning

Numbers displayed on LED

| No.            | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | А | В | С | D | Е | F |
|----------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| LED<br>display |   | 1 | 2 | 3 | Ч | 5 | 6 | η | 8 | 9 | R | Ь | E | 4 | E | F |

### (2) Power supply unit

The alarm/warning No. is converted into a symbol and displayed. Refer to section "6-2-1 List of alarms" and "6-2-2 List of warnings" for details. The display flickers when an alarm or a warning occurs.



LED display during power supply alarm



LED display during power supply warning

# 6-2 Protective functions list of units

#### 6-2-1 List of alarms

When an alarm occurs, the servo drive unit will make the motor stop by the deceleration control or dynamic brake. The spindle drive unit will coast to a stop or will decelerate to a stop. At the same time, the alarm No. will appear on the NC monitor screen and with the LEDs on the front of the drive unit. Check the alarm No., and remove the cause of the alarm by following this list.

#### Drive unit alarm

| No. | Alarm name                                            | sv | SP           | Alarm details                                                                                                                                                                  | Reset |
|-----|-------------------------------------------------------|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 11  | Axis selection error                                  |    | $\checkmark$ | The axis No. selection switch setting is incorrect.                                                                                                                            | AR    |
| 12  | Memory error 1                                        |    |              | A CPU or internal memory error was detected during the self-check at power ON.                                                                                                 | AR    |
| 13  | Software processing error 1                           | ٠  | ٠            | The software process was not completed within the specified time. (CPU1)                                                                                                       | PR    |
| 14  | Software processing error 2                           | 0  |              | The software process was not completed within the specified time.<br>(CPU2)                                                                                                    | PR    |
| 16  | Magnetic pole position detection<br>error             |    |              | Creation of the initial magnetic pole, required for motor control, was not completed.                                                                                          | PR    |
| 17  | A/D converter error                                   |    |              | An error was detected in the A/D converter for current FB detection.                                                                                                           | PR    |
| 18  | Motor side detector, initial<br>communication error   |    |              | Initial communication with the motor end detector was not possible.                                                                                                            | PR    |
| 19  | Synchronous control/detector<br>communication error   | •  |              | Initial communication with the master axis motor end detector was not possible when the closed current command synchronous control was set. Or, the communication was cut off. | PR    |
| 1A  | Machine side detector, initial<br>communication error |    | $\square$    | Initial communication with the linear scale or ball screw end detector was not possible.                                                                                       | PR    |
| 1B  | Machine side detector, CPU error 1                    | •  |              | A CPU initial error was detected with the linear scale or ball screw end detector.                                                                                             | PR    |
| 1C  | Machine side detector,<br>EEPROM/LED abnormality      | ٠  |              | An error was detected in the data stored in the memory with the linear scale. Or, LED deterioration was detected with the linear scale.                                        | PR    |
| 1D  | Machine side detector, data error                     | ٠  |              | A data error was detected with the linear scale or ball screw end detector.                                                                                                    | PR    |
| 1E  | Machine side detector, memory<br>error                | ٠  |              | An internal memory error was detected with the linear scale.                                                                                                                   | PR    |
| 1F  | Machine side detector,<br>communication error         | ٠  |              | An error was detected in the communication data with the linear scale or ball screw end detector. Or, the communication was cut off.                                           | PR    |

(Note 1) Motor stopping method applied when self-axis drive unit alarm occurs is indicated in SV for servo and in SP for spindle. (Note 2) Servo (SV) alarm stopping method

- O: Deceleration control (when SV048, SV055 or SV056 is set)
- •: Dynamic brake stop

Initial error (while motor is stopped)

- (Note 3) Spindle (SP) alarm stopping method
  - O: Deceleration control (when SP038/bit0=1 is set)
  - •: Coast to a stop
  - ■: Initial error (while motor is stopped)

#### **Resetting methods**

- NR : Reset with the NC RESET button. This alarm can also be reset with the PR and AR resetting conditions.
- PR : Reset by turning the NC power ON again. This alarm can also be reset with the AR resetting conditions. When the control axis is removed, this alarm can be reset with the NC RESET button. (Excluding alarms 32 and 37.)
- AR : Reset by turning the servo drive unit power ON again.

## Drive unit alarm

| No. | Alarm name                                                    | sv | SP           | Alarm details                                                                                                                                                                                                                                                                                         | Reset |
|-----|---------------------------------------------------------------|----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 20  | Motor side detector, No signal 1                              |    | 0            | A PLG Z-phase no signal was detected.                                                                                                                                                                                                                                                                 | PR    |
| 21  | Machine side detector, No signal 2                            | •  | 0            | The pulse-type linear scale or ball screw end detector's ABZ-phase no signal was detected with the servo, or the encoder no-signal was detected with the spindle.                                                                                                                                     | PR    |
| 23  | Excessive speed deflection 1                                  |    | ٠            | A difference of 50r/min or more between the speed command and speed feedback continued for longer than the set time.                                                                                                                                                                                  | PR    |
| 25  | Absolute position lost                                        |    |              | The backup voltage in the absolute position detector dropped causing the absolute position to be lost.                                                                                                                                                                                                | AR    |
| 26  | Unusable axis error                                           |    |              | A power module error is occurring with the axis for which the axis No. selection switch is set to "F" (not used axis).                                                                                                                                                                                | PR    |
| 27  | Machine side detector, CPU error 2                            | ۲  | $\checkmark$ | A CPU error was detected with the linear scale.                                                                                                                                                                                                                                                       | PR    |
| 28  | Machine side detector, overspeed                              | ٠  |              | A speed exceeding the specified maximum speed was detected with the linear scale.                                                                                                                                                                                                                     | PR    |
| 29  | Machine side detector, absolute position data error           | ٠  |              | An error was detected in the absolute position data detection circuit with the linear scale.                                                                                                                                                                                                          | PR    |
| 2A  | Machine side detector, incremental position data error        | ٠  |              | An error was detected in the relative position data detection circuit with the linear scale.                                                                                                                                                                                                          | PR    |
| 2B  | Motor side detector, CPU error 1                              |    |              | A CPU initial error was detected with the motor end detector or linear scale in the linear servo system.                                                                                                                                                                                              | PR    |
| 2C  | Motor side detector, EEPROM/LED<br>error                      | •  |              | Deterioration of the LEDs was detected with the motor end detector. Or,<br>an error in the data stored in the memory was detected with the linear<br>scale in the linear servo system.                                                                                                                | PR    |
| 2D  | Motor side detector, data error                               | ٠  | $\square$    | A data error was detected with the motor end detector or linear scale in the linear servo system.                                                                                                                                                                                                     | PR    |
| 2F  | Motor side detector, communication error                      | •  |              | A communication data error was detected with the motor end detector<br>or linear scale for the linear servo. Or, communication was cut off.                                                                                                                                                           | PR    |
| 31  | Overspeed                                                     | 0  | ٠            | A rotation speed exceeding the motor's tolerable rotation speed was detected.                                                                                                                                                                                                                         | PR    |
| 32  | Power module overcurrent                                      | ۲  | ٠            | The power module's overcurrent protection function activated.                                                                                                                                                                                                                                         | PR    |
| 34  | Communication or CRC error between NC and drive unit          | 0  | 0            | An error was detected in the data received from the NC.                                                                                                                                                                                                                                               | PR    |
| 35  | NC command error                                              | 0  | 0            | The movement command data received from the NC was excessive.                                                                                                                                                                                                                                         | PR    |
| 36  | Communication or transmission error between NC and drive unit | 0  | 0            | Communication from the NC was cut off.                                                                                                                                                                                                                                                                | PR    |
| 37  | Initial parameter error                                       |    |              | An illegal parameter was detected in the parameters received from the NC at NC power ON.                                                                                                                                                                                                              | PR    |
| 38  | Communication or protocol error 1 between NC and drive unit   | 0  | 0            | An error was detected in the communication frame received from the NC.                                                                                                                                                                                                                                | PR    |
| 39  | Communication or protocol error 2 between NC and drive unit   | 0  | 0            | An error was detected in the axis information data received from the NC.                                                                                                                                                                                                                              | PR    |
| ЗA  | Overcurrent                                                   | ٠  | ٠            | An excessive current was detected in the motor drive current.                                                                                                                                                                                                                                         | PR    |
| 3B  | Power module overheat                                         | ٠  | ٠            | The power module's temperature protection function activated.                                                                                                                                                                                                                                         | PR    |
| 3D  | Spindle speed lock                                            |    | ٠            | Even when the maximum torque was commanded, the motor speed does not increase to 45r/min or more.                                                                                                                                                                                                     | PR    |
| 3E  | Spindle speed overrun                                         |    | •            | <ol> <li>A state in which the motor's speed feedback exceeded the speed<br/>command and accelerated was detected.</li> <li>Even though the speed command is 0 (including when stopped<br/>during position control), motor rotation exceeding the parameter<br/>setting value was detected.</li> </ol> | PR    |
| 3F  | Speed excessive deflection 2                                  |    | •            | During constant speed operation, the difference between the speed command and speed feedback exceeded the set amount and set time.                                                                                                                                                                    | PR    |

(Note 1) Motor stopping method applied when self-axis drive unit alarm occurs is indicated in SV for servo and in SP for spindle.
 (Note 2) Servo (SV) alarm stopping method

 O: Deceleration control (when SV048, SV055 or SV056 is set)
 O: Dynamic brake stop

- ■: Initial error (while motor is stopped)

(Note 3) Spindle (SP) alarm stopping method O: Deceleration control (when SP038/bit0=1 is set) ●: Coast to a stop ■: Initial error (while motor is stopped)

## Drive unit alarm

| No. | Alarm name                                       | sv           | SP | Alarm details                                                                                                                                                                                                                                          | Reset |
|-----|--------------------------------------------------|--------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 40  | Detector changeover unit,<br>changeover error    |              | •  | During 1-drive unit 2-motor control, an error was detected in the motor changeover signal received form the detector changeover unit.                                                                                                                  | PR    |
| 41  | Detector changeover unit,<br>communication error | $\checkmark$ | •  | During 1-drive unit 2-motor control, an error was detected in the communication with the detector changeover unit.                                                                                                                                     | PR    |
| 42  | Feedback error 1                                 | •            |    | With the servo, pulse-type position detector feedback signal error was detected. With the spindle, a PLG feedback signal error was detected.                                                                                                           | PR    |
| 43  | Feedback error 2                                 | •            |    | With the servo, an excessive error was detected in the position data for<br>the motor side detector and machine side detector. With the spindle, an<br>error was detected in the encoder feedback signal.                                              | PR    |
| 44  | C-axis changeover alarm                          |              | •  | When using the coil changeover control motor, the mode was changed to C-axis control while the high-speed coil was selected.                                                                                                                           | NR    |
| 46  | Motor overheat                                   | 0            | 0  | The temperature protection function in the motor or detector activated.                                                                                                                                                                                | NR    |
| 4E  | NC command mode error                            |              | ٠  | A spindle control mode selection exceeding the specifications was input.                                                                                                                                                                               | NR    |
| 50  | Overload 1                                       | 0            | ٠  | The overload detection level reached 100% or more. The motor or drive unit is in the overload state.                                                                                                                                                   | NR    |
| 51  | Overload 2                                       | •            | •  | With the servo, a current command exceeding 95% of the unit's maximum current continued for one second or more. With the spindle, a load exceeding the continuous rating continued for 30 minutes or more.                                             | NR    |
| 52  | Excessive error 1                                | 0            | 0  | With the servo, the difference of the motor's actual position at servo ON<br>and the theoretical position exceeded the setting value. With the<br>spindle, the difference of the position command and position feedback<br>exceeded the setting value. | NR    |
| 53  | Excessive error 2                                | ٠            |    | The difference of the motor's actual position at servo OFF and the theoretical position exceeded the setting value.                                                                                                                                    | NR    |
| 54  | Excessive error 3                                | 0            |    | The motor current was not detected when the excessive error 1 alarm occurred.                                                                                                                                                                          | NR    |
| 58  | Collision detection 1 G0                         | 0            |    | When the collision detection function is valid, the disturbance torque exceeded the collision detection value during rapid traverse (G0).                                                                                                              | NR    |
| 59  | Collision detection 1 G1                         | 0            |    | When the collision detection function is valid, the disturbance torque exceeded the collision detection level during cutting feed (G1).                                                                                                                | NR    |
| 5A  | Collision detection 2                            | 0            |    | When the collision detection function is valid, the command torque reached the motor's maximum torque.                                                                                                                                                 | NR    |
| 5C  | Orientation feedback error                       |              | •  | After orientation was completed, the command and feedback error exceeded the parameter setting.                                                                                                                                                        | PR    |

(Note 1) Motor stopping method applied when self-axis drive unit alarm occurs is indicated in SV for servo and in SP for spindle.
 (Note 2) Servo (SV) alarm stopping method

 O: Deceleration control (when SV048, SV055 or SV056 is set)
 O: Dynamic brake stop

- (Note 3) Spindle (SP) alarm stopping method
   O: Deceleration control (when SP038/bit0=1 is set)

  - Coast to a stop
    Initial error (while motor is stopped)

# Power supply alarm

| No. | LED<br>display | Alarm name                                              | с٧ | CR | Alarm details                                                                                                                                                             | Reset |
|-----|----------------|---------------------------------------------------------|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 60  |                | Instantaneous power failure                             | ٠  | ٠  | A drop in the 24VDC power was detected.                                                                                                                                   | PR    |
| 61  | Ĩ              | Power module overcurrent                                | ٠  | ٠  | The power module's overcurrent protection function activated.                                                                                                             | PR    |
| 62  | Z              | Frequency error                                         | ٠  | ٠  | The input power frequency exceeded the specified range.                                                                                                                   | PR    |
| 63  | I              | Auxiliary regeneration error                            | ٠  | ٠  | The auxiliary regenerative transistor is still ON.                                                                                                                        | PR    |
| 65  | S              | Rush relay error                                        | ٠  | ۲  | The rush resistance short-circuit relay does not turn ON.                                                                                                                 | PR    |
| 67  | Ĩ              | Phase failure                                           | ٠  | ۲  | There is a phase failure in the input power.                                                                                                                              | PR    |
| 68  | 8              | Watch dog                                               | ٠  | ۲  | The system is not operating normally.                                                                                                                                     | AR    |
| 69  | 9              | Ground fault                                            | ٠  | ۲  | The motor power cable is contacting FG (ground).                                                                                                                          | PR    |
| 6A  | 8              | External contactor melting                              | ٠  | ۲  | The external contactor's contact has melted.                                                                                                                              | PR    |
| 6B  | b              | Rush relay melted                                       | ٠  | ۲  | The rush resistance short-circuit relay does not turn OFF.                                                                                                                | PR    |
| 6C  | Ľ              | Main circuit error                                      | ٠  | ۲  | An abnormality was detected in the main circuit capacitor's charging operation.                                                                                           | PR    |
| 6D  | J              | Parameter error                                         | ٠  | ۲  | The power supply unit's capacity is not appropriate for the regenerative resistor type set with the parameters.                                                           | PR    |
| 6E  | E              | Memory error                                            | ٠  | ۲  | An error was detected in the internal memory.                                                                                                                             | AR    |
| 6F  | F              | Power supply error                                      | •  | •  | The power supply is not connected, or an error was detected in the power supply's A/D converter.<br>This is detected simultaneously if another power supply alarm occurs. | AR    |
| 71  | Ħ              | Instantaneous power failure/<br>external emergency stop | ٠  | ٠  | An instantaneous power failure occurred.                                                                                                                                  | NR    |
| 73  |                | Over-regeneration                                       | ٠  | ۲  | The over-regeneration detection level exceeded 100%. The regenerative resistor is in the overload state.                                                                  | PR    |
| 74  | E              | Regenerative resistor<br>overheat                       | ٠  | ٠  | The temperature protection function in the regenerative resistor activated.                                                                                               | PR    |
| 75  | Ĩ              | Overvoltage                                             | ٠  | ٠  | The main circuit PN bus voltage exceeded the tolerable value.                                                                                                             | NR    |
| 76  |                | External emergency stop setting error                   | ٠  | ٠  | The rotary switch setting for the external emergency stop does not match the parameter setting.                                                                           | AR    |
| 77  |                | Power module overheat                                   | ٠  | ٠  | The power module's temperature protection function activated.                                                                                                             | AR    |

(Note 1) If a power supply alarm (60 to 77) occurs, all servos will stop with the dynamic brakes, and all spindles will be stop with the coast to a stop.
 (Note 2) "b", "C" and "d" displayed on the power supply unit's LED as a solid light (not flickering) do not indicate an alarm.

# Drive unit alarm

| No. | Alarm name                                          | sv           | SP | Alarm details                                                                                                                                                                                          | Reset |
|-----|-----------------------------------------------------|--------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7F  | Power reboot request                                |              |    | A mismatch in the program mode selection was detected. Turn the drive unit power ON again.                                                                                                             | PR    |
| 88  | Watch dog                                           | ٠            | ۲  | The system is not operating normally.                                                                                                                                                                  | AR    |
| 89  | Detector converter unit 2<br>connection error       | •            |    | th the servo, an error was detected in the connection with the analog<br>tput linear scale for the MDS-B-HR unit. With the spindle, initial<br>mmunication with the MDS-B-PJEX was not possible.       |       |
| 8A  | Encoder converter unit 2<br>communication error     | •            | •  | Vith the servo, an error was detected in the communication with the erial output linear scale for the MDS-B-HR unit. With the spindle, an error was detected in the communication with the MDS-B-PJEX. |       |
| 8B  | Encoder converter unit 2 automatic adjustment error |              |    | An abnormal signal from the PLG was detected during automatic<br>adjustment of the PLG.                                                                                                                | PR    |
| 8C  | Encoder converter unit 2 judgment error             | $\backslash$ |    | A detector type not within the specifications was detected with the MDS-B-PJEX.                                                                                                                        | PR    |
| 8D  | Encoder converter unit 2 CPU error                  | ٠            | ٠  | With the servo, a CPU error was detected with the MDS-B-HR unit.<br>With the spindle, a CPU error was detected with the MDS-B-PJEX unit.                                                               | AR    |
| 8E  | Encoder converter unit 2 data error                 | ٠            |    | A data error was detected with the MDS-B-HR unit.                                                                                                                                                      | PR    |

(Note 1) Motor stopping method applied when self-axis drive unit alarm occurs is indicated in SV for servo and in SP for spindle.
 (Note 2) Servo (SV) alarm stopping method

 O: Deceleration control (when SV048, SV055 or SV056 is set)
 O: Deceleration control (when SV048, SV055 or SV056 is set)

C. Deceleration control (when 30040, 30030 of 30
 C. Dynamic brake stop
 C. Dynamic brake stop
 C. Initial error (while motor is stopped)
 (Note 3) Spindle (SP) alarm stopping method
 O: Deceleration control (when SP038/bit0=1 is set)

•: Coast to a stop

■: Initial error (while motor is stopped)

## 6-2-2 List of warnings

When a warning occurs, a warning No. will appear on the NC monitor screen and with the LEDs on the front of the drive unit. Check the warning No., and remove the cause of the warning by following this list.

## Drive unit warnings

| No. | Alarm name                                                   | Warning details                                                                                                                               | Reset |
|-----|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 90  | Detector, initial communication error                        | Initial communication with the absolute position linear scale was not possible.                                                               | PR    |
| 91  | Detector, communication error                                | An error was detected in the communication with the detector for the absolute position detection system.                                      | *     |
| 92  | Detector, protocol error                                     | An error was detected in the data for the absolute position detection system.                                                                 | *     |
| 93  | Initial absolute position fluctuation                        | The position data fluctuated when creating the initial absolute position.                                                                     | PR    |
| 96  | MP scale feedback error                                      | An excessive deviation was detected in the motor end detector and MP scale feedback data for the MP scale absolute position detection system. | *     |
| 97  | MP scale offset error                                        | An error was detected in the offset data received from the MP scale for the MP scale absolute position detection system.                      | PR    |
| 9E  | Absolute position detector, multi-<br>rotation counter error | An error was detected in the multi-rotation counter for the absolute position detector. The absolute position cannot be compensated.          | *     |
| 9F  | Battery voltage drop                                         | The voltage of the battery supplying to the absolute position detector has dropped. The absolute position data is held.                       | *     |
| A8  | Turret indexing error warning                                | The commanded turret indexing position shift amount is not within the specified range.                                                        | *     |
| A9  | Orientation feedback error warn                              | Retrying during an orientation feedback error.                                                                                                | *     |
| E1  | Overload warning                                             | The overload detection level is 80% or more.                                                                                                  | *     |
| E3  | Absolute position counter warning                            | A deviation was detected in the absolute position data and absolute position data.                                                            | *     |
| E4  | Parameter error warning                                      | A parameter exceeding the setting range was set.                                                                                              | *     |
| E6  | Control axis removal warning                                 | Control axis removal was commanded.                                                                                                           | *     |
| E7  | CNC emergency stop                                           | Emergency stop was input from the NC.                                                                                                         | *     |

(Note 1) Servo and spindle motor do not stop when the warning occurs.

(Note 2) When an emergency stop is input, servo and spindle motor decelerate to a stop.

(When SV048, SV055 or SV056 is set for servo and when SP038/bit 0=1is set.)

#### Power supply warnings

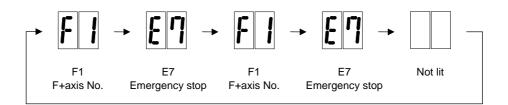
| No. | LED<br>display | Alarm name                               | с٧ | CR | Warning details                                                                | Reset |
|-----|----------------|------------------------------------------|----|----|--------------------------------------------------------------------------------|-------|
| E8  |                | Auxiliary regeneration<br>frequency over |    |    | Regeneration at the power supply performance limit is occurring<br>frequently. | *     |
| E9  | - 20' -        | Instantaneous power failure warning      | 0  |    | An instantaneous power failure occurred.                                       | NR    |
| EA  | 9              | External emergency stop                  | 0  |    | The external emergency stop signal was input.                                  | *     |
| EB  |                | Over-regeneration warning                | 0  |    | The over-regeneration level is 80% or more.                                    | *     |

(Note) Servo and spindle motor do not stop when the warning occurs.

#### **Resetting methods**

- $^{\ast}$   $\phantom{a}$  : Automatically reset once the cause of the warning is removed.
- NR : Reset with the NC RESET button. This warning can also be reset with the PR and AR resetting conditions.
- PR : Reset by turning the NC power ON again. This warning can also be reset with the AR resetting conditions. When the control axis is removed, this warning can be reset with the NC RESET button. (Excluding warning 93.)

# 6-3 Troubleshooting


Follow this section to troubleshoot the alarms that occur during start up or while the machine is operating. If the state is not improved with the following investigations, the drive unit may be faulty. Exchange the unit with another unit of the same capacity, and check whether the state is improved.

## 6-3-1 Troubleshooting at power ON

If the NC system does not start up correctly and a system error occurs when the NC power is turned ON, the drive unit may not have been started up properly. Check the LED display on the drive unit, and take measures according to this section.

| LED<br>display | Symptom                                                         | Cause of occurrence                           | Investigation method                                          | Remedy                                     |
|----------------|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|--------------------------------------------|
| AA             |                                                                 | The drive unit axis No. setting is incorrect. | Is there any other drive unit that has the same axis No. set? | Set correctly.                             |
|                | completed correctly.                                            | The CNC setting is incorrect.                 | Is the No. of CNC controlled axes<br>correct?                 | Set correctly.                             |
|                |                                                                 | Communication with CNC is incorrect.          | Is the connector (CN1A, CN1B)<br>disconnected?                | Connect correctly.                         |
|                |                                                                 |                                               | Is the cable broken?<br>Check the conductivity with a tester. | Replace the cable.                         |
| Ab             | Initial communication with the CNC was not carried              |                                               | Is the axis setting rotary switch set to "7" to "F"?          | Set correctly.                             |
|                | out.                                                            | Communication with CNC is incorrect.          | Is the connector (CN1A, CN1B)<br>disconnected?                | Connect correctly.                         |
|                |                                                                 |                                               | Is the cable broken?<br>Check the conductivity with a tester  | Replace the cable.                         |
| 12             | An error was detected in                                        | The CPU peripheral circuit is                 | Check the repeatability.                                      | Replace the unit.                          |
|                | the unit's memory and IC during the self-diagnosis at power ON. | abnormal.                                     | , , ,                                                         | Improve the<br>surrounding<br>environment. |

The drive unit has started up normally if the following type of emergency stop (E7) is displayed on the display unit's LED display.



Normal drive unit LED display at NC power ON (for 1st axis)

# 6-3-2 Troubleshooting for each alarm No.

| Alarm No.       Axis selection error         11       The axis No. selection switch setting is incorrect. |                                                                        |  |                                                |                                                                 |    |    |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|------------------------------------------------|-----------------------------------------------------------------|----|----|
|                                                                                                           | Investigation details                                                  |  | Investigation results                          | Remedies                                                        | SV | SP |
| 1                                                                                                         | Check the setting of the axis selection switch on the top of the unit. |  | The same axis No. is set for the L and M axes. | Correctly set the axis No.<br>0 = No. 1 axis, $1 = No. 2$ axis, | 0  |    |

|   | Alarm No.<br>12      | Memory error 1<br>A CPU or intern | al memory error was detected during th | e self-check at power ON. |    |    |
|---|----------------------|-----------------------------------|----------------------------------------|---------------------------|----|----|
|   | Investigati          | on details                        | Investigation results                  | Remedies                  | sv | SP |
| 1 | Refer to "6-3-1 Trou | ubleshooting at pov               | ver ON".                               |                           | 0  | 0  |

|   | Alarm No.<br>13                                    | Software process<br>The software p | ing error 1<br>rocess was not completed within the spo             | ecified time. (CPU1)                                                                                                                                             |    |    |
|---|----------------------------------------------------|------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigat                                         | ion details                        | Investigation results                                              | Remedies                                                                                                                                                         | SV | SP |
| 1 | Check whether the version was chang                |                                    | The version was changed.                                           | Try replacing with the drive unit containing the original software version.                                                                                      | 0  | 0  |
|   |                                                    |                                    | The version was not changed.                                       | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Check the repeata                                  | bility.                            | The error is always repeated.                                      | Replace the drive unit.                                                                                                                                          |    |    |
|   |                                                    |                                    | The state returns to normal once, but occurs sometimes thereafter. | Investigate item 3.                                                                                                                                              | 0  | 0  |
| 3 | Check if there is ar                               | ny abnormality in                  | No abnormality is found in particular.                             | Replace the drive unit.                                                                                                                                          |    |    |
|   | the unit's ambient (Ex. Ambient temp<br>grounding) |                                    | An abnormality was found in the ambient environment.               | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  | 0  |

| Alarm No.<br>14Software processing error 2<br>The software process was not completed within the specified time. (CPU2) |                     |                   |                       | ecified time. (CPU2) |    |    |
|------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-----------------------|----------------------|----|----|
|                                                                                                                        | Investigati         | on details        | Investigation results | Remedies             | SV | SP |
| 1                                                                                                                      | Carry out the items | for alarm No. 13. |                       |                      | 0  | 0  |

|   | Alarm No.<br>16     |                    | sition detection error<br>initial magnetic pole, required for m | otor control, was not completed.                                                                                  |    |    |
|---|---------------------|--------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati         | ion details        | Investigation results                                           | Remedies                                                                                                          | sv | SP |
| 1 | Was the spindle dri | ive unit replaced? | It was replaced.                                                | Carry out automatic adjustment of the PLG Z-phase.                                                                |    | 0  |
|   |                     |                    | It was not replaced.                                            | Investigate item 2.                                                                                               |    |    |
| 2 | Check the spindle   | parameters.        | SP205 = 0                                                       | Carry out automatic adjustment of the PLG Z-phase.                                                                |    |    |
|   |                     |                    | SP205 = 1                                                       | Set SP205 to 0, and turn the NC<br>power ON again. Then, carry out<br>automatic adjustment of the PLG<br>Z-phase. |    | 0  |

|   | Alarm No.<br>17 A/D converter error<br>An error was de                            | or<br>stected in the A/D converter for current F                   | B detection.                                                                                                                                                     |    |    |
|---|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation details                                                             | Investigation results                                              | Remedies                                                                                                                                                         | SV | SP |
| 1 | Check the repeatability.                                                          | The error is always repeated.                                      | Replace the drive unit.                                                                                                                                          | 0  |    |
|   |                                                                                   | The state returns to normal once, but occurs sometimes thereafter. | Investigate item 2.                                                                                                                                              |    | 0  |
| 2 | Check if there is any abnormality in                                              | No abnormality is found in particular.                             | Replace the drive unit.                                                                                                                                          |    |    |
|   | the unit's ambient environment.<br>(Ex. Ambient temperature, noise,<br>grounding) | An abnormality was found in the ambient environment.               | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  | 0  |

|   | Alarm No.<br>18                                                                              |                    | or, initial communication error<br>ation with the motor end detector was        | not possible.                                                                                                                                                    |    |    |
|---|----------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                  | on details         | Investigation results                                                           | Remedies                                                                                                                                                         | sv | SP |
| 1 | Check the servo pa<br>setting value.<br>OSE104: 0, OSA10<br>Are all other set to             | )4: 1<br>2?        | The value is not set correctly.<br>The value is set correctly.                  | Correctly set SV025.<br>Investigate item 2.                                                                                                                      | 0  |    |
| 2 | (Excluding slave axis for<br>synchronous control)<br>Check whether the drive unit            |                    | The connector is disconnected (or                                               |                                                                                                                                                                  |    |    |
|   | Check whether the drive unit<br>connectors (CN2) or detector<br>connectors are disconnected. |                    | The connector is disconnected (or loose).<br>The connector is not disconnected. | Correctly install.<br>Investigate item 3.                                                                                                                        | 0  |    |
| 3 | Turn the power OF detector cable conr tester.                                                |                    | There is a connection fault.<br>The connection is normal.                       | Replace the detector cable.<br>Investigate item 4.                                                                                                               | 0  |    |
| 4 | Connect to another<br>unit, and check whe<br>on the drive unit sic                           | ether the fault is | The alarm is on the drive unit side.<br>The alarm is on the detector side.      | Replace the drive unit.<br>Investigate item 5.                                                                                                                   | 0  |    |
| 5 | Check if there is an<br>the detector's ambi<br>(Ex. Ambient tempe                            | ent environment.   | No abnormality is found in particular.                                          | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |    |    |
|   | grounding)                                                                                   |                    | An abnormality was found in the ambient environment.                            | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |

| Alarm No.<br>19Synchronous control/detector communication error<br>Initial communication with the master axis motor end detector was not possible when th<br>command synchronous control was set. Or, the communication was cut off. |                                                                 |                |                                                        |                                                | d cur | rent |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------|--------------------------------------------------------|------------------------------------------------|-------|------|
|                                                                                                                                                                                                                                      | Investigation details                                           |                | Investigation results                                  | Remedies                                       | S٧    | SP   |
| 1                                                                                                                                                                                                                                    | Check whether the MDS-B-SD unit CN2B connector is disconnected. |                | The connector is disconnected.                         | Correctly connect.                             | 0     |      |
|                                                                                                                                                                                                                                      |                                                                 |                | The connector is not disconnected.                     | Investigate item 2.                            |       |      |
| 2                                                                                                                                                                                                                                    | Check the continuit<br>between the MDS-I                        | B-SD unit CN2B | The cable is disconnected or<br>incorrectly connected. | Replace the cable.                             | 0     |      |
|                                                                                                                                                                                                                                      | and the slave side drive unit CN3.                              |                | There is no abnormality in particular.                 | Try replacing the drive unit or MDS-B-SD unit. |       |      |

|   |                                                                                                                                           | etector, initial communication error unication with the linear scale or ball screv | v end detector was not possible.                                                                                                                                 |    |    |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation details                                                                                                                     | Investigation results                                                              | Remedies                                                                                                                                                         | SV | SP |
| 1 | Check the servo parameter<br>(SV025.pen) setting value.<br>Are the serial communication<br>parameters set for the pulse-type<br>detector? | The value is not set correctly.<br>The value is set correctly.                     | Correctly set SV025.<br>Investigate item 2.                                                                                                                      | 0  |    |
| 2 | Check whether the drive unit<br>connectors (CN3) or detector<br>connectors are disconnected.                                              | The connector is disconnected (or loose).<br>The connector is not disconnected.    | Correctly install.                                                                                                                                               | 0  |    |
| 3 |                                                                                                                                           |                                                                                    |                                                                                                                                                                  | -  |    |
| 3 | Turn the power OFF, and check the detector cable connection with a tester.                                                                | The connection is normal.                                                          | Replace the detector cable.<br>Investigate item 4.                                                                                                               | 0  |    |
| 4 | Connect to another normal axis dri                                                                                                        | Ve The alarm is on the drive unit side.                                            | Replace the drive unit.                                                                                                                                          |    |    |
|   | unit, and check whether the fault is<br>on the drive unit side or detector si                                                             |                                                                                    | Investigate item 5.                                                                                                                                              | 0  |    |
| 5 | Check if there is any abnormality in<br>the detector's ambient environmen<br>(Ex. Ambient temperature, noise,                             |                                                                                    | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |    |    |
|   | grounding)                                                                                                                                | An abnormality was found in the ambient environment.                               | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |

|   | Alarm No.<br>1B                                                                                                       | Machine side dete<br>A CPU initial err                                                                     | ctor, CPU error 1<br>or was detected with the linear scale of | r ball screw end detector.                                                                                                                                       |    |    |
|---|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                                           | on details                                                                                                 | Investigation results                                         | Remedies                                                                                                                                                         | sv | SP |
| 1 | Connect to another normal axis drive<br>unit, and check whether the fault is<br>on the drive unit side or scale side. |                                                                                                            | The alarm is on the drive unit side.                          | Replace the drive unit.                                                                                                                                          |    |    |
|   |                                                                                                                       |                                                                                                            | The alarm is on the detector side.                            | Investigate item 2.                                                                                                                                              | 0  |    |
| 2 | the detector's ambi                                                                                                   | neck if there is any abnormality in<br>e detector's ambient environment.<br>x. Ambient temperature, noise, |                                                               | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |    |    |
|   | grounding)                                                                                                            |                                                                                                            | An abnormality was found in the ambient environment.          | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |

| Alarm No.         An error was detected in the detected with the linear science |                                   |  | ctor, EEPROM/LED abnormality<br>tected in the data stored in the memory<br>e linear scale. | by the linear scale. Or, LED deteriorat | ion w | as |
|---------------------------------------------------------------------------------|-----------------------------------|--|--------------------------------------------------------------------------------------------|-----------------------------------------|-------|----|
|                                                                                 | Investigation details             |  | Investigation results                                                                      | Remedies                                | sv    | SP |
| 1                                                                               | 1 Check the alarm No. "1B" items. |  |                                                                                            |                                         | 0     |    |

| Alarm No.<br>1DMachine side detector, data error<br>A data error was detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball screw end detected with the linear scale or ball |                                 |  |                       | ew end detector. |    |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|-----------------------|------------------|----|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Investigation details           |  | Investigation results | Remedies         | SV | SP |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Check the alarm No. "1B" items. |  |                       | 0                |    |    |

| 1E An internal i |                                   |  | ctor, memory error<br>nory error was detected with the linear s | cale.    |    |    |
|------------------|-----------------------------------|--|-----------------------------------------------------------------|----------|----|----|
|                  | Investigation details             |  | Investigation results                                           | Remedies | sv | SP |
| 1                | 1 Check the alarm No. "1B" items. |  |                                                                 | 0        |    |    |

|   | Alarm No.<br>1F                                                     |                                     |                                                                                 | the linear scale or ball screw end detec                                                                                                                         | tor. C | Dr, |
|---|---------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
|   | Investigati                                                         | on details                          | Investigation results                                                           | Remedies                                                                                                                                                         | SV     | SP  |
| 1 | Check whether the<br>connectors (CN3) of                            | or detector                         | The connector is disconnected (or loose).                                       | Correctly install.                                                                                                                                               | 0      |     |
|   | connectors are disc                                                 | connected.                          | The connector is not disconnected.                                              | Investigate item 2.                                                                                                                                              |        |     |
| 2 | Is the detector cabl<br>same conduit as the<br>cable or are the two | e motor's power<br>o cables laid in | The cables are wired near each other. (Noise is entering from the power cable.) | Improve the cable wiring.                                                                                                                                        | 0      |     |
|   | parallel near each o                                                | other?                              | The wires are sufficiently separated.                                           | Investigate item 3.                                                                                                                                              |        |     |
| 3 | Is the motor FG wir<br>to the drive unit wh<br>(Is the motor groun  | ich drives it?                      | The motor FG wire is grounded on the motor side.                                | Ground the motor to one point,<br>connecting the wires together on the<br>drive unit side.                                                                       | 0      |     |
|   |                                                                     |                                     | The motor is grounded to one point.                                             | Investigate item 4.                                                                                                                                              |        |     |
| 4 | Turn the power OF                                                   | ,                                   | There is a connection fault.                                                    | Replace the detector cable.                                                                                                                                      |        |     |
|   | detector cable conr<br>tester. (Is the cable                        |                                     | The connection is normal.                                                       | Investigate item 5.                                                                                                                                              | 0      |     |
| 5 | Connect to another                                                  |                                     | The alarm is on the drive unit side.                                            | Replace the drive unit.                                                                                                                                          |        |     |
|   | unit, and check whe<br>on the drive unit sic                        |                                     | The alarm is on the detector side.                                              | Investigate item 6.                                                                                                                                              | 0      |     |
| 6 | Check if there is an<br>the detector's ambi<br>(Ex. Ambient tempe   | ent environment.                    | No abnormality is found in particular.                                          | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |        |     |
|   | grounding)                                                          |                                     | An abnormality was found in the ambient environment.                            | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0      |     |

|   | Alarm No.<br>20                                                   |                | r, No signal 1<br>no signal was detected.<br>tected in the A/B phase output wavefor            | m during PLG automatic adjustment.                                                                                                                                                                  | -  |    |
|---|-------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                       | ion details    | Investigation results                                                                          | Remedies                                                                                                                                                                                            | sv | SP |
| 1 | Check whether the connectors (CN5) c                              | or detector    | The connector is disconnected (or loose).                                                      | Correctly install.                                                                                                                                                                                  |    | 0  |
|   | connectors are disc                                               | connected.     | The connector is not disconnected.                                                             | Investigate item 2.                                                                                                                                                                                 |    |    |
| 2 | Turn the power OF                                                 |                | There is a connection fault.                                                                   | Replace the detector cable.                                                                                                                                                                         |    |    |
|   | detector cable conr<br>tester.                                    | nection with a | The connection is normal.                                                                      | Investigate item 3.                                                                                                                                                                                 |    | 0  |
| 3 | Check whether the alarm occurred during PLG automatic adjustment. |                | The alarm occurred during PLG automatic adjustment.                                            | Investigate item 4.                                                                                                                                                                                 |    | 0  |
|   |                                                                   |                | The alarm occurred during normal operation.                                                    | Investigate item 5.                                                                                                                                                                                 |    |    |
| 4 | Check the PLG output waveform (A/B phase).                        |                | There is a problem. (The A/B phase input voltage is 0.8V or less or 2.2V or higher.)           | Adjust the PLG output waveform.                                                                                                                                                                     |    | 0  |
|   |                                                                   |                | Normal                                                                                         | Investigate item 6.                                                                                                                                                                                 |    |    |
| 5 | Check the PLG out (Z-phase).                                      | tput waveform  | There is a problem. (The output<br>waveform is 0V even after the gears'<br>Z-phase is passed.) | Investigate item 7.                                                                                                                                                                                 |    | 0  |
|   |                                                                   |                | Normal                                                                                         | Investigate item 6.                                                                                                                                                                                 |    |    |
| 6 | Check the occurrer                                                | nce frequency. | Occurs each time.                                                                              | Replace the drive unit.                                                                                                                                                                             |    |    |
|   |                                                                   |                | Occurs occasionally.                                                                           | Check whether the cable is disconnected, whether there is a contact fault, or a detector fault.                                                                                                     |    | 0  |
| 7 | Check if there is an                                              |                | No abnormality is found in particular.                                                         | Replace the PLG detector.                                                                                                                                                                           |    |    |
|   | the unit's ambient e<br>(Ex. Ambient tempe<br>grounding)          |                | An abnormality was found in the ambient environment.                                           | Take measures according to the error<br>cause.<br>Cable disconnection, contact fault.<br>The sensor is hot during high-load<br>operation.<br>Review the operation, and adjust<br>the Z-phase again. |    | 0  |

|   | Alarm No.<br>21                                                                                                                                        | servo, or the en  | linear scale or ball screw end detector's coder no-signal was detected with the |                                                                                                                                                                  | -  |    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                                                                            | ion details       | Investigation results                                                           | Remedies                                                                                                                                                         | SV | SP |
| 1 | Check the servo parameter (SV025.<br>pen) setting value.<br>Are the pulse-type detector<br>parameters set for a serial<br>communication type detector? |                   | The value is not set correctly.<br>The value is set correctly.                  | Correctly set SV025.<br>Investigate item 3.                                                                                                                      | 0  |    |
| 2 | Check the spindle                                                                                                                                      |                   | Encoder orientation is not used.                                                | Set SP037/bit0 to 0.                                                                                                                                             |    | 0  |
|   | (SP037/bit0) setting                                                                                                                                   | gs.               | Encoder orientation is used.                                                    | Investigate item 3.                                                                                                                                              |    | Ŭ  |
| 3 | Check whether the drive unit<br>connectors (servo: CN3, spindle:<br>CN6) or detector connectors are<br>disconnected.                                   |                   | The connector is disconnected (or loose).                                       | Correctly install.                                                                                                                                               | 0  | 0  |
|   |                                                                                                                                                        |                   | The connector is not disconnected.                                              | Investigate item 4.                                                                                                                                              |    | 0  |
| 4 | Turn the power OF                                                                                                                                      |                   | There is a connection fault.                                                    | Replace the detector cable.                                                                                                                                      |    |    |
|   | detector cable con<br>tester.                                                                                                                          | nection with a    | The connection is normal.                                                       | Investigate item 5.                                                                                                                                              | 0  | 0  |
| 5 | Connect to another                                                                                                                                     |                   | The alarm is on the drive unit side.                                            | Replace the drive unit.                                                                                                                                          |    |    |
|   | unit, and check whe                                                                                                                                    |                   | The alarm is on the detector side.                                              | Investigate item 6.                                                                                                                                              | 0  | 0  |
| 6 | Check if there is an<br>the detector's ambi<br>(Ex. Ambient tempe                                                                                      | ient environment. | No abnormality is found in particular.                                          | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |    |    |
|   | grounding)                                                                                                                                             |                   | An abnormality was found in the ambient environment.                            | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  | 0  |

|   | Alarm No.<br>23 Excessive speed<br>A difference of<br>than the set tim                                                                     | 50r/min or more between the speed co   | mmand and speed feedback continue | d for lo | nger |
|---|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|----------|------|
|   | Investigation details                                                                                                                      | Investigation results                  | Remedies                          | SV       | SP   |
| 1 | Check the U, V and W wiring<br>between the spindle drive unit and                                                                          | The wires are not correctly connected. | Correctly connect.                |          | 0    |
|   | spindle motor.                                                                                                                             | The wires are correctly connected.     | Investigate item 2.               |          |      |
| 2 | Check the settings for SP034,                                                                                                              | The correct values are not set.        | Correctly set.                    |          |      |
|   | SP040, SP055, and SP257 to SP384.                                                                                                          | The correct values are set.            | Investigate item 3.               |          | 0    |
| 3 | Measure the acceleration/                                                                                                                  | 12 seconds or more.                    | Increase the SP055 setting value. |          |      |
|   | deceleration time constants.<br>Measure the time required to reach<br>the reverse run maximum speed from<br>the forward run maximum speed. | Less than 12 seconds.                  | Investigate item 4.               |          | 0    |
| 4 | Measure the load during cutting.                                                                                                           | 120% or more.                          | Reduce the load.                  |          | 0    |
|   |                                                                                                                                            | Less than 120%.                        | Investigate item 5.               |          |      |
| 5 | Check the PLG output waveform.                                                                                                             | There is a problem.                    | Adjust the PLG output waveform.   |          | 0    |
|   |                                                                                                                                            | Normal.                                | Replace the drive unit.           |          |      |

|   | Alarm No.<br>25                                           | Absolute position I<br>The backup volt |                                                                                                                | ropped causing the absolute position to                                   | be lo | ost. |
|---|-----------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|------|
|   | Investigatio                                              | on details                             | Investigation results                                                                                          | Remedies                                                                  | sv    | SP   |
| 1 | Is warning 9F occurring at the same time?                 |                                        | The warning is occurring.                                                                                      | Investigate item 2.                                                       | 0     |      |
|   |                                                           |                                        | The warning is not occurring.                                                                                  | Investigate item 3.                                                       |       |      |
| 2 | Measure the battery tester.                               | voltage with a                         | 3V or less.                                                                                                    | Replace the battery, and establish the zero point.                        | 0     |      |
|   |                                                           |                                        | 3V or more.                                                                                                    | Check the NC bus cable connection.                                        |       |      |
| 3 | Did alarm 18 occur v<br>was turned ON the la              | •                                      | Alarm 18 occurred.                                                                                             | Turn the drive unit control power ON again, and establish the zero point. | 0     |      |
|   |                                                           |                                        | Alarm 18 did not occur.                                                                                        | Investigate item 4.                                                       | ł     |      |
| 4 | Was the detector ca<br>cable disconnected t<br>long time? |                                        | The unit was left for a long time.<br>Guide at delivery : 20 hours or more<br>After 5 years : 10 hours or more | Turn the drive unit control power ON again, and establish the zero point. | 0     |      |
|   |                                                           |                                        | The cables were not disconnected.                                                                              | Investigate item 5.                                                       |       |      |
| 5 | Check the detector of                                     |                                        | The connection is faulty.                                                                                      | Replace the cable.                                                        | 0     |      |
|   | cable connection wit                                      | cable connection with a tester.        | The connection is normal.                                                                                      | Replace the drive unit.                                                   |       |      |

|   | Alarm No.<br>26                                          | Unusable axis erro<br>A power module<br>used axis). | or<br>e error is occurring with the axis for whi     | ch the axis No. selection switch is se                                                                                                                           | t to "F" | (not |
|---|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
|   | Investigati                                              | on details                                          | Investigation results                                | Remedies                                                                                                                                                         | SV       | SP   |
| 1 | Check if there is any abnormality in                     |                                                     | No abnormality is found in particular.               | Replace the drive unit.                                                                                                                                          |          |      |
|   | the unit's ambient e<br>(Ex. Ambient tempe<br>grounding) |                                                     | An abnormality was found in the ambient environment. | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0        |      |

| 27 A CF |                       | Machine side dete<br>A CPU error wa | ctor, CPU error 2<br>s detected with the linear scale. |          |    |    |
|---------|-----------------------|-------------------------------------|--------------------------------------------------------|----------|----|----|
|         | Investigation details |                                     | Investigation results                                  | Remedies | s٧ | SP |
| 1       | Check the alarm N     | o. "1B" items.                      |                                                        |          | 0  |    |

|   | Alarm No.<br>28                                         | Machine side dete<br>A speed exceed | ector, overspeed<br>ding the specified maximum speed was    | detected with the linear scale.                                                                                                                                  |    |    |
|---|---------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                             | on details                          | Investigation results                                       | Remedies                                                                                                                                                         | sv | SP |
| 1 | Check the linear so speed.                              | ale's maximum                       | The rapid traverse rate is higher than the specified value. | Use within the specified range.                                                                                                                                  |    |    |
|   |                                                         |                                     | The rapid traverse rate is less than the specified value.   | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Check if there is an                                    |                                     | No abnormality is found in particular.                      | Replace the linear scale.                                                                                                                                        |    |    |
|   | the detector's ambi<br>(Ex. Ambient tempe<br>grounding) |                                     | An abnormality was found in the ambient environment.        | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |

|          | Alarm No.<br>29Machine side detector, absolute position data error<br>An error was detected in the absolute position data detection circuit with the linear scale. |                                 |                       |          |    |         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|----------|----|---------|
|          | Investigation details                                                                                                                                              |                                 | Investigation results | Remedies | SV | SP      |
| 1        | Check the alarm N                                                                                                                                                  | Check the alarm No. "1B" items. |                       |          | 0  |         |
| <u> </u> |                                                                                                                                                                    |                                 |                       |          |    | <b></b> |

|   | Alarm No.<br>2A       | Machine side detector, incremental position data error<br>An error was detected in the relative position data detection circuit with the linear scale. |                       |          |    |    |
|---|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----|----|
|   | Investigation details |                                                                                                                                                        | Investigation results | Remedies | sv | SP |
| 1 | Check the alarm No    | o. "1B" items.                                                                                                                                         |                       |          | 0  |    |

|   | Alarm No.     Motor side detector, CPU error 1       2B     A CPU initial error was detected with the motor end detector. |             |                                                      |                                                                                                                                                                  |    |    |
|---|---------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                                               | ion details | Investigation results                                | Remedies                                                                                                                                                         | SV | SP |
| 1 | the detector's ambient environment.<br>(Ex. Ambient temperature, noise,<br>grounding)                                     |             | No abnormality is found in particular.               | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |    |    |
|   |                                                                                                                           |             | An abnormality was found in the ambient environment. | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |

| Alarm No.<br>2C                   |                       |  | Motor side detector, EEPROM/LED error<br>Deterioration of the LEDs was detected with the motor end detector. |                       |          |    |    |
|-----------------------------------|-----------------------|--|--------------------------------------------------------------------------------------------------------------|-----------------------|----------|----|----|
|                                   | Investigation details |  | on details                                                                                                   | Investigation results | Remedies | SV | SP |
| 1 Check the alarm No. "2B" items. |                       |  |                                                                                                              |                       | 0        |    |    |

| 2D A data |   | Motor side detecto<br>A data error was | or, data error<br>s detected with the motor end detector. |                       |          |    |    |
|-----------|---|----------------------------------------|-----------------------------------------------------------|-----------------------|----------|----|----|
|           |   | Investigation details                  |                                                           | Investigation results | Remedies | sv | SP |
|           | 1 | Check the alarm No                     | o. "2B" items.                                            |                       |          | 0  |    |

|   | Alarm No.<br>2F                                                    |                    | or, communication error<br>n data error was detected with the mot               | or end detector. Or, communication wa                                                                                                                            | s cut | off. |
|---|--------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
|   | Investigati                                                        | on details         | Investigation results                                                           | Remedies                                                                                                                                                         | S٧    | SP   |
| 1 | Check whether the connectors (CN2) of                              | or detector        | The connector is disconnected (or loose).                                       | Correctly install.                                                                                                                                               | 0     |      |
|   | connectors are disc                                                | connected.         | The connector is not disconnected.                                              | Investigate item 2.                                                                                                                                              |       |      |
| 2 | Is the detector cabl<br>same conduit as th<br>cable or are the two | e motor's power    | The cables are wired near each other. (Noise is entering from the power cable.) | Improve the cable wiring.                                                                                                                                        | 0     |      |
|   | parallel near each o                                               | other?             | The wires are sufficiently separated.                                           | Investigate item 3.                                                                                                                                              |       |      |
| 3 | Is the motor FG wir to the drive unit wh                           | ,                  | The motor FG wire is grounded on the motor side.                                | Connect together on the drive unit side.                                                                                                                         | 0     |      |
|   | (Is the motor groun                                                | ded to one point?) | The motor is grounded to one point.                                             | Investigate item 4.                                                                                                                                              |       |      |
| 4 | Turn the power OF                                                  |                    | There is a connection fault.                                                    | Replace the detector cable.                                                                                                                                      |       |      |
|   | detector cable conr<br>tester. (Is the cable                       |                    | The connection is normal.                                                       | Investigate item 5.                                                                                                                                              | 0     |      |
| 5 | Connect to another                                                 |                    | The alarm is on the drive unit side.                                            | Replace the drive unit.                                                                                                                                          |       |      |
|   | unit, and check whe                                                |                    | The alarm is on the detector side.                                              | Investigate item 6.                                                                                                                                              | 0     |      |
| 6 | Check if there is an<br>the detector's ambi<br>(Ex. Ambient tempe  | ent environment.   | No abnormality is found in particular.                                          | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |       |      |
|   | grounding)                                                         |                    | An abnormality was found in the ambient environment.                            | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0     |      |

|   | Alarm No.<br>31                                  | Overspeed<br>A rotation speed | d exceeding the motor's tolerable rotat                                 | ion speed was detected.                                                                                                    |    |    |
|---|--------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                      | on details                    | Investigation results                                                   | Remedies                                                                                                                   | sv | SP |
| 1 | Check the rapid tra<br>and motor maximum         |                               | The rapid traverse rate is too fast.                                    | Set within the motor's maximum rotation speed.                                                                             | 0  |    |
|   |                                                  |                               | The speed is within the motor's maximum rotation speed.                 | Investigate item 2.                                                                                                        |    |    |
| 2 | Check the settings                               |                               | The settings are incorrect.                                             | Correctly set.                                                                                                             |    |    |
|   | parameters SV001<br>(PC2), SV018 (PIT<br>(MTYP). |                               | Correctly set.                                                          | Investigate item 5.                                                                                                        | 0  |    |
| 3 | Confirm the spindle SP017 (TSP) settin           |                               | The setting is incorrect.<br>The alarm is detected at 115% of<br>SP017. | Correctly set.                                                                                                             |    | 0  |
|   |                                                  |                               | Correctly set.                                                          | Investigate item 4.                                                                                                        |    |    |
| 4 | Confirm the PLG or                               | utput waveform.               | There is a problem.                                                     | Adjust the PLG output waveform.                                                                                            |    | 0  |
|   |                                                  |                               | Normal.                                                                 | Investigate item 5.                                                                                                        |    |    |
| 5 | Check whether the<br>is overshooting.            | speed waveform                | The waveform is overshooting.                                           | Increase the acceleration/<br>deceleration time constant.                                                                  |    |    |
|   |                                                  |                               | The waveform is not overshooting.                                       | Check if there is any abnormality in<br>the unit's ambient environment.<br>(Ex.: Ambient temperature, noise,<br>grounding) | 0  | 0  |

|   | Alarm No.<br>32                                                       | Power module ove<br>The power mod | ercurrent<br>ule's overcurrent protection function act                                  | tivated.                                                                                                                                            | _  |    |
|---|-----------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                           | on details                        | Investigation results                                                                   | Remedies                                                                                                                                            | sv | SP |
| 1 | Check the repeatat                                                    | bility.                           | The alarm occurs before READY ON.<br>(The drive unit is faulty.)                        | Check investigation item 2 and following, and remove the cause of the fault. Then replace the drive unit.                                           | 0  | 0  |
|   |                                                                       |                                   | The alarm occurs after READY ON.                                                        | Investigate item 2.                                                                                                                                 |    |    |
| 2 | Check the parameter setting.<br>Motor type                            |                                   | The setting is incorrect.<br>Servo : SV025<br>Spindle : SP034, SP040, SP257 to<br>SP384 | Correctly set.                                                                                                                                      | 0  | 0  |
|   |                                                                       |                                   | The setting is correct.                                                                 | Investigate item 3.                                                                                                                                 |    |    |
| 3 | Check the parameter settings.<br>• Current loop gain                  |                                   | The setting is large compared to the standard value.                                    | Set the standard value.                                                                                                                             | 0  | 0  |
|   | <ul> <li>Speed loop gain</li> </ul>                                   |                                   | The standard value is set.                                                              | Investigate item 4.                                                                                                                                 |    |    |
| 4 | Disconnect the UV                                                     |                                   | The power cable is short-circuited.                                                     | Replace the motor's power cable.                                                                                                                    |    |    |
|   | from the terminal bl<br>cannon plug from the<br>the insulation with a | he motor. Check                   | There is no problem.                                                                    | Investigate item 5.                                                                                                                                 | 0  | 0  |
| 5 | Check the insulatio                                                   | n between the                     | The power cable is short-circuited.                                                     | Replace the motor's power cable.                                                                                                                    | 0  | 0  |
|   | motor power cable                                                     | and FG.                           | There is no problem.                                                                    | Investigate item 6.                                                                                                                                 | Ŭ  | U  |
| 6 | Connect the canno<br>the insulation betwee<br>cable and FG.           |                                   | The motor is short-circuited.                                                           | Replace the motor.<br>(With the absolute position system,<br>the zero point must be established.)                                                   | 0  | 0  |
|   |                                                                       |                                   | There is no problem.                                                                    | Investigate item 7.                                                                                                                                 |    |    |
| 7 | Check for any abno                                                    |                                   | No abnormality is found in particular.                                                  | Replace the drive unit.                                                                                                                             |    |    |
|   | motor's ambient en<br>(Ex.: Ambient temp<br>water)                    |                                   | An abnormality was found in the ambient environment.                                    | Replace the motor and improve the<br>motor installation environment.<br>(With the absolute position system,<br>the zero point must be established.) | 0  | 0  |

|   | Aldrii NU.                                                                                                                           | r CRC error between NC and drive unit<br>etected in the data received from the NC |                                                                                                                                                                  |    |    |
|---|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation details                                                                                                                | Investigation results                                                             | Remedies                                                                                                                                                         | SV | SP |
| 1 | Try replacing the terminator or battery                                                                                              | The state is improved.                                                            | Replace the cause of the fault.                                                                                                                                  | 0  | 0  |
|   | unit.                                                                                                                                | The state is not improved.                                                        | Investigate item 2.                                                                                                                                              |    | 0  |
| 2 | Check the NC bus communication                                                                                                       | The connection is incorrect.                                                      | Replace the cable.                                                                                                                                               |    |    |
|   | <ul><li>cable connection.</li><li>Is the cable disconnected?</li><li>Is the communication pair cable connected in reverse?</li></ul> | There is no problem.                                                              | Investigate item 3.                                                                                                                                              | 0  | 0  |
| 3 | Change the order of the connected drive units.                                                                                       | The alarm is on the cable connections.                                            | Replace the cable.                                                                                                                                               | 0  | 0  |
|   | (The rotary switch does not need to be changed.)                                                                                     | The alarm is on the unit connections.                                             | Investigate item 4.                                                                                                                                              |    |    |
| 4 | Check if there is any abnormality in                                                                                                 | No abnormality is found in particular.                                            | Replace the unit.                                                                                                                                                |    |    |
|   | the unit's ambient environment.<br>(Ex. Ambient temperature, noise,<br>grounding)                                                    | An abnormality was found in the ambient environment.                              | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  | 0  |

|   | Alarm No.<br>35                                                                      | The movement command data reasived from the NC was every |                                   |                                                                                              |    |    |  |  |
|---|--------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|----|----|--|--|
|   | Investigation details                                                                |                                                          | Investigation results             | Remedies                                                                                     | SV | SP |  |  |
| 1 | Is the rapid traverse rate large for<br>using a sub-micron system or rotary<br>axis? |                                                          | The rapid traverse rate is large. | Check the rapid traverse rate limit.                                                         | 0  | 0  |  |  |
|   |                                                                                      |                                                          | The rate is not especially large. | Look for problems on the NC side,<br>such as not being able to follow up<br>the position FB. |    |    |  |  |

|   | Alarm No.<br>36                                                                                                                                                     |            | ansmission error between NC and drive unit<br>om the NC was cut off. |                                                                                                                                                                  |    |    |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|--|
|   | Investigati                                                                                                                                                         | on details | Investigation results                                                | Remedies                                                                                                                                                         | SV | SP |  |
| 1 | Check whether the NC bus<br>communication cable connectors<br>(CN1A, CN1B) are disconnected.                                                                        |            | The connector is disconnected (or loose).                            | Connect correctly.                                                                                                                                               | 0  | 0  |  |
|   |                                                                                                                                                                     |            | The state is not improved.                                           | Investigate item 2.                                                                                                                                              |    |    |  |
| 2 | <ul><li>Check the NC bus communication cable connection.</li><li>Is the cable disconnected?</li><li>Is the communication pair cable connected in reverse?</li></ul> |            | The connection is incorrect.                                         | Replace the cable.                                                                                                                                               |    |    |  |
|   |                                                                                                                                                                     |            | There is no problem.                                                 | Investigate item 3.                                                                                                                                              | 0  | 0  |  |
| 3 | Change the order of the connected<br>drive units.<br>(The rotary switch does not need to<br>be changed.)                                                            |            | The alarm is on the cable connections.                               | Replace the cable.                                                                                                                                               | 0  | 0  |  |
|   |                                                                                                                                                                     |            | The alarm is on the unit connections.                                | Investigate item 4.                                                                                                                                              |    |    |  |
| 4 | Check if there is any abnormality in<br>the unit's ambient environment.<br>(Ex. Ambient temperature, noise,<br>grounding)                                           |            | No abnormality is found in particular.                               | Replace the unit.                                                                                                                                                |    | 0  |  |
|   |                                                                                                                                                                     |            | An abnormality was found in the ambient environment.                 | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |  |

|   | Alarm No.       Initial parameter error         A7       An illegal parameter was detected in the parameters received from the NC at NC power ON.         S02 initial parameter error ####" is displayed on the NC screen. #### indicates the incorrect parameter No.         Investigation details       Investigation results       Remedies       SV       SF |            |                                                                                                                             |                                                                                            |    |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                                                                                                                                                                                                                                                                                      | on details | Investigation results                                                                                                       | Remedies                                                                                   | sv | SP |
| 1 | Check the error par                                                                                                                                                                                                                                                                                                                                              | ameter No. | SV001 to SV065 (M60S Series: 2201<br>to 2265)<br>SP001 to SP384 (M60S Series: 3201<br>to 3584)                              | Set the value within the designated setting range.                                         | 0  | 0  |
|   |                                                                                                                                                                                                                                                                                                                                                                  |            | SV101 (M60S Series: 2301)<br>The electronic gears are overflowing.                                                          | Check SV001, SV002 and SV018.                                                              |    |    |
|   |                                                                                                                                                                                                                                                                                                                                                                  |            | SV102 (M60S Series: 2302)<br>The absolute position detection<br>parameter is valid when OSE104 and<br>OSE105 are connected. | Absolute position control cannot be used. To use, change to an absolute position detector. | 0  |    |
|   |                                                                                                                                                                                                                                                                                                                                                                  |            | SV104 (M60S Series: 2304)<br>No SHG control operation is<br>provided.                                                       | SHG control cannot be used.                                                                |    |    |
|   |                                                                                                                                                                                                                                                                                                                                                                  |            | SV105 (M60S Series: 2305)<br>No adaptive filter option is provided.                                                         | The adaptive filter cannot be used.                                                        | 0  |    |

(Note) Refer to "6-3-4 Parameter numbers at initial parameter error".

| Alarm No.<br>38 |                                   | Communication or protocol error 1 between NC and drive unit<br>An error was detected in the communication frame received from the NC. |                       |          |    |    |
|-----------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----|----|
|                 | Investigation details             |                                                                                                                                       | Investigation results | Remedies | SV | SP |
| 1               | 1 Check the alarm No. "34" items. |                                                                                                                                       |                       |          | 0  | 0  |

| Alarm No.<br>39 |                       | Communication or protocol error 2 between NC and drive unit<br>An error was detected in the axis information data received from the NC. |                       |          |    |    |
|-----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----|----|
|                 | Investigation details |                                                                                                                                         | Investigation results | Remedies | SV | SP |
| 1               | Check the alarm Ne    | o. "34" items.                                                                                                                          |                       |          | 0  | 0  |

|   | Alarm No.<br>3A                                                                                                                           | Overcurrent<br>An excessive cu | urrent was detected in the motor drive o                     | current.                                                                                                             |    | -  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                                                               | ion details                    | Investigation results                                        | Remedies                                                                                                             | sv | SP |
| 1 | Check whether vib                                                                                                                         | ration is occurring.           | Vibration is occurring.                                      | <ul> <li>Set a filter.</li> <li>Lower the speed loop gain<br/>(SV005).</li> </ul>                                    | 0  |    |
|   |                                                                                                                                           |                                | There is no vibration.                                       | Investigate item 2.                                                                                                  |    |    |
| 2 | The speed loop ga                                                                                                                         | in (SV005) setting             | The setting is too large.                                    | Set an appropriate value.                                                                                            |    |    |
|   | is larger than the s                                                                                                                      | tandard value.                 | The setting is approximately the same as the standard value. | Investigate item 3.                                                                                                  | 0  |    |
| 3 | Check the current                                                                                                                         |                                | The setting is incorrect.                                    | Set the standard value.                                                                                              | 0  |    |
|   | (SV009, SV010, SV                                                                                                                         | √011, SV012)                   | The standard value is set.                                   | Investigate item 4.                                                                                                  | Ŭ  |    |
| 4 | Disconnect the UVW phase wiring<br>from the terminal block, and the<br>cannon plug from the motor. Check<br>the insulation with a tester. |                                | The power cable is short-circuited.                          | Replace the motor power cable.                                                                                       |    |    |
|   |                                                                                                                                           |                                | There is no problem.                                         | Investigate item 5.                                                                                                  | 0  |    |
| 5 | Check the insulation motor power cable                                                                                                    |                                | There is a ground fault at the power cable.                  | Replace the motor power cable.                                                                                       | 0  |    |
|   |                                                                                                                                           |                                | There is no problem.                                         | Investigate item 6.                                                                                                  |    |    |
| 6 | Connect the canno<br>the insulation betw<br>cable and FG.                                                                                 |                                | There is a ground fault in the motor.                        | Replace the motor.<br>(With the absolute position system,<br>the zero point must be established.)                    | 0  |    |
|   |                                                                                                                                           |                                | There is no problem.                                         | Investigate item 7.                                                                                                  |    |    |
| 7 | Check if there is an                                                                                                                      |                                | No abnormality is found in particular.                       | Replace the drive unit.                                                                                              |    |    |
|   | the motor's ambien<br>(Ex. Ambient tempo<br>water)                                                                                        |                                | An abnormality was found in the ambient environment.         | Improve the installation environment.<br>(With the absolute position system,<br>the zero point must be established.) | 0  |    |

|   | Alarm No.<br>3B                                                                                                                                                           | Power module ove<br>The power mod                                           | erheat<br>ule's temperature protection function ac                                               | stivated.                                                                                                                                                                                                                                          |    |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                                                                                               | ion details                                                                 | Investigation results                                                                            | Remedies                                                                                                                                                                                                                                           | sv | SP |
| 1 | confirm the rotation of the fan.<br>Note) Assure more than 10 seconds<br>for the time from when the<br>power is turned OFF till when it<br>is turned ON. For the fan used |                                                                             | The fan is rotating, and an alarm did not occur again.                                           | Continue to use.<br>The power may be turned ON without<br>assuring more than 10 seconds for<br>the time from when the power is<br>turned OFF till when it is turned ON.<br>Leave for more than 10 seconds or<br>more, and turn the power ON again. | 0  | 0  |
|   | more than 10<br>time from wh<br>turned OFF t                                                                                                                              | The fan did not rotate. Or, an alarm occurred again.<br>Investigate item 2. |                                                                                                  |                                                                                                                                                                                                                                                    |    |    |
| 2 | Confirm adhesion of<br>cutting chips, etc. a<br>if there is any abno                                                                                                      | at the fan. Or check ormality such as                                       | Large amounts of cutting oil or cutting<br>chips, etc., are adhered, or the<br>rotation is slow. | Clean or replace the fan.                                                                                                                                                                                                                          | 0  | 0  |
|   | low rotation speed.                                                                                                                                                       |                                                                             | The fan is rotating properly.                                                                    | Investigate item 3.                                                                                                                                                                                                                                |    |    |
| 3 | Check whether the<br>fins are dirty.                                                                                                                                      | heat dissipating                                                            | Cutting oil or cutting chips, etc., are adhered, and the fins are clogged.                       | Clean the fins.                                                                                                                                                                                                                                    | 0  | 0  |
|   |                                                                                                                                                                           |                                                                             | The fins are normal.                                                                             | Investigate item 4.                                                                                                                                                                                                                                |    |    |
| 4 | Measure the drive temperature.                                                                                                                                            | unit's ambient                                                              | 55°C or more                                                                                     | Improve the ventilation and cooling for the power distribution panel.                                                                                                                                                                              | 0  | 0  |
|   |                                                                                                                                                                           |                                                                             | Less than 55°C.                                                                                  | Investigate item 5.                                                                                                                                                                                                                                |    |    |
| 5 |                                                                                                                                                                           | environment.                                                                | No abnormality is found in particular.                                                           | If the alarm occurs even after the unit temperature has dropped, replace the unit.                                                                                                                                                                 |    |    |
|   |                                                                                                                                                                           |                                                                             | An abnormality was found in the ambient environment.                                             | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground.                                                                                   | 0  | 0  |

|   | Alarm No.<br>3D                                                                                                                                        | Spindle speed lock<br>Even when the<br>more. |                                              | e motor speed does not increase to 4                                 | 5r/min c | or |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------|----|
|   | Investigat                                                                                                                                             | ion details                                  | Investigation results                        | Remedies                                                             | sv       | SP |
| 1 | Does the alarm oc<br>after the power is t                                                                                                              |                                              | Occurs immediately after power is turned ON. | Investigate item 2.                                                  |          | 0  |
|   |                                                                                                                                                        |                                              | Occurs after normal operation.               | Investigate item 5.                                                  |          |    |
| 2 | Is there any abnor starting?                                                                                                                           | mal noise when                               | There is abnormal noise.                     | Investigate item 4.<br>(The initial pole estimate may be incorrect.) |          | 0  |
|   |                                                                                                                                                        |                                              | There is no abnormal noise.                  | Investigate item 3.                                                  |          |    |
| 3 |                                                                                                                                                        | voltage is supplied                          | The voltage is not supplied.                 | Correctly supply the PN voltage.                                     |          |    |
|   | to the drive unit. <ul> <li>Is the CHARGE lamp ON?</li> </ul>                                                                                          |                                              | Approx. 300V is correctly supplied.          | Investigate item 3.                                                  |          | 0  |
| 4 | immediately after e<br>cancelled.)<br>• The power cable                                                                                                | check the operation<br>emergency stop is     | The connections are incorrect.               | Connect correctly.                                                   |          | 0  |
|   | <ul> <li>Is the cable conr<br/>for another axis?</li> <li>Is the contactor I<br/>unit and motor C<br/>(When using coil<br/>specifications.)</li> </ul> | ?<br>between the drive<br>DFF?               | The connections are correct.                 | Investigate item 5.                                                  |          |    |
| 5 | Check the load val                                                                                                                                     | lue with the spindle                         | The cutting load is large.                   | Lower the cutting load.                                              |          |    |
|   | monitor, and invest<br>machine's load sta                                                                                                              | 0                                            | The cutting load is not large.               | Investigate item 6.                                                  |          | 0  |
| 6 | Check whether the                                                                                                                                      |                                              | Locked with a mechanical lock.               | Remove the cause of the lock.                                        |          |    |
|   | section is locked w<br>lock (C-axis clamp                                                                                                              |                                              | Not locked with a mechanical lock.           | Investigate item 7.                                                  |          | 0  |
| 7 | Try replacing the d                                                                                                                                    | Irive unit.                                  | Improved.                                    | Replace the drive unit.                                              |          |    |
|   |                                                                                                                                                        |                                              | Not improved.                                | Investigate the motor.<br>(Check the motor type and<br>parameters.)  |          | 0  |

|   | Alarm No.                                                                                                                                                                                                                                        | detected.<br>2. Even though                                                        | rrun<br>ich the motor's speed feedback excee<br>the speed command is 0 (including wl<br>eding the parameter setting value was | hen stopped during position control),                               |    | as |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----|----|
|   | Investigation of                                                                                                                                                                                                                                 | details                                                                            | Investigation results                                                                                                         | Remedies                                                            | SV | SP |
| 1 | Does the alarm occur immediately after the power is turned ON?                                                                                                                                                                                   |                                                                                    | Occurs immediately after power is turned ON.                                                                                  | Investigate item 2.                                                 |    | 0  |
|   |                                                                                                                                                                                                                                                  |                                                                                    | Occurs after normal operation.                                                                                                | Investigate item 3.                                                 |    |    |
| 2 | Check the motor power<br>W phases). (Also check<br>immediately after emerg<br>cancelled.)<br>• The power cable is no<br>• Is the cable connecte<br>for another axis?<br>• Is the contactor betwe<br>unit and motor OFF?<br>(When using coil char | the operation<br>gency stop is<br>ot connected.<br>d to the motor<br>een the drive | The connections are incorrect.                                                                                                | Connect correctly.                                                  |    | 0  |
| 3 | specifications.)<br>Check whether the spin                                                                                                                                                                                                       | dle rotary                                                                         | Locked with a mechanical lock.                                                                                                | Remove the cause of the lock.                                       |    |    |
|   | section is locked with a lock (C-axis clamp, etc.                                                                                                                                                                                                | mechanical                                                                         | Not locked with a mechanical lock.                                                                                            | Investigate item 4.                                                 |    | 0  |
| 4 | Try replacing the drive u                                                                                                                                                                                                                        | unit.                                                                              | Improved.                                                                                                                     | Replace the drive unit.                                             |    |    |
|   |                                                                                                                                                                                                                                                  |                                                                                    | Not improved.                                                                                                                 | Investigate the motor.<br>(Check the motor type and<br>parameters.) |    | 0  |

|   | Alarm No.<br>3F                                                                                 |            | deflection 2<br>speed operation, the difference betwe<br>et amount and set time. | een the speed command and speed                                     | feedbacl | ĸ  |
|---|-------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|----------|----|
|   | Investigation details                                                                           |            | Investigation results                                                            | Remedies                                                            | SV       | SP |
| 1 |                                                                                                 |            | The cutting load is large.                                                       | Lower the cutting load.                                             |          |    |
|   |                                                                                                 |            | The cutting load is not large.                                                   | Investigate item 2.                                                 |          | 0  |
| 2 | Check whether the spindle rotary section is locked with a mechanical lock (C-axis clamp, etc.). |            | Locked with a mechanical lock.                                                   | Remove the cause of the lock.                                       |          |    |
|   |                                                                                                 |            | Not locked with a mechanical lock.                                               | Investigate item 3.                                                 |          | 0  |
| 3 | Try replacing the di                                                                            | rive unit. | Improved.                                                                        | Replace the drive unit.                                             |          |    |
|   |                                                                                                 |            | Not improved.                                                                    | Investigate the motor.<br>(Check the motor type and<br>parameters.) |          | 0  |

|   | Alarm No.<br>40                                                                                  |            | over unit, changeover error<br>unit 2-motor control, an error was detect<br>angeover unit. | ted in the motor changeover signal re                                                                                                                            | ceived | form |
|---|--------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
|   | Investigation                                                                                    | on details | Investigation results                                                                      | Remedies                                                                                                                                                         | SV     | SP   |
| 1 | hand to check whether it is                                                                      |            | The connector is disconnected (or loose).                                                  | Correctly install.                                                                                                                                               |        | 0    |
|   |                                                                                                  |            | The connector is not disconnected.                                                         | Investigate item 2.                                                                                                                                              |        |      |
| 2 | Check whether the cable connected<br>between the spindle drive unit and<br>FR-TK unit is broken. |            | The cable is broken.                                                                       | Replace the cable.                                                                                                                                               |        |      |
|   |                                                                                                  |            | The cable is not broken.                                                                   | Investigate item 3.                                                                                                                                              |        | 0    |
| 3 | Check if there is any                                                                            |            | No abnormality is found in particular.                                                     | Replace the drive unit.                                                                                                                                          |        |      |
|   | the unit's ambient environment.<br>(Ex. Ambient temperature, noise,<br>grounding)                |            | An abnormality was found in the ambient environment.                                       | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. |        | 0    |

| Alarm NO.<br>During 1-dr |                       |                | ver unit, communication error<br>nit 2-motor control, an error was detect | ed in the communication with the detec | tor |    |
|--------------------------|-----------------------|----------------|---------------------------------------------------------------------------|----------------------------------------|-----|----|
|                          | Investigation details |                | Investigation results                                                     | Remedies                               | sv  | SP |
| 1                        | Check the alarm No    | o. "40" items. |                                                                           |                                        |     | 0  |

|   | Alarm No.<br>42                                                               |                   | pulse-type position detector feedback s<br>ignal error was detected. | signal error was detected. With the spin                                                                                                                         | dle, a | 1  |
|---|-------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
|   | Investigati                                                                   | on details        | Investigation results                                                | Remedies                                                                                                                                                         | sv     | SP |
| 1 | Check whether the connectors (servo:                                          | CN3, spindle:     | The connector is disconnected (or loose).                            | Correctly install.                                                                                                                                               | 0      | 0  |
|   | CN6) or detector co<br>disconnected.                                          | onnectors are     | The connector is not disconnected.                                   | Investigate item 2.                                                                                                                                              |        |    |
| 2 | Turn the power OF                                                             |                   | There is a connection fault.                                         | Replace the detector cable.                                                                                                                                      |        |    |
|   | detector cable conr<br>tester.                                                | nection with a    | The connection is normal.                                            | Investigate item 3.                                                                                                                                              | 0      | 0  |
| 3 | Connect to another                                                            | normal axis drive | The alarm is on the drive unit side.                                 | Replace the drive unit.                                                                                                                                          |        |    |
|   | unit, and check whether the fault is on the drive unit side or detector side. |                   | The alarm is on the detector side.                                   | Servo : Investigate item 5.<br>Spindle : Investigate item 4.                                                                                                     | 0      | 0  |
| 4 | Check the PLG out                                                             | put waveform.     | There is a problem.                                                  | Adjust the PLG output waveform.                                                                                                                                  |        | 0  |
|   |                                                                               |                   | Normal                                                               | Investigate item 5.                                                                                                                                              |        |    |
| 5 | Check if there is an<br>the detector's ambi<br>(Ex. Ambient tempe             | ent environment.  | No abnormality is found in particular.                               | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |        |    |
|   | grounding)                                                                    |                   | An abnormality was found in the ambient environment.                 | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0      | 0  |

|   | Alarm No.<br>43                                                    | machine side de                     | an excessive error was detected in the etector. With the spindle, an error was o | detected in the encoder feedback signa                                                                                                                           | l  |    |
|---|--------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                        | on details                          | Investigation results                                                            | Remedies                                                                                                                                                         | SV | SP |
| 1 | Check whether the<br>connectors or deternance<br>are disconnected. |                                     | The connector is disconnected (or loose).                                        | Correctly install.                                                                                                                                               | 0  |    |
|   |                                                                    |                                     | The connector is not disconnected.                                               | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Is the detector cabl<br>same conduit as th<br>cable or are the two | e motor's power<br>o cables laid in | The cables are wired near each other. (Noise is entering from the power cable.)  | Improve the cable wiring.                                                                                                                                        | 0  |    |
|   | parallel near each o                                               | other?                              | The wires are sufficiently separated.                                            | Investigate item 3.                                                                                                                                              |    |    |
| 3 | Is the motor FG wir<br>to the drive unit wh                        | ich drives it?                      | The motor FG wire is grounded on the motor side.                                 | Connect together on the drive unit side.                                                                                                                         | 0  |    |
|   | (Is the motor groun                                                | ded to one point?)                  | The motor is grounded to one point.                                              | Investigate item 4.                                                                                                                                              |    |    |
| 4 | Turn the power OF                                                  |                                     | There is a connection fault.                                                     | Replace the detector cable.                                                                                                                                      |    |    |
|   | detector cable conr<br>tester. (Is the cable                       |                                     | The connection is normal.                                                        | Investigate item 5.                                                                                                                                              |    |    |
| 5 | Connect to another                                                 | normal axis drive                   | The alarm is on the drive unit side.                                             | Replace the drive unit.                                                                                                                                          |    |    |
|   | unit, and check who<br>on the drive unit sid                       |                                     | The alarm is on the detector side.                                               | Investigate item 6.                                                                                                                                              | 0  |    |
| 6 | Check if there is an<br>the detector's ambi<br>(Ex. Ambient tempe  | ent environment.                    | No abnormality is found in particular.                                           | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |    |    |
|   | grounding)                                                         |                                     | An abnormality was found in the ambient environment.                             | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |

|   | Alarm No.<br>44<br>C-axis changeov<br>When using th<br>high-speed coi                                |  | coil changeover control motor, the mod      | de was changed to C-axis control v | while the |    |
|---|------------------------------------------------------------------------------------------------------|--|---------------------------------------------|------------------------------------|-----------|----|
|   | Investigation details                                                                                |  | Investigation results                       | Remedies                           | SV        | SP |
| 1 | Check the coil selected with the<br>spindle control input 3, bitD for the<br>C-axis control command. |  | High-speed coil is selected ( $bitD = 0$ )  | Correct the sequence.              |           |    |
|   |                                                                                                      |  | Low-speed coil is selected (bitD= 1)        | Investigate item 2.                |           | 0  |
| 2 | Is coil changeover<br>special motor speci                                                            |  | Coil changeover valid (SP034/bit2 = 1)      | Correctly set the parameter.       |           | 0  |
|   |                                                                                                      |  | Coil changeover invalid (SP034/bit2<br>= 0) | Replace the drive unit.            |           |    |

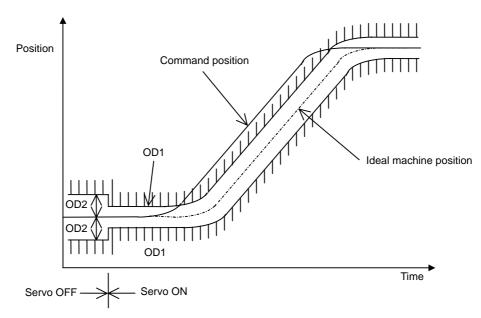
|    | Alarm No.<br>46                              | Motor overheat<br>The temperature | e protection function in the motor or det                       | ector activated.                                                                                              |     |    |
|----|----------------------------------------------|-----------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----|----|
|    |                                              | ion details                       | Investigation results                                           | Remedies                                                                                                      | S٧  | SP |
| 1  | Check the repeatability.                     |                                   | The alarm occurs before operation.                              | Investigate item 2.                                                                                           |     |    |
|    |                                              |                                   | The alarm occurs occasionally after operation is started.       | Investigate item 5.                                                                                           | 0   | 0  |
| 2  | Check whether the<br>connectors (servo:      | CN3, spindle:                     | The connector is disconnected (or loose).                       | Correctly install.                                                                                            | 0   | 0  |
|    | CN6) or detector c<br>disconnected.          |                                   | The connector is not disconnected.                              | Investigate item 3.                                                                                           | Ŭ   |    |
| 3  | Using a tester, che                          |                                   | The cable is broken.                                            | Replace the cable.                                                                                            |     |    |
|    | detector cable is b                          | roken.                            | The cable is not broken.                                        | Servo : Investigate item 4.<br>Spindle : Investigate item 12.                                                 | 0   | 0  |
| 4  |                                              | B-HR, is the motor                | SV034/bit2 = 0                                                  | Set SP034/bit2 to 1.                                                                                          |     |    |
|    | thermal validated e<br>provided?             | even when it is not               | SV034/bit2 = 1                                                  | Investigate item 12.                                                                                          | 0   |    |
| 5  | Check the overload meter (spindle).          | d % (servo) or load               | The load is large.                                              | Servo : Investigate item 6.<br>Spindle : Investigate item 8.                                                  | 0   | 0  |
|    |                                              |                                   | The load is not large.                                          | Investigate item 9.                                                                                           |     |    |
| 6  | Is the unbalance to                          | orque high?                       | The constant load torque (friction + unbalance) is 60% or more. | Select the motor so that the constant load torque is 60% or less.                                             | 0   |    |
|    |                                              |                                   | The constant load torque is less than 60%.                      | Investigate item 7.                                                                                           |     |    |
| 7  | Was the overload a reset by turning the OFF? |                                   | The alarm was forcibly reset.                                   | Do not turn the drive unit's power<br>OFF when an overload alarm occurs.<br>(The NC power can be turned OFF.) | 0   |    |
|    |                                              |                                   | The alarm was not forcibly reset.                               | Investigate item 9.                                                                                           |     |    |
| 8  | Check the parame                             | ter settings.                     | There was an incorrect setting.                                 | Correctly set.                                                                                                |     | 0  |
|    |                                              |                                   | The settings are correct.                                       | Investigate item 9.                                                                                           |     | 0  |
| 9  | Measure the moto                             | r temperature                     | Hot.                                                            | Investigate item 10.                                                                                          | 0   | 0  |
|    | when the alarm oc                            | curs.                             | Not hot.                                                        | Investigate item 12.                                                                                          |     | 0  |
| 10 | When using a mot                             |                                   | The fan motor was stopped.                                      | Investigate item 11.                                                                                          |     |    |
|    | whether the fan is                           | •• •                              | The motor fan wind flow is poor.                                | Clean.                                                                                                        | 0   | 0  |
|    | whether it is clogge                         | ed with dust, etc.                | There is no problem.                                            | Investigate item 12.                                                                                          | 1   |    |
| 11 | Check the fan wiri                           | ng.                               | The cable is broken.                                            | Replace the cable.                                                                                            | 0   | 0  |
|    |                                              |                                   | The cable is not broken.                                        | Replace the fan.                                                                                              | ] Ŭ |    |
| 12 | Try replacing the d                          | Irive unit.                       | Improved.                                                       | Replace the drive unit.                                                                                       |     | 0  |
|    |                                              |                                   | Not improved.                                                   | Replace the motor.                                                                                            | 0   |    |

|   | Alarm No.<br>4E                                                                                                      | NC command moo<br>A spindle contro | de error<br>Il mode selection outside the specificatio | ons was input.                                                                                                           |    |    |
|---|----------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                                          | on details                         | Investigation results                                  | Remedies                                                                                                                 | S٧ | SP |
| 1 | Pinpoint where the the PLC program.                                                                                  | alarm occurs in                    | The alarm always occurs at the same position.          | Check the NC and PLC program process.                                                                                    |    | 0  |
|   |                                                                                                                      |                                    | The alarm occurs irregularly.                          | Investigate item 2.                                                                                                      |    |    |
| 2 | 2 Does the alarm occur when position<br>control (C-axis, spindle<br>synchronization, synchronous tap) is<br>started? |                                    | The alarm occurs during position control.              | Check the NC and PLC program process.                                                                                    |    |    |
|   |                                                                                                                      |                                    | The alarm occurs during speed control.                 | Check the NC and PLC program<br>process.<br>(If the cause cannot be pinpointed,<br>replace the drive unit, and confirm.) |    | 0  |

|   | Alarm No.<br>50                                              | Overload 1<br>The overload de | etection level reached 100% or more. T                                                                              | he motor or drive unit is in the overload                                             | state | e. |   |
|---|--------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|----|---|
|   | Investigati                                                  | on details                    | Investigation results                                                                                               | Remedies                                                                              | sv    | SP |   |
| 1 | Check the overload<br>Servo : SV021, S<br>Spindle : SP063, S | SV022                         | The standard values (below) are not<br>set.<br>Servo : SV021 = 60, SV022 = 150<br>Spindle : SV063 = 60, SP064 = 110 | Set the standard values.                                                              | 0     | 0  |   |
|   |                                                              |                               | The standard values are set.                                                                                        | Investigate item 2.                                                                   |       |    |   |
| 2 | Check the overload meter (spindle).                          | l % (servo) or load           | The load is large.                                                                                                  | Servo : Investigate item 3.<br>Spindle : Investigate item 7.                          | 0     | 0  |   |
|   |                                                              |                               | The load is not large.                                                                                              | Investigate item 9.                                                                   |       |    |   |
| 3 | Check whether machine resonance is<br>occurring.             |                               | Resonance is occurring.                                                                                             | Adjust the parameters.<br>• Set the notch filter.<br>• Lower VGN1 (SV005).            | 0     |    |   |
|   |                                                              |                               | Resonance is not occurring.                                                                                         | Investigate item 4.                                                                   |       |    |   |
| 4 | Check whether the the motor is stoppe                        | ,                             | The motor is hunting.                                                                                               | Adjust the parameters.<br>• Increase VGN1 (SV005).<br>• Lower VIA (SV008).            | 0     |    |   |
|   |                                                              |                               | The motor is not hunting.                                                                                           | Investigate item 5.                                                                   |       |    |   |
| 5 | Check the brake op                                           |                               | The motor brakes are not released.                                                                                  | Correct the faulty section.                                                           |       |    |   |
|   | Check the brake re<br>Check the connector<br>connection.     |                               | The motor brake operation is normal.                                                                                | Investigate item 6.                                                                   | 0     |    |   |
| 6 | Check the load cur                                           | rent with the NC              | The cutting load is large.                                                                                          | Lower the cutting load.                                                               |       |    |   |
|   | Servo Monitor, and machine load.                             | investigate the               | There is interference with the<br>positioning pin.                                                                  | When using the positioning pin, turn the servo OFF when stopped.                      |       |    |   |
|   |                                                              |                               | An excessive force is applied from the machine.                                                                     | Check whether the ball screw is bent,<br>or whether there is a fault in the<br>guide. | 0     |    |   |
|   |                                                              |                               | The machine load is not large.                                                                                      | Investigate item 8.                                                                   |       |    |   |
| 7 | Check the PLG out                                            | put waveform.                 | There is a problem.                                                                                                 | Adjust the PLG output waveform.                                                       |       | 0  |   |
|   |                                                              |                               | Normal                                                                                                              | Investigate item 8.                                                                   |       |    |   |
| 8 | Confirm the motor of again.                                  | capacity selection            | The motor performance is insufficient.                                                                              | Lower the acceleration/deceleration rate or cutting load.                             | 0     | 0  |   |
|   |                                                              |                               | The motor performance is sufficient.                                                                                | Investigate item 9.                                                                   | _     |    |   |
| 9 | Try replacing the dr                                         | ive unit.                     | Improved.                                                                                                           | Replace the drive unit.                                                               | 0     | 0  | 0 |
|   |                                                              |                               | Not improved.                                                                                                       | Replace the motor.                                                                    |       |    |   |
|   |                                                              |                               |                                                                                                                     |                                                                                       |       |    |   |

(Note) NR and PR resetting are not possible when the overload level is 50% or more. Do not forcibly reset (AR) by turning the unit power OFF. If AR resetting is used at 50% or higher, the level is set to 80% when the power is turned ON next. (Servo)

|   | 51 second or mor more.                                                                        | e. With the spindle, a load exceeding th                           | f the unit's maximum current continued f<br>ne continuous rating continued for 30 mi                 | nutes | or |
|---|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------|----|
|   | Investigation details                                                                         | Investigation results                                              | Remedies                                                                                             | sv    | SP |
| 1 | Did the alarm occur immediately afte<br>READY ON?                                             | The alarm occurred after ready ON before operation starts.         | Investigate item 2.                                                                                  | 0     |    |
|   |                                                                                               | The alarm occurred after normal operation.                         | Investigate item 5.                                                                                  |       |    |
| 2 | Check that the PN voltage is supplied                                                         | The voltage is not supplied.                                       | Correctly supply the PN voltage.                                                                     |       |    |
|   | to the drive unit.<br>Is the CHARGE lamp ON?                                                  | Approx. 300V is correctly supplied.                                | Investigate item 3.                                                                                  | 0     |    |
| 3 | Check the motor power cable (U, V, W phases).                                                 | The connections are incorrect.                                     | Connect correctly.                                                                                   | 0     |    |
|   | The power cable is not connected.<br>Is the cable connected to the motor<br>for another axis? | The connections are correct.                                       | Investigate item 4.                                                                                  |       |    |
| 4 | Check the detector cable connection                                                           | The connections are incorrect.                                     | Connect correctly.                                                                                   |       |    |
|   | Is the cable connected to the motor for another axis?                                         | The connections are correct.                                       | Investigate item 5.                                                                                  | 0     |    |
| 5 | Check whether the machine has<br>collided.                                                    | The machine has collided.                                          | Check the machining program and soft limit settings.                                                 | 0     |    |
|   |                                                                                               | The machine has not collided.                                      | Investigate item 6.                                                                                  |       |    |
| 6 | Check whether the current value on                                                            | The current is saturated during                                    | Increase the acceleration/                                                                           |       |    |
|   | the NC Servo Monitor screen is                                                                | acceleration/deceleration.                                         | deceleration time constant.                                                                          |       |    |
|   | saturated during acceleration/deceleration.                                                   | The current value during acceleration/deceleration is appropriate. | Investigate item 7.                                                                                  | 0     |    |
| 7 | Check the detector FB.                                                                        | The FB signal is abnormal.                                         | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.) | 0     |    |
|   |                                                                                               | The FB signal is normal.                                           | Replace the drive unit.                                                                              |       |    |
| 8 | Check the load meter value.                                                                   | The load is large.                                                 | Lower the load.                                                                                      |       | 0  |
|   |                                                                                               | The load is not large.                                             | Investigate item 9.                                                                                  |       |    |
| 9 | Check the PLG output waveform.                                                                | There is a problem.                                                | Adjust the PLG output waveform.                                                                      |       | 0  |
|   |                                                                                               | Normal                                                             | Replace the drive unit.                                                                              |       |    |


|   | Alarm No.<br>52                                                                                                                                        | Excessive error 1<br>The difference b<br>the setting value | petween the motor's actual position at s<br>e.                                                                                                                                                                                                                                             | ervo ON and the theoretical position                 | exceed | ed |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------|----|
|   | Investigation                                                                                                                                          | on details                                                 | Investigation results                                                                                                                                                                                                                                                                      | Remedies                                             | SV     | SP |
| 1 | Check the excessiv<br>width.<br>SV023 (Servo)<br>SP102 (Orientatii<br>SP154, SP155 (C<br>SP177/bitD, SP1<br>synchronous con<br>SP193/bitD, SP2<br>tap) | on control)<br>C-axis control)<br>86 (Spindle              | The excessive error detection width is too small.<br>Servo standard value:<br>$SV023 = \frac{RAPID}{60 \times PGN1} \div 2$<br>For the spindle, a value larger than the droop amount:<br>Droop amount =<br><u>Spindle rotation speed × No. of pulses</u><br>$60 \times position loop gain$ | Set appropriate values.                              | 0      | 0  |
|   |                                                                                                                                                        |                                                            | Appropriate values are set.                                                                                                                                                                                                                                                                | Investigate item 2.                                  |        |    |
| 2 | Check the position of<br>SV017/bit4 (Serv<br>SP097/bit5 (Orier<br>SP129/bit5 (C-ax<br>SP177/bit5 (Spin<br>control)<br>SP193/bit5 (Sync<br>control)     | ro)<br>ntation control)<br>kis control)<br>dle synchronous | The polarity is reversed.<br>Normal.                                                                                                                                                                                                                                                       | Correctly set the parameters.<br>Investigate item 3. | 0      | 0  |
| 3 | Check the alarm No                                                                                                                                     | o. "51" items.                                             |                                                                                                                                                                                                                                                                                            |                                                      | 0      | 0  |

|   | Alarm No.<br>53                                                  | Excessive error 2<br>The difference b<br>the setting value | petween the motor's actual position at s<br>e.                                                     | ervo OFF and the theoretical position                                               | excee | ded |
|---|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|-----|
|   | Investigati                                                      | on details                                                 | Investigation results                                                                              | Remedies                                                                            | SV    | SP  |
| 1 | Check the follow-up the NC is in the ser                         |                                                            | NC parameter (M60S Series) #1064<br>svof = 0                                                       | Investigate item 2.                                                                 | 0     |     |
|   |                                                                  |                                                            | NC parameter (M60S Series) #1064<br>svof = 1                                                       | Investigate item 3.                                                                 |       |     |
| 2 | Check whether the axis has moved during servo OFF, and check the |                                                            | The axis moved.                                                                                    | Adjust the brakes, etc., so that the axis does not move.                            | 0     |     |
|   | motor brake operat                                               | ion.                                                       | The axis has not moved.                                                                            | Investigate item 3.                                                                 |       |     |
| 3 | Check the excessiv<br>width.<br>SV026 (Servo)                    | e error detection                                          | The excessive error detection width is too small.<br>$SV026 = \frac{RAPID}{60 \times PGN1} \div 2$ | Set an appropriate value.                                                           | 0     |     |
|   |                                                                  |                                                            | An appropriate value is set.                                                                       | Check for problems on the NC side,<br>such as the position FB follow-up<br>control. |       |     |

|   | Alarm No.<br>54 Excessive error 3<br>The motor curre                                                                                 |                   | ent was not detected when the excessiv | ve error 1 alarm occurred.       |    |    |
|---|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|----------------------------------|----|----|
|   | Investigation details                                                                                                                |                   | Investigation results                  | Remedies                         | sv | SP |
| 1 | <ol> <li>Check that the PN voltage is supplied<br/>to the drive unit.</li> <li>Is the CHARGE lamp ON?</li> </ol>                     |                   | The voltage is not supplied.           | Correctly supply the PN voltage. |    |    |
|   |                                                                                                                                      |                   | Approx. 300V is correctly supplied.    | Investigate item 2.              | 0  |    |
| 2 | Check the motor po                                                                                                                   | ower cable (U, V, | The connections are incorrect.         | Connect correctly.               |    |    |
|   | <ul><li>W phases).</li><li>The power cable is not connected.</li><li>Is the cable connected to the motor for another axis?</li></ul> |                   | The connections are correct.           | Replace the drive unit.          | 0  |    |

## Supplement (servo)

Depending on the ideal machine position in respect to the command position, the actual machine position could enter the actual shaded section shown below, which is separated more than the distance set in OD1.



|   |                                |             |                               | rbance torque exceeded the collision de                                                                                                                          | tectio | on |
|---|--------------------------------|-------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
|   | Investigation details          |             | Investigation results         | Remedies                                                                                                                                                         | sv     | SP |
| 1 | Check whether the<br>collided. | machine has | The machine has collided.     | Check the machining program and soft limit settings.                                                                                                             |        |    |
|   |                                |             | The machine has not collided. | Increase the detection level (SV060).<br>(The detection level should have an<br>allowance and be set as approx.<br>1.5-times the maximum disturbance<br>torque.) | 0      |    |

|   | Alarm No.<br>59 Collision detection<br>When the collisi<br>level during cutt |             | ion detection function is valid, the dis | sturbance torque exceeded the collision de                                                                           | etectio | on |
|---|------------------------------------------------------------------------------|-------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|----|
|   | Investigation details                                                        |             | Investigation results                    | Remedies                                                                                                             | sv      | SP |
| 1 | Check whether the collided.                                                  | machine has | The machine has collided.                | Check the machining program and soft limit settings.                                                                 |         |    |
|   |                                                                              |             | The machine has not collided.            | Increase the detection level (SV035.<br>clG1).<br>(Set the detection level larger than<br>the maximum cutting load.) | 0       |    |

|   | Alarm NO                                                                                                      |      |                                                                    | mand torque reached the motor's maxi                      | mum |    |
|---|---------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|-----------------------------------------------------------|-----|----|
|   | Investigation deta                                                                                            | ails | Investigation results                                              | Remedies                                                  | sv  | SP |
| 1 | Check whether the machine has collided.                                                                       |      | The machine has collided.                                          | Check the machining program and soft limit settings.      | 0   |    |
|   |                                                                                                               |      | The machine has not collided.                                      | Investigate item 2.                                       |     |    |
| 2 | 2 Check whether the current values the NC Servo Monitor screen is saturated during acceleration/deceleration. |      | The current is saturated during acceleration/deceleration.         | Investigate item 3.                                       |     |    |
|   |                                                                                                               |      | The current value during acceleration/deceleration is appropriate. | Investigate the cause of the load fluctuation.            | 0   |    |
| 3 | Can the acceleration/deceleration time constant be changed?                                                   |      | The constant can be changed.                                       | Increase the acceleration/<br>deceleration time constant. | 0   |    |
|   |                                                                                                               |      | The constant cannot be changed.                                    | Set to ignore collision detection method 2.               |     |    |

|   | Alarm No. 5C Orientation feedback error<br>After orientation was completed, the command and feedback error exceeded the parameter setting. |                 |                                               |                                 |    |    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|---------------------------------|----|----|
|   | Investigation details                                                                                                                      |                 | Investigation results                         | Remedies                        | S٧ | SP |
| 1 | Check the PLG cal                                                                                                                          | ole shield.     | The cable is not correctly shielded.          | Shield the cable.               |    | 0  |
|   |                                                                                                                                            |                 | The cable is correctly shielded.              | Investigate item 2.             | 1  | U  |
| 2 | Check the PLG cal                                                                                                                          | ole connection. | The cable is incorrectly connected or broken. | Replace the cable.              |    | 0  |
|   |                                                                                                                                            |                 | Normal                                        | Investigate item 3.             | 1  |    |
| 3 | Check the PLG out                                                                                                                          | put waveform.   | There is a problem.                           | Adjust the PLG output waveform. |    | 0  |
|   |                                                                                                                                            |                 | Normal                                        | Replace the drive unit          |    |    |

|   | Alarm No.<br>60                                | Instantaneous por<br>A drop in the 24 | wer failure<br>4VDC power was detected.    |                             |    |    |
|---|------------------------------------------------|---------------------------------------|--------------------------------------------|-----------------------------|----|----|
|   | Investigation details                          |                                       | Investigation results                      | Remedies                    | C۷ | CR |
| 1 | Is 24VDC applied of                            | on the CN22                           | The voltage is not applied.                | Investigate item 3.         |    |    |
|   | connector?                                     |                                       | The voltage is 20.4VDC or less.            | Increase the power voltage. |    |    |
|   | Is the voltage low, or does it drop sometimes? |                                       | The voltage drops below 20.4VDC sometimes. | Investigate item 4.         |    | 0  |
|   |                                                |                                       | The voltage is correctly applied.          | Investigate item 2.         |    |    |
| 2 | Are the LEDs on th                             | e CR unit ON?                         | The LEDs are not ON.                       | Replace the unit.           |    | 0  |
|   |                                                |                                       | The LEDs are ON.                           | Investigate item 4.         |    | U  |
| 3 | Check the wiring a                             | nd power voltage.                     | The power is abnormal.                     | Replace the power.          |    |    |
|   |                                                |                                       | The wiring or connectors are abnormal.     | Replace the cable.          |    | 0  |
| 4 | Check whether the                              |                                       | A voltage drop is not observed.            | Check the wiring.           |    | 0  |
|   | dropping because of another load.              | A voltage drop is observed.           | Increase the power capacity.               |                             |    |    |

|   | Alarm No.<br>61                                                                     | Power module ov<br>The power mod                                    | ercurrent<br>lule's overcurrent protection function act                                   | tivated.                                                                                                                                                         |    |    |
|---|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                         | on details                                                          | Investigation results                                                                     | Remedies                                                                                                                                                         | C۷ | CR |
| 1 | Check the state of when the alarm occ<br>the repeatability.                         |                                                                     | The alarm occurs immediately after 200VAC is supplied and after READY is turned ON.       | Replace the unit.                                                                                                                                                |    |    |
|   |                                                                                     |                                                                     | The alarm occurs frequently during READY ON.                                              | Investigate item 3.                                                                                                                                              | 0  |    |
|   |                                                                                     |                                                                     | The alarm occurs after continuous operation for a long time. The unit is hot.             | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Check the load state of all motors,<br>and the starting/stopping frequency.         |                                                                     | The total load of all motors exceeds<br>the rated capacity of the power<br>supply unit.   | Lower the motor load and operation frequency.                                                                                                                    | 0  |    |
|   |                                                                                     |                                                                     | The total does not exceed the capacity.                                                   | Investigate item 3.                                                                                                                                              |    |    |
| 3 | Check the power ca                                                                  | Check the power capacity. The power capacity<br>The specified power |                                                                                           | Increase the power capacity.                                                                                                                                     |    |    |
|   | oncon the power capacity.                                                           |                                                                     | The specified power capacity is secured.                                                  | Investigate item 4.                                                                                                                                              | 0  |    |
| 4 | Measure the voltag <ul> <li>Is the voltage 170</li> </ul>                           | OV or more even                                                     | The voltage drops to 170V or less occasionally.                                           | Increase the power capacity.                                                                                                                                     |    |    |
|   | when the motor is                                                                   | s accelerating?                                                     | The difference of the voltage across wires is 10V or more.                                | Improve the power phase balance.                                                                                                                                 | 0  |    |
|   |                                                                                     |                                                                     | The difference of the voltage across wires is less than 10V.                              | Investigate item 5.                                                                                                                                              |    |    |
| 5 | Measure the power synchroscope, and                                                 |                                                                     | The power voltage is distorted.                                                           | Improve the source of the distortion.<br>Install an AC reactor.                                                                                                  |    |    |
|   | <ul><li>there is any distorti</li><li>Are there any oth causing the power</li></ul> | er devices                                                          | The power voltage waveform is not abnormal.                                               | Investigate item 6.                                                                                                                                              | 0  |    |
| 6 | Check if there is an                                                                |                                                                     | No abnormality is found in particular.                                                    | Replace the unit.                                                                                                                                                |    |    |
|   | the unit's ambient e<br>(Ex. Noise, groundi                                         |                                                                     | The grounding is incomplete.<br>An alarm will occur easily if another<br>device operates. | Take remedies according to the<br>causes of the abnormality.<br>Ex. Incomplete grounding:<br>Additionally ground.<br>Noise: Noise measures for<br>other devices. | 0  |    |

|   | Alarm No.<br>62                                                  | Frequency error<br>The input power                                                                                                                                                                                 | r frequency exceeded the specified rang                                                                                                                          | ge.                                                             |    |    |
|---|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----|----|
|   | Investigatio                                                     | on details                                                                                                                                                                                                         | Investigation results                                                                                                                                            | Remedies                                                        | C۷ | CR |
| 1 | Check the state of t<br>when the alarm occ<br>the repeatability. |                                                                                                                                                                                                                    | The alarm occurs each time<br>immediately after the power is turned<br>ON. Or, the alarm occurs<br>occasionally regardless of the<br>operation state.            | Investigate item 2.                                             | 0  |    |
|   |                                                                  |                                                                                                                                                                                                                    | The alarm occurs only while the motor is accelerating/decelerating.                                                                                              | Investigate item 3.                                             |    |    |
| 2 |                                                                  | Measure the power voltage waveform         The frequency is deviated from         Review the power facilities.           during normal operation.         50Hz±3% or 60Hz±3%.         Review the power facilities. |                                                                                                                                                                  | Review the power facilities.                                    |    |    |
|   |                                                                  |                                                                                                                                                                                                                    | The voltage waveform dips at some sections.                                                                                                                      | Improve the source of the distortion.<br>Install an AC reactor. | 0  |    |
|   |                                                                  |                                                                                                                                                                                                                    | There is no problem.                                                                                                                                             | Investigate item 4.                                             |    |    |
| 3 | Measure the power motor is acceleratin                           |                                                                                                                                                                                                                    | The frequency greatly fluctuates during acceleration/deceleration.                                                                                               | Review the power facilities.                                    |    |    |
|   |                                                                  |                                                                                                                                                                                                                    | The voltage waveform during deceleration dips in some sections.                                                                                                  | Improve the source of the distortion.<br>Install an AC reactor. | 0  |    |
|   |                                                                  |                                                                                                                                                                                                                    | There is no problem.                                                                                                                                             | Investigate item 4.                                             |    |    |
| 4 | Check if there is any                                            |                                                                                                                                                                                                                    | No abnormality is found in particular.                                                                                                                           | Replace the unit.                                               |    |    |
|   | he unit's ambient environment.<br>Ex. Noise, grounding)          | The grounding is incomplete.<br>An alarm will occur easily if another<br>device operates.                                                                                                                          | Take remedies according to the<br>causes of the abnormality.<br>Ex. Incomplete grounding:<br>Additionally ground.<br>Noise: Noise measures for<br>other devices. | 0                                                               |    |    |

|   | Alarm No.<br>63                                                             | Auxiliary regenera<br>The auxiliary re | tion error<br>generative transistor is still ON.                 |                                                                                                                                                     |    |    |
|---|-----------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                 | on details                             | Investigation results                                            | Remedies                                                                                                                                            | C۷ | CR |
| 1 | 1 Check whether the regenerative resistor on the back of the unit is dirty. |                                        | Cutting oil or oil mist is adhered on the regenerative resistor. | Take measure to prevent cutting oil<br>and dust from getting on the fins at<br>the back of the unit, and then carry<br>out investigation details 2. |    | 0  |
|   |                                                                             |                                        | The resistor is not dirty.                                       | Replace the unit.                                                                                                                                   |    |    |
| 2 | Using a tester, check the continuity of                                     |                                        | There is continuity.                                             | Replace the unit.                                                                                                                                   |    |    |
|   | the terminal block a surface.                                               | and resistor                           | The resistance value is ∞.                                       | Clean the resistor or fins.                                                                                                                         |    | 0  |

|   | Alarm No.<br>65                             | Rush relay error<br>The rush resista | ance short-circuit relay does not turn Of                                                 | N.                                                                                                                                                               |    |    |
|---|---------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                 | on details                           | Investigation results                                                                     | Remedies                                                                                                                                                         | C۷ | CR |
| 1 | · ·                                         |                                      | The alarm occurs each time READY is turned ON.                                            | Replace the unit.                                                                                                                                                |    | 0  |
|   |                                             |                                      | The alarm occurs occasionally.                                                            | Investigate item 2.                                                                                                                                              |    |    |
| 2 |                                             |                                      | No abnormality is found in particular.                                                    | Replace the unit.                                                                                                                                                |    |    |
|   | the unit's ambient e<br>(Ex. Noise, groundi |                                      | The grounding is incomplete.<br>An alarm will occur easily if another<br>device operates. | Take remedies according to the<br>causes of the abnormality.<br>Ex. Incomplete grounding:<br>Additionally ground.<br>Noise: Noise measures for<br>other devices. |    | 0  |

|                                   | Alarm No.<br>67     | Phase failure<br>There is a phas | e failure in the input power.     |                           |    |    |
|-----------------------------------|---------------------|----------------------------------|-----------------------------------|---------------------------|----|----|
|                                   | Investigati         | on details                       | Investigation results             | Remedies                  | C۷ | CR |
| 1                                 | Check the voltage f | for each input                   | There are phases with no voltage. | Correct the power supply. | 0  |    |
|                                   | phase.              |                                  | There is no problem.              | Investigate item 2.       | 0  |    |
| 2 Check the alarm No. "71" items. |                     |                                  |                                   |                           |    |    |

|   | Alarm No.<br>68                             | Watch dog<br>The system is | not operating normally.                                                                   |                                                                                                                                                                  |    |    |
|---|---------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation details                       |                            | Investigation results                                                                     | Remedies                                                                                                                                                         | C۷ | CR |
| 1 | is turned C                                 |                            | The alarm occurs each time READY is turned ON.                                            | Replace the unit.                                                                                                                                                | 0  | 0  |
|   |                                             |                            | The alarm occurs occasionally.                                                            | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Check if there is any abnormality in        |                            | No abnormality is found in particular.                                                    | Replace the unit.                                                                                                                                                |    |    |
|   | the unit's ambient e<br>(Ex. Noise, groundi |                            | The grounding is incomplete.<br>An alarm will occur easily if another<br>device operates. | Take remedies according to the<br>causes of the abnormality.<br>Ex. Incomplete grounding:<br>Additionally ground.<br>Noise: Noise measures for<br>other devices. | 0  | 0  |

|   | Alarm No.<br>69                                                                                        | Ground fault<br>The motor powe    | er cable is contacting FG (ground). |                                                                                                                                                                |    |    |
|---|--------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                                            | on details                        | Investigation results               | Remedies                                                                                                                                                       | C۷ | CR |
| 1 | Measure the insula V, W phase cables                                                                   | for all motors and                | 100k $\Omega$ or less.              | The motor or power cable may be ground faulted.                                                                                                                | 0  | 0  |
|   | the ground. (Carry test.)                                                                              | out a megger                      | 100k $\Omega$ or more.              | Investigate item 2.                                                                                                                                            | Ũ  | Ũ  |
| 2 | Has oil come in contact with the motor or power cable?                                                 |                                   | Oil has come in contact.            | Take measures so that oil does not<br>come in contact. Check the motor's<br>cannon connector and the inside of<br>the terminal box, and clean as<br>necessary. | 0  | 0  |
|   |                                                                                                        |                                   | Oil has not come in contact.        | Investigate item 3.                                                                                                                                            |    |    |
| 3 | Measure the insula                                                                                     | tion again.                       | 1M $\Omega$ or less.                | Replace the motor or cable.                                                                                                                                    | 0  | 0  |
|   |                                                                                                        |                                   | 1MΩ or more.                        | Investigate item 2.                                                                                                                                            |    | 0  |
| 4 | Measure the resista                                                                                    | ance across the U,                | 100kΩ or less.                      | Replace the drive unit.                                                                                                                                        |    |    |
|   | V, W phase termina<br>servo/spindle drive<br>ground.<br>(Do not measure the<br>the unit could be dated | unit and the<br>ne insulation, as | 100kΩ or more.                      | Replace the power supply unit.                                                                                                                                 | 0  | 0  |

|   | Alarm No.<br>6A                                                          | External contactor<br>The external con | melting<br>ntactor's contact has melted. |                                                                                                        |    |    |
|---|--------------------------------------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                              | on details                             | Investigation results                    | Remedies                                                                                               | C۷ | CR |
| 1 | Check whether any alarm has occurred on the drive unit side.             |                                        | An alarm has occurred.                   | Remove the cause of the alarm on<br>the drive side, and then carry out the<br>investigation details 2. | 0  |    |
|   |                                                                          |                                        | An alarm has not occurred.               | Investigate item 2.                                                                                    |    |    |
| 2 | Check whether the                                                        | contactor's                            | The contactor has melted.                | Replace the contactor.                                                                                 | 0  |    |
|   | contact has melted                                                       |                                        | The contactor has not melted.            | Investigate item 3.                                                                                    |    |    |
| 3 | Check that the contactor excitation                                      |                                        | The connection is correct.               | Correctly connect.                                                                                     |    |    |
|   | wiring is correctly connected from the power supply unit's MC1 terminal. |                                        | The connection is incorrect.             | Replace the power supply unit.                                                                         | 0  |    |

|   | Alarm No.<br>6B                                           | Rush relay melted<br>The rush resist | l<br>ance short-circuit relay does not turn OF                                            | =F.                                                                                                                                                              |    |    |  |
|---|-----------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|--|
|   | Investigati                                               | on details                           | Investigation results                                                                     | Remedies                                                                                                                                                         | С٧ | CR |  |
| 1 | Check whether any occurred on the driv                    |                                      | An alarm has occurred.                                                                    | Remove the cause of the alarm on<br>the drive side, and then carry out the<br>investigation details 2.                                                           |    | 0  |  |
|   |                                                           |                                      | An alarm has not occurred.                                                                | Investigate item 2.                                                                                                                                              |    |    |  |
| 2 | 2 Check the repeatability.                                |                                      | k the repeatability. The alarm occurs each time READY Replace the unit. is turned ON.     |                                                                                                                                                                  |    | 0  |  |
|   |                                                           |                                      | The alarm occurs occasionally.                                                            | Investigate item 3.                                                                                                                                              |    |    |  |
| 3 | Check if there is an                                      |                                      | No abnormality is found in particular.                                                    | Replace the unit.                                                                                                                                                |    |    |  |
|   | the unit's ambient environment.<br>(Ex. Noise, grounding) |                                      | The grounding is incomplete.<br>An alarm will occur easily if another<br>device operates. | Take remedies according to the<br>causes of the abnormality.<br>Ex. Incomplete grounding:<br>Additionally ground.<br>Noise: Noise measures for<br>other devices. |    | 0  |  |

|   | Alarm No.<br>6C                           | Main circuit error<br>An abnormality | was detected                                                    | d in t                                                                 | he n         | nain circuit cap                               | acit | or's charging o                 | peration.                              |   |    |
|---|-------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|--------------|------------------------------------------------|------|---------------------------------|----------------------------------------|---|----|
|   | Investigati                               | on details                           | Investigation results                                           |                                                                        |              |                                                |      | Remedies                        |                                        |   | CR |
| 1 | Check the CHARG the alarm occurs.         | E lamp state when                    | The CHARGE lamp remains ON for some time.                       |                                                                        |              |                                                |      | Replace the p                   | ower supply unit.                      |   |    |
|   |                                           |                                      | when the al                                                     | arm<br>Irns (                                                          | occu<br>DFF, | nstantly, but<br>irs and the<br>the lamp turns | S    | Investigate item 2.             |                                        | 0 | 0  |
|   |                                           |                                      | The lamp no                                                     | The lamp never turns ON. Investigate item 2.<br>Then replace the unit. |              |                                                |      |                                 |                                        |   |    |
| 2 | Disconnect the pow<br>PN terminal block w |                                      | <ol> <li>The power supply unit side is<br/>abnormal.</li> </ol> |                                                                        |              |                                                |      | Replace the p                   | ower supply unit.                      |   |    |
|   | measure the resistand and 2) shown below  | ,                                    | 2) The drive unit side is abnormal.                             |                                                                        |              |                                                |      | Disconnect th<br>check the driv | e PN wiring, and then<br>ve unit side. |   |    |
|   | Drive unit                                | Power supply<br>unit                 | 1) and 2) ar                                                    | e bo                                                                   | th no        | ormal.                                         |      | Replace the p                   | ower supply unit.                      |   |    |
|   |                                           | 2)                                   | Tester<br>measure-                                              | Pola                                                                   | arity        | Normal                                         |      | Abnormal                        |                                        | 0 | 0  |
|   |                                           |                                      | ment point                                                      |                                                                        | -            |                                                |      |                                 |                                        |   |    |
|   |                                           |                                      | 1)                                                              | P                                                                      | N            | Several 100Ω                                   |      | hort-circuit/∞Ω                 |                                        |   |    |
|   |                                           | ⊒                                    |                                                                 | N<br>P                                                                 | P            | ∞Ω<br>Several 100Ω                             |      | Several 100Ω<br>hort-circuit/∞Ω |                                        |   |    |
|   |                                           | $\Gamma \mid \sqcup \mid$            | 2)                                                              | P<br>N                                                                 | N<br>P       | Several 100Ω<br>∞Ω                             | -    | nort-circuit/∞Ω<br>Several 100Ω |                                        |   |    |
|   |                                           |                                      |                                                                 |                                                                        |              | 522                                            |      |                                 |                                        |   |    |

|   | Alarm No.<br>6D                                                        | Parameter error<br>The power supp<br>parameters. | oly i | unit | 's capacity is r  | not app   | oropriate | e for th | ne i | regene | erative | resisto | r type s | et with t | the |    |
|---|------------------------------------------------------------------------|--------------------------------------------------|-------|------|-------------------|-----------|-----------|----------|------|--------|---------|---------|----------|-----------|-----|----|
|   | Investigati                                                            | on details                                       |       |      | Investigati       | on res    | ults      |          |      |        | Re      | emedie  | s        |           | C۷  | CR |
| 1 | Check the parameters (regenerative resistor type) of the drive unit to |                                                  | S١    | V03  | 6 and SP041       | setting   |           |          |      |        |         |         |          |           |     |    |
|   | which the power su                                                     |                                                  |       | F    | EDC               | В         | A 9       | 8        | 7    | 6      | 5 4     | 4 3     | 2 1      | 0         |     |    |
|   | wire (CN4) is conne                                                    |                                                  |       |      | amp               |           | rtyp      |          |      |        |         | ptyp    |          |           |     |    |
|   | Servo: SV036, S                                                        | pindle: SP041                                    | Г     | typ  | Regenerative resi | stor type | CR-10     | CR-15    | 5    | CR-22  | CR-37   | CR-55   | CR-75    | CR-90     |     |    |
|   |                                                                        |                                                  | Ē     |      | For MDS-C1-CV     | stor type | ×         | ×        |      | ×      | ×       | ×       | ×        | ×         |     |    |
|   |                                                                        |                                                  |       | 1    | GZG200W260HM      |           | 0         | 0        |      | 0      | 0       | 0       | 0        | 0         |     |    |
|   |                                                                        |                                                  |       | 2    | GZG300W130HM      | ×2        | 0         | 0        |      | 0      | 0       | 0       | 0        | 0         |     |    |
|   |                                                                        |                                                  |       | 3    | MR-RB30           |           | ×         | ×        |      | ×      | 0       | 0       | 0        | 0         |     | 0  |
|   |                                                                        |                                                  |       |      | MR-RB50           |           | ×         | ×        |      | ×      | 0       | 0       | 0        | 0         |     |    |
|   |                                                                        |                                                  |       | -    | GZG200W200HM      | -         | ×         | ×        |      | ×      | ×       | ×       | 0        | 0         |     |    |
|   |                                                                        |                                                  |       | -    | GZG300W200HM      | ×3        | ×         | ×        |      | ×      | ×       | ×       | 0        | 0         |     |    |
|   |                                                                        |                                                  |       |      | R-UNIT-1          |           | 0         | 0        | _    | 0      | 0       | 0       | 0        | 0         |     |    |
|   |                                                                        |                                                  |       |      | R-UNIT-2          |           | ×         | ×        | _    | ×      | 0       | 0       | 0        | 0         |     |    |
|   |                                                                        |                                                  |       |      | R-UNIT-3          |           | ×         | ×        | _    | ×      | 0       | 0       | 0        | 0         |     |    |
|   |                                                                        |                                                  | A     | λ~F  | No setting        |           | ×         | ×        | _    | ×      | ×       | ×       | ×        | ×         |     |    |
|   |                                                                        |                                                  |       |      | ptyp setting      |           | 81        | 82       |      | 83     | 84      | 86      | 88       | 89        |     |    |

|   | Alarm No.<br>6E Memory error<br>An error was d |            | etected in the internal memory.                                                           |                                                                                                                                                                  |    |    |
|---|------------------------------------------------|------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                    | on details | Investigation results                                                                     | Remedies                                                                                                                                                         | C۷ | CR |
| 1 | Check the repeatat                             | pility.    | The alarm occurs each time READY is turned ON.                                            | Replace the unit.                                                                                                                                                | 0  | 0  |
|   |                                                |            | The alarm occurs occasionally.                                                            | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Check if there is an                           |            | No abnormality is found in particular.                                                    | Replace the unit.                                                                                                                                                |    |    |
|   | the unit's ambient e<br>(Ex. Noise, groundi    |            | The grounding is incomplete.<br>An alarm will occur easily if another<br>device operates. | Take remedies according to the<br>causes of the abnormality.<br>Ex. Incomplete grounding:<br>Additionally ground.<br>Noise: Noise measures for<br>other devices. | 0  | 0  |

|   | Alarm No.<br>6F                       |                   |                                               | cted in the power supply's A/D converter<br>y alarm occurs.                   | <b>.</b> |    |
|---|---------------------------------------|-------------------|-----------------------------------------------|-------------------------------------------------------------------------------|----------|----|
|   | Investigati                           | on details        | Investigation results                         | Remedies                                                                      | с٧       | CR |
| 1 | Check the LED disp<br>supply unit.    | olay on the power | "F" is flickering.                            | An A/D converter error has occurred.<br>Carry out the items for alarm No. 6E. |          |    |
|   |                                       |                   | Another alarm code is flickering.             | Refer to the section for each alarm.                                          |          |    |
|   |                                       |                   | "0" is displayed.                             | Investigate item 2.                                                           | -        | 0  |
|   |                                       |                   | "F" is displayed.                             | Investigate item 2.                                                           |          | 0  |
|   |                                       |                   | "8" is displayed.                             | Refer to the section for alarm No.68.                                         |          |    |
|   |                                       |                   | "b", "C", "d" is displayed.                   | Investigate item 3.                                                           |          |    |
|   |                                       |                   | Something else is displayed.                  | Refer to the section for alarm No.68.                                         |          |    |
| 2 | Check the rotary sv                   | vitch setting.    | 0 or 4 is set.                                | Investigate item 3.                                                           | 0        | 0  |
|   |                                       |                   | A value other than the above is set.          | Correctly set the rotary switch.                                              | Ŭ        | Ŭ  |
| 3 | Check the commun<br>(CN4) connected w |                   | There is a problem with the wiring or shield. | Replace the cable.                                                            | 0        | 0  |
|   |                                       |                   | There is no problem.                          | Replace the unit.                                                             | ]        |    |

(Note) Alarm 6F is detected at the same time other power supply alarms occur.

|   | Alarm No.<br>71                                                              |                  | ver failure/ external emergency stop<br>is power failure occurred. |                                                                                                                                                                                                              |    |    |
|---|------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                  | on details       | Investigation results                                              | Remedies                                                                                                                                                                                                     | C۷ | CR |
| 1 | Investigate the sequence whether the contact turned OFF with an button, etc. | tor has been     | The contactor has been turned OFF externally.                      | Review the machine sequence.<br>When turning the contactor OFF with<br>external means, such as an<br>emergency stop button, this alarm<br>can be avoided by inputting NC<br>emergency stop at the same time. | 0  |    |
|   |                                                                              |                  | The contactor has not been turned OFF.                             | Investigate item 2.                                                                                                                                                                                          |    |    |
| 2 | Check the repeatab                                                           | bility.          | The alarm occurs each time READY is turned ON.                     | Investigate item 3.                                                                                                                                                                                          |    |    |
|   |                                                                              |                  | The alarm occurs at a certain operation.                           | Investigate item 1.<br>If there is no problem, carry out<br>investigation item 3.                                                                                                                            | 0  |    |
|   |                                                                              |                  | The alarm occurs occasionally during operation.                    | Investigate item 4.                                                                                                                                                                                          |    |    |
| 3 | Check whether the                                                            | power input wire | The wiring is incorrect.                                           | Correctly connect.                                                                                                                                                                                           | 0  |    |
|   | and contactor are c                                                          | orrectly wired.  | There is no problem.                                               | Investigate item 4.                                                                                                                                                                                          |    |    |
| 4 | Check the power vo<br>with a synchroscop                                     | 0                | An instantaneous power failure or voltage drop occurs frequently.  | Correct the power facility.                                                                                                                                                                                  | 0  |    |
|   |                                                                              |                  | There is no problem.                                               | Replace the unit.                                                                                                                                                                                            |    |    |

|   | Alarm No.<br>73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Over-regeneratior<br>The over-regen<br>state. |                                                                                                                                                     | . The regenerative resistor is in the over                                                                                       | load |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------|----|
|   | Investigati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on details                                    | Investigation results                                                                                                                               | Remedies                                                                                                                         | с٧   | CR |
| 1 | Check the alarm or<br>and regenerative lo<br>the NC Monitor scru<br>changing the opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oad displayed on<br>een while                 | The regenerative load display<br>increases when the power is turned<br>ON and the motor is not rotated.                                             | Check whether the state is affected<br>by power fluctuation, grounding or<br>noise. If there is no problem, replace<br>the unit. |      |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | The regenerative load display increases each time the motor decelerates, and the alarm occurs.                                                      | A-CR : Investigate item 2.<br>C1-CV : Investigate item 4.                                                                        | 0    | 0  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | The regenerative load display<br>increases each time the motor<br>decelerates, but the alarm does not<br>occur when the operation mode is<br>eased. | A-CR : Investigate item 2.<br>C1-CV : Ease the operation mode.                                                                   |      |    |
| 2 | Check whether the<br>(regenerative resist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tor type) of the                              | The setting is incorrect.                                                                                                                           | Correctly set. (Refer to the section for alarm No. 6D.)                                                                          |      | 0  |
|   | drive unit controlling<br>supply unit is corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | The setting is correct.                                                                                                                             | Investigate item 3.                                                                                                              |      |    |
| 3 | Check the regenera state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ative resistor's                              | The regenerative resistor is abnormal.                                                                                                              | Replace the regenerative resistor.                                                                                               |      | 0  |
|   | <ul><li> Is oil adhered?</li><li>Measure the resistance of the res</li></ul> | stance value.                                 | There is no problem.                                                                                                                                | Investigate item 4.                                                                                                              |      |    |
| 4 | Check the alarm No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o. "75" items.                                |                                                                                                                                                     |                                                                                                                                  | 0    | 0  |

|   |                                                                                  |         | stor overheat<br>e protection function in the regenerative | e resistor activated.                                                                                                                  |    |    |
|---|----------------------------------------------------------------------------------|---------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation details                                                            | s       | Investigation results                                      | Remedies                                                                                                                               | C۷ | CR |
| 1 | Check whether the regenerative resistor is overheated.                           |         | The resistor is overheated.                                | Investigate item 2.                                                                                                                    |    | 0  |
|   |                                                                                  |         | The resistor is not overheated.                            | Investigate item 3.                                                                                                                    |    | Ŭ  |
| 2 | Check the alarm history.                                                         |         | Check whether over-regeneration occurred before.           | Refer to the section for alarm No.73.                                                                                                  |    |    |
|   |                                                                                  |         | Over-regeneration has not occurred before.                 | <ul><li>Take measures to dissipate the regenerative resistor's heat.</li><li>Improve the ventilation.</li><li>Install a fan.</li></ul> |    | 0  |
| 3 | Check the connections of the                                                     | e CN22  | The wire is about to break.                                | Replace the wire.                                                                                                                      |    |    |
|   | <ul><li>(B) connector pins 1 and 2.</li><li>Check whether the pins are</li></ul> |         | There is no continuity at the resistor's thermal terminal. | Replace the resistor unit.                                                                                                             |    | 0  |
|   | short-circuited with the resi<br>thermal terminal or wire.                       | istor's | There is no problem.                                       | Replace the power supply unit.                                                                                                         |    |    |

|   | Alarm No.<br>75                                                                            | Overvoltage<br>The main circui        | t PN bus voltage exceeded the tolerable                                                     | e value.                                                                                                                                                         |   |    |
|---|--------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
|   | Investiga                                                                                  | tion details                          | Investigation results                                                                       | Remedies                                                                                                                                                         |   | CR |
| 1 | Check the repeat                                                                           | ability.                              | The alarm occurs each time the motor decelerates.                                           | Investigate item 3.                                                                                                                                              | 0 | 0  |
|   |                                                                                            |                                       | The alarm occurs occasionally.                                                              | Investigate item 2.                                                                                                                                              |   |    |
| 2 | Check the power supply's alarm history.                                                    |                                       | Auxiliary regeneration frequency over<br>(E8) occurs just before the<br>overvoltage occurs. | Limit the occurrence of the excessive<br>instantaneous regeneration by not<br>decelerating multiple axes at the<br>same time.                                    | 0 | 0  |
|   |                                                                                            |                                       | Others.                                                                                     | Investigate item 3.                                                                                                                                              |   |    |
| 3 | Check the power                                                                            | capacity.                             | The power capacity is insufficient.                                                         | Increase the power capacity.                                                                                                                                     |   |    |
|   |                                                                                            |                                       | The specified power capacity is secured.                                                    | Investigate item 4.                                                                                                                                              | 0 | 0  |
| 4 | Measure the volta<br>• Is the voltage 1                                                    | age across wires.<br>70V or more even | The voltage drops to 170V or less occasionally.                                             | Increase the power capacity.                                                                                                                                     |   |    |
|   | when the motor                                                                             | when the motor is accelerating?       | The difference of the voltage across wires is 10V or more.                                  | Improve the power phase balance.                                                                                                                                 | 0 | 0  |
|   |                                                                                            |                                       | The difference of the voltage across wires is less than 10V.                                | Investigate item 5.                                                                                                                                              |   |    |
| 5 | Measure the power synchroscope, an                                                         |                                       | The power voltage is distorted.                                                             | Improve the source of the distortion.<br>Install an AC reactor.                                                                                                  |   |    |
|   | there is any distortion.<br>• Are there any other devices<br>causing the power distortion? |                                       | The power voltage waveform is not abnormal.                                                 | Investigate item 6.                                                                                                                                              | 0 | 0  |
| 6 | Check if there is a                                                                        |                                       | No abnormality is found in particular.                                                      | Replace the unit.                                                                                                                                                |   |    |
|   | the unit's ambient<br>(Ex. Noise, groun                                                    |                                       | The grounding is incomplete.<br>An alarm will occur easily if another<br>device operates.   | Take remedies according to the<br>causes of the abnormality.<br>Ex. Incomplete grounding:<br>Additionally ground.<br>Noise: Noise measures for<br>other devices. | 0 | 0  |

|   | Alarm No.<br>76 External emergency stop setting error<br>The rotary switch setting for the external emergency stop does not match the parameter setting |  |                                                                                                                                     |                                   |    |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----|----|
|   | Investigation details                                                                                                                                   |  | Investigation results                                                                                                               | Remedies                          | C۷ | CR |
| 1 | Check the rotary switch settings and parameter settings.                                                                                                |  | <ul> <li>When using external emergency stop:</li> <li>Add 0040h to the normal setting for supply's rotary switch to "4".</li> </ul> | SV036 or SP041, and set the power | 0  |    |

|   | Alarm No.<br>77                                                                                                                                                                                                                                | Power module ove<br>The power mod                               | erheat<br>ule's temperature protection function ac                                               | stivated.                                                                                                                                                                                                                                          |    |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigat                                                                                                                                                                                                                                     | ion details                                                     | Investigation results                                                                            | Remedies                                                                                                                                                                                                                                           | с٧ | CR |
| 1 | Turn the unit power ON again, and<br>confirm the rotation of the fan.<br>Note) Assure more than 10 seconds<br>for the time from when the<br>power is turned OFF till when it<br>is turned ON. For the fan used<br>for the drive unit, assuring |                                                                 | The fan is rotating, and an alarm did not occur again.                                           | Continue to use.<br>The power may be turned ON without<br>assuring more than 10 seconds for<br>the time from when the power is<br>turned OFF till when it is turned ON.<br>Leave for more than 10 seconds or<br>more, and turn the power ON again. | 0  |    |
|   | more than 10<br>time from wh                                                                                                                                                                                                                   | 0 seconds for the<br>nen the power is<br>till when it is turned | The fan did not rotate. Or, an alarm occurred again.                                             | Investigate item 2.                                                                                                                                                                                                                                |    |    |
| 2 | Confirm that the fa correctly.                                                                                                                                                                                                                 | n is rotating                                                   | Large amounts of cutting oil or cutting<br>chips, etc., are adhered, or the<br>rotation is slow. |                                                                                                                                                                                                                                                    | 0  |    |
|   |                                                                                                                                                                                                                                                |                                                                 | The fan is rotating properly.                                                                    | Investigate item 3.                                                                                                                                                                                                                                |    |    |
| 3 | Check whether the<br>fins are dirty.                                                                                                                                                                                                           | heat dissipating                                                | Cutting oil or cutting chips, etc., are adhered, and the fins are clogged.                       | Clean the fins.                                                                                                                                                                                                                                    | 0  |    |
|   |                                                                                                                                                                                                                                                |                                                                 | The fins are normal.                                                                             | Investigate item 4.                                                                                                                                                                                                                                |    |    |
| 4 | Measure the powe<br>ambient temperatu                                                                                                                                                                                                          |                                                                 | 55°C or more                                                                                     | Improve the ventilation and cooling for the power distribution panel.                                                                                                                                                                              | 0  |    |
|   |                                                                                                                                                                                                                                                |                                                                 | Less than 55°C.                                                                                  | Investigate item 5.                                                                                                                                                                                                                                | 1  |    |
| 5 | · ·                                                                                                                                                                                                                                            | environment.                                                    | No abnormality is found in particular.                                                           | If the alarm occurs even after the unit temperature has dropped, replace the unit.                                                                                                                                                                 |    |    |
|   |                                                                                                                                                                                                                                                |                                                                 | An abnormality was found in the ambient environment.                                             | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground.                                                                                   | 0  |    |

|   | Alarm No.<br>7F Power rebo                                         |   | uest<br>he program mode selection was detecte                                                                                                                                                                                                                                      | ed. Turn the drive unit power ON again.          |    |    |
|---|--------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----|----|
|   | Investigation details                                              |   | Investigation results                                                                                                                                                                                                                                                              | Remedies                                         | S٧ | SP |
| 1 | Were the paramete<br>changed?<br>SV009, SV010, SV<br>SV033/bit8, 9 | Ū | This alarm is detected if the high-gain<br>specification parameters are set<br>when the drive unit is started up with<br>the standard specification software<br>mode, or if the standard specification<br>parameters are set when started up<br>with the high-gain specifications. | Turn the drive unit's control power<br>ON again. | 0  |    |

|   | Alarm No. V<br>88                                              | Vatch dog<br>The system is n | ot operating normally.                                                              |                                                                                                                                                                  |    |    |
|---|----------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation                                                  | n details                    | Investigation results                                                               | Remedies                                                                                                                                                         | S٧ | SP |
| 1 | Check whether the servo software version was changed recently. |                              | The version was changed.                                                            | Replace with a drive unit containing the original software version.                                                                                              | 0  | 0  |
|   |                                                                |                              | The version was not changed.                                                        | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Check the repeatability.                                       |                              | The alarm is always repeated.                                                       | Replace the drive unit.                                                                                                                                          |    |    |
|   |                                                                |                              | The state is returned to normal once,<br>but then the alarm occurs<br>occasionally. | Investigate item 3.                                                                                                                                              | 0  | 0  |
| 3 | Check if there is any                                          | abnormality in               | No abnormality is found in particular.                                              | Replace the drive unit.                                                                                                                                          |    |    |
|   | the unit's ambient env<br>(Ex. Ambient tempera<br>grounding)   |                              | An abnormality was found in the ambient environment.                                | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  | 0  |

|   | Alarm No.<br>89                                          | With the servo,   | r unit 2, connection error<br>an error was detected in the connection<br>. With the spindle, initial communication |                                                                                                                                                                  |    |    |
|---|----------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                              | ion details       | Investigation results                                                                                              | Remedies                                                                                                                                                         | SV | SP |
| 1 | Wiggle the MDS-B-<br>unit connector (CO                  | N3) by hand to    |                                                                                                                    |                                                                                                                                                                  | 0  | 0  |
|   | check whether it is                                      | disconnected.     | The connector is not disconnected.                                                                                 | Servo : Investigate item 2.<br>Spindle : Investigate item 4.                                                                                                     |    |    |
| 2 | Check whether the                                        | cable between     | The cable is broken.                                                                                               | Replace the cable.                                                                                                                                               |    |    |
|   | the linear scale and broken.                             | d MDS-B-HR is     | The cable is not broken.                                                                                           | Investigate item 3.                                                                                                                                              | 0  |    |
| 3 | Check if there is an                                     | ny abnormality in | No abnormality is found in particular.                                                                             | Replace the MDS-B-HR unit.                                                                                                                                       |    |    |
|   | the unit's ambient e<br>(Ex. Ambient tempe<br>grounding) |                   | An abnormality was found in the ambient environment.                                                               | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |
| 4 | Check whether the                                        | cable between     | The cable is broken.                                                                                               | Replace the cable.                                                                                                                                               |    |    |
|   | the spindle drive ur<br>MDS-B-PJEX is bro                |                   | The cable is not broken.                                                                                           | Investigate item 5.                                                                                                                                              |    | 0  |
| 5 | Check if there is an                                     |                   | No abnormality is found in particular.                                                                             | Replace the drive unit.                                                                                                                                          |    |    |
|   | the unit's ambient e<br>(Ex. Ambient tempe<br>grounding) |                   | An abnormality was found in the ambient environment.                                                               | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. |    | 0  |

| Alarm No.         With the servo,           8A         MDS-B-HR unit |                       |                | er unit 2, communication error<br>an error was detected in the communica<br>With the spindle, an error was detecte |          |    |    |
|----------------------------------------------------------------------|-----------------------|----------------|--------------------------------------------------------------------------------------------------------------------|----------|----|----|
|                                                                      | Investigation details |                | Investigation results                                                                                              | Remedies | s٧ | SP |
| 1                                                                    | Check the alarm No    | o. "89" items. |                                                                                                                    |          | 0  | 0  |

|   | Alarm No.<br>8B                                                            |                   | unit 2, automatic adjustment error<br>anal from the PLG was detected during          | automatic adjustment of the PLG.                                                                |    |    |
|---|----------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                | on details        | Investigation results                                                                | Remedies                                                                                        | SV | SP |
| 1 | Check whether the MDS-B-PJEX connectors (CN5) or detector                  |                   | The connector is disconnected (or loose).                                            | Correctly install.                                                                              |    | 0  |
|   | connectors are disc                                                        | connected.        | The connector is not disconnected.                                                   | Investigate item 2.                                                                             |    |    |
| 2 | Turn the power OFF, and check the detector cable connection with a tester. |                   | There is a connection fault.                                                         | Replace the detector cable.                                                                     |    |    |
|   |                                                                            |                   | The connection is normal.                                                            | Investigate item 3.                                                                             |    | 0  |
| 3 | Check the PLG out phase).                                                  | put waveform (A/B | There is a problem. (The A/B phase input voltage is 0.8V or less or 2.2V or higher.) | Adjust the PLG output waveform.                                                                 |    | 0  |
|   |                                                                            |                   | Normal                                                                               | Investigate item 4.                                                                             |    |    |
| 4 | Check the occurren                                                         | nce frequency.    | Occurs each time.                                                                    | Replace the MDS-B-PJEX unit.                                                                    |    |    |
|   |                                                                            |                   | Occurs occasionally.                                                                 | Check whether the cable is disconnected, whether there is a contact fault, or a detector fault. |    | 0  |

|   |                                                                                    |                 | unit 2, judgment error outside the specifications was detected                                             | with the MDS-B-PJEX.                                                                                                                                             |    |    |
|---|------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation                                                                      | details         | Investigation results                                                                                      | Remedies                                                                                                                                                         | sv | SF |
| 1 | Check the spindle par<br>SP042: C-axis control<br>(Spindle end PLG No.<br>setting) | detector range. | The setting was incorrect.<br>"4" : 128 pulses<br>"5" : 256 pulses<br>"6" : 512 pulses<br>"8" : 180 pulses | Set correctly according to the No. of PLG gear teeth.                                                                                                            |    | 0  |
|   |                                                                                    |                 | The setting is correct.                                                                                    | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Check if there is any a                                                            | abnormality in  | No abnormality is found in particular.                                                                     | Replace the MDS-B-PJEX.                                                                                                                                          |    |    |
|   | the unit's ambient env<br>(Ex. Ambient temperat<br>grounding)                      |                 | An abnormality was found in the ambient environment.                                                       | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. |    | 0  |

|   | Alarm No.<br>8D                                         | With the servo, | er unit 2, CPU error<br>a CPU error was detected with the MD<br>e MDS-B-PJEX unit. | S-B-HR unit. With the spindle, a CPU e                                                                                                                           | rror v | vas |
|---|---------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
|   | Investigation details                                   |                 | Investigation results                                                              | Remedies                                                                                                                                                         | sv     | SP  |
| 1 | Check if there is any abnormality in                    |                 | No abnormality is found in particular.                                             | Replace the detection converter unit.                                                                                                                            |        |     |
|   | the detector's ambi<br>(Ex. Ambient tempe<br>grounding) |                 | An abnormality was found in the ambient environment.                               | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0      | 0   |

|   | Alarm No.<br>8E                                                                  |               | er unit 2, data error<br>s detected with the MDS-B-HR unit. |                                                                                                                                                                  |    |    |
|---|----------------------------------------------------------------------------------|---------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                                      | on details    | Investigation results                                       | Remedies                                                                                                                                                         | sv | SP |
| 1 | 1 Check whether the cable between<br>the linear scale and MDS-B-HR is<br>broken. |               | The cable is broken.                                        | Replace the cable.                                                                                                                                               |    |    |
|   |                                                                                  |               | The cable is not broken.                                    | Investigate item 2.                                                                                                                                              | 0  |    |
| 2 | Check if there is an                                                             |               | No abnormality is found in particular.                      | Investigate item 3.                                                                                                                                              |    |    |
|   | the unit's ambient e<br>(Ex. Ambient tempe<br>grounding)                         |               | An abnormality was found in the ambient environment.        | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |
| 3 | Try replacing the M                                                              | DS-B-HR unit. | The state is improved.                                      | Replace the MDS-B-HR unit.                                                                                                                                       | 0  |    |
|   |                                                                                  |               | The state is not improved.                                  | Replace the linear scale.                                                                                                                                        | Ŭ  |    |

## 6-3-3 Troubleshooting for each warning No.

|   | Warning No.<br>90                                                                                                                                           | ,                              | ommunication error<br>cation with the absolute position linear s | scale was not possible.                                                                                                                                          |    |    |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigat                                                                                                                                                  | ion details                    | Investigation results                                            | Remedies                                                                                                                                                         | S٧ | SP |
| 1 | Check the servo pa                                                                                                                                          | arameter                       | The setting is incorrect.                                        | Correctly set SV025.                                                                                                                                             | 0  |    |
|   | (SV025.pen) settin                                                                                                                                          | g.                             | The setting is correct.                                          | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Check whether the drive unit connector (CN3) and detector                                                                                                   |                                | The connector is disconnected (loose).                           | Correctly install.                                                                                                                                               | 0  |    |
|   | connector are disc                                                                                                                                          | ector are disconnected. The co | The connector is not disconnected.                               | Investigate item 3.                                                                                                                                              |    |    |
| 3 | Turn the power OF detector cable con                                                                                                                        |                                | The connection is faulty.                                        | Replace the detector cable (CN3 side).                                                                                                                           | 0  |    |
|   | tester.                                                                                                                                                     |                                | The connection is normal.                                        | Investigate item 4.                                                                                                                                              |    |    |
| 4 | <ul> <li>Check if there is any abnormality in the tool end detector's ambient environment.</li> <li>(Ex.: Ambient temperature, noise, grounding)</li> </ul> |                                | No abnormality is found in particular.                           | Replace the tool end detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                    |    |    |
|   |                                                                                                                                                             |                                | An abnormality was found in the ambient environment.             | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |

|   | Warning No.<br>91                                                   | Detector, commun<br>An error was de<br>system. |                                                                                 | etector for the absolute position detecti                                                                                                                        | on | ·  |
|---|---------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigati                                                         | on details                                     | Investigation results                                                           | Remedies                                                                                                                                                         | sv | SP |
| 1 | Check whether the connectors (CN3) c                                | or detector                                    | The connector is disconnected (or loose).                                       | Correctly install.                                                                                                                                               | 0  |    |
|   | connectors are disc                                                 | connected.                                     | The connector is not disconnected.                                              | Investigate item 2.                                                                                                                                              |    |    |
| 2 | Is the detector cabl<br>same conduit as the<br>cable or are the two | e motor's power<br>o cables laid in            | The cables are wired near each other. (Noise is entering from the power cable.) | Improve the cable wiring.                                                                                                                                        | 0  |    |
|   | parallel near each o                                                | other?                                         | The wires are sufficiently separated.                                           | Investigate item 3.                                                                                                                                              |    |    |
| 3 | Is the motor FG wir<br>to the drive unit whi<br>(Is the motor groun | ich drives it?                                 | The motor FG wire is grounded on the motor side.                                | Ground the motor to one point,<br>connecting the wires together on the<br>drive unit side.                                                                       | 0  |    |
|   |                                                                     |                                                | The motor is grounded to one point.                                             | Investigate item 4.                                                                                                                                              |    |    |
| 4 | Turn the power OF                                                   |                                                | There is a connection fault.                                                    | Replace the detector cable.                                                                                                                                      |    |    |
|   | detector cable conr<br>tester. (Is the cable                        |                                                | The connection is normal.                                                       | Investigate item 5.                                                                                                                                              | 0  |    |
| 5 | Connect to another                                                  |                                                | The alarm is on the drive unit side.                                            | Replace the drive unit.                                                                                                                                          |    |    |
|   | unit, and check whe                                                 |                                                | The alarm is on the detector side.                                              | Investigate item 6.                                                                                                                                              | 0  |    |
| 6 | Check if there is an<br>the detector's ambi<br>(Ex. Ambient tempe   | ent environment.                               | No abnormality is found in particular.                                          | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.)                                                             |    |    |
|   | grounding)                                                          |                                                | An abnormality was found in the ambient environment.                            | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |

|   | Warning No.<br>92                                       | Detector, protocol<br>An error was de | error<br>etected in the data for the absolute posi   | tion detection system.                                                                                                                                           |    |    |
|---|---------------------------------------------------------|---------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation details                                   |                                       | Investigation results                                | Remedies                                                                                                                                                         | SV | SP |
| 1 | Check if there is any abnormality in                    |                                       | No abnormality is found in particular.               | Investigate item 2.                                                                                                                                              |    |    |
|   | the detector's ambi<br>(Ex. Ambient tempe<br>grounding) |                                       | An abnormality was found in the ambient environment. | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |
| 2 | Check the repeatab                                      | pility.                               | Occurs frequently.                                   | Replace the detector.                                                                                                                                            | 0  | 0  |
|   |                                                         |                                       | Is not repeated.                                     | Investigate item 1.                                                                                                                                              | Ŭ  | Ŭ  |

|   | Warning No.<br>93                     | Initial absolute pos<br>The position da | sition fluctuation<br>ta fluctuated when creating the initial at      | osolute position.                                                  |    |    |
|---|---------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|----|----|
|   | Investigation details                 |                                         | Investigation results                                                 | Remedies                                                           | sv | SP |
| 1 | Check the state of NC power is turned |                                         | The vertical axis or slant axis drops when the NC power is turned ON. | Check the brake operation.                                         |    |    |
|   |                                       |                                         | The axis moves with an external force when the NC power is turned ON. | Make sure that the axis does not move when the power is turned ON. | 0  |    |

|   |   | Warning No.<br>96  |                | k error<br>eviation was detected between the moto<br>psolute position detection system. | or end detector and MP scale feedback | data | for |
|---|---|--------------------|----------------|-----------------------------------------------------------------------------------------|---------------------------------------|------|-----|
|   |   | Investigati        | on details     | Investigation results                                                                   | Remedies                              | sv   | SP  |
| Γ | 1 | Check the alarm No | o. "43" items. |                                                                                         |                                       | 0    |     |

|   | Warning No.<br>97                                       | MP scale offset er<br>An error was de<br>detection system | etected in the offset data received from             | the MP scale for the MP scale absolute                                                                                                                           | e posi | tion |
|---|---------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
|   | Investigation details                                   |                                                           | Investigation results                                | Remedies                                                                                                                                                         | S٧     | SP   |
| 1 | Check if there is any abnormality in                    |                                                           | No abnormality is found in particular.               | Investigate item 2.                                                                                                                                              |        |      |
|   | the detector's ambi<br>(Ex. Ambient tempe<br>grounding) |                                                           | An abnormality was found in the ambient environment. | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0      |      |
| 2 | Check the repeatat                                      | bility.                                                   | Occurs frequently.                                   | Replace the detector.                                                                                                                                            | 0      | 0    |
|   |                                                         |                                                           | Is not repeated.                                     | Investigate item 1.                                                                                                                                              | U      |      |

|   | An error was de                                         |         | detector, multi-rotation counter error<br>tected in the multi-rotation counter for t<br>be compensated. | the absolute position detector. The abs                                                                                                                          | olute |    |
|---|---------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
|   | Investigation details                                   |         | Investigation results                                                                                   | Remedies                                                                                                                                                         | sv    | SP |
| 1 | Check if there is any abnormality in                    |         | No abnormality is found in particular.                                                                  | Investigate item 2.                                                                                                                                              |       |    |
|   | the detector's ambi<br>(Ex. Ambient tempe<br>grounding) |         | An abnormality was found in the ambient environment.                                                    | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0     |    |
| 2 | Check the repeatal                                      | oility. | Occurs frequently.                                                                                      | Replace the detector.                                                                                                                                            | 0     | 0  |
|   |                                                         |         | Is not repeated.                                                                                        | Investigate item 1.                                                                                                                                              |       |    |

(Note) When this alarm occurs, the absolute position system's zero point must be established.

|   | Warning No.<br>9F Battery voltage dr<br>The voltage of t<br>position data is |                     | he battery supplying to the absolute | position detector has dropped. The absolu                                                            | ute |    |
|---|------------------------------------------------------------------------------|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|-----|----|
|   | Investigati                                                                  | on details          | Investigation results                | Remedies                                                                                             | SV  | SP |
| 1 | Measure the batter                                                           | y (MDS-A-BT)        | Less than 3V.                        | Replace the battery unit.                                                                            | 0   |    |
|   | voltage.                                                                     |                     | 3V or more.                          | Investigate item 2.                                                                                  |     |    |
| 2 | Check whether the NC bus cable is                                            |                     | The cable is disconnected.           | Connect correctly.                                                                                   | 0   |    |
|   | disconnected.                                                                |                     | There is no problem.                 | Investigate item 3.                                                                                  |     |    |
| 3 | Check whether the                                                            | battery wire in the | The cable is broken.                 | Replace the cable.                                                                                   | 0   |    |
|   | detector cable is bro                                                        | oken.               | The cable is not broken.             | Investigate item 4.                                                                                  |     |    |
| 4 | Try replacing the dr                                                         | ive unit.           | Improved.                            | Replace the drive unit.                                                                              |     |    |
|   |                                                                              |                     | Not improved.                        | Replace the detector.<br>(With the absolute position system,<br>the zero point must be established.) | 0   |    |

(Note) When warning 9F occurs, do not turn the drive unit power OFF to ensure that the absolute position data is held. Replace the battery with the drive unit power ON.

|   |                                                                             | king error warning<br>manded turret indexing position shift arr | nount is outside the specified range.                          |    |    |
|---|-----------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|----|----|
|   | Investigation details                                                       | Investigation results                                           | Remedies                                                       | SV | SP |
| 1 | Check the parameters.                                                       | The setting is incorrect.                                       | Correctly set SP097.                                           |    |    |
|   | SP097/bitB = 0 command an<br>unit<br>SP097/bitB = 1 command an<br>0.1° unit |                                                                 | Investigate item 2.                                            |    | 0  |
| 2 | Pinpoint where the alarm occur                                              | s in The position can be pinpointed.                            | Check the PLC program process.                                 |    |    |
|   | the PLC program.                                                            | The position cannot be pinpoint                                 | ed. Investigate the details of the NC and PLC program process. |    | 0  |

|                                   | Warning No.<br>A9 | Orientation feedba<br>Retrying during | ck error warning<br>an orientation feedback error. |          |    |    |
|-----------------------------------|-------------------|---------------------------------------|----------------------------------------------------|----------|----|----|
|                                   | Investigati       | on details                            | Investigation results                              | Remedies | SV | SP |
| 1 Check the alarm No. "5C" items. |                   |                                       |                                                    | 0        |    |    |

|   | Warning No.<br>E1 | Overload warning<br>The overload de | etection level is 80% or more. |          |    |    |
|---|-------------------|-------------------------------------|--------------------------------|----------|----|----|
|   | Investigati       | on details                          | Investigation results          | Remedies | S٧ | SP |
| 1 | Check the alarm N | o. "50" items.                      |                                |          | 0  | 0  |

|   | Warning No.<br>E3                                       | Absolute position<br>A deviation was | counter warning<br>detected in the absolute position data | and relative position data.                                                                                                                                      |    |    |
|---|---------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation details                                   |                                      | Investigation results                                     | Remedies                                                                                                                                                         | S٧ | SP |
| 1 | Check if there is any abnormality in                    |                                      | No abnormality is found in particular.                    | Investigate item 2.                                                                                                                                              |    |    |
|   | the detector's ambi<br>(Ex. Ambient tempe<br>grounding) |                                      | An abnormality was found in the ambient environment.      | Take remedies according to the<br>causes of the abnormality.<br>Ex. High temperature:<br>Check the cooling fan.<br>Incomplete grounding:<br>Additionally ground. | 0  |    |
| 2 | Check the repeatability.                                |                                      | Occurs frequently.                                        | Replace the detector.                                                                                                                                            | 0  |    |
|   |                                                         |                                      | Is not repeated.                                          | Investigate item 1.                                                                                                                                              |    |    |

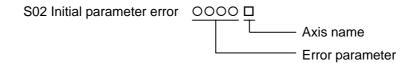
(Note) When this alarm occurs, the absolute position system's zero point must be established.

|   | Warning No.<br>E4     |             | arning<br>ceeding the setting range was set.<br>error ####" is displayed on the NC scro        | een. #### indicates the incorrect param            | neter | No. |
|---|-----------------------|-------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|-------|-----|
|   | Investigation details |             | Investigation results                                                                          | Remedies                                           | sv    | SP  |
| 1 | Check the error par   | rameter No. | SV001 to SV065<br>(M60S system: 2201 to 2265)<br>SP001 to SP384<br>(M60S system: 3201 to 3584) | Set the value within the designated setting range. | 0     | 0   |

|   | Warning No.<br>E6   | Control axis remov<br>Control axis rem | val warning<br>noval was commanded. |               |    |    |
|---|---------------------|----------------------------------------|-------------------------------------|---------------|----|----|
|   | Investigati         | on details                             | Investigation results               | Remedies      | SV | SP |
| 1 | The status in which | removal of the cor                     | trol axis was commanded from the NC | is indicated. | 0  |    |

|   | Warning No.<br>E7                          | NC emergency sto<br>Emergency stop | op<br>was input from the NC.                                                            |                                                 |    |    |
|---|--------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|----|----|
|   | Investigati                                | on details                         | Investigation results                                                                   | Remedies                                        | SV | SP |
| 1 | Check whether NC emergency stop was input. |                                    | Emergency stop was input.                                                               | The NC is in the emergency stop state. (Normal) | 0  | 0  |
|   |                                            |                                    | Emergency stop was not input.                                                           | Investigate item 2.                             |    |    |
| 2 | Check whether an in another drive uni      | 0                                  | An alarm is occurring in another drive unit.                                            | Reset the alarm in the other drive unit.        | 0  | 0  |
|   |                                            |                                    | An alarm is not occurring.                                                              | Investigate item 3.                             |    |    |
| 3 | Check the NC com<br>line.                  | munication bus                     | The terminator or battery unit's cable is disconnected.                                 | Correctly connect.                              |    |    |
|   |                                            |                                    | The NC communication bus<br>connector (CN1A, CN1B) is loose, or<br>the cable is broken. | Correctly connect the cable.                    | 0  | 0  |

|   | Warning No.<br>E8  | , ,            | tion frequency over<br>the power supply performance limit is o | occurring frequently. |    |    |
|---|--------------------|----------------|----------------------------------------------------------------|-----------------------|----|----|
|   | Investigati        | on details     | Investigation results                                          | Remedies              | С٧ | CR |
| 1 | Check the alarm No | o. "75" items. |                                                                |                       |    | 0  |


|   | Warning No.<br>E9  | Instantaneous pov<br>An instantaneou | ver failure warning<br>is power failure occurred. |          |    |    |
|---|--------------------|--------------------------------------|---------------------------------------------------|----------|----|----|
|   | Investigati        | on details                           | Investigation results                             | Remedies | с٧ | CR |
| 1 | Check the alarm No | o. "71" items.                       |                                                   |          | 0  |    |

|   | Warning No.<br>EA                                                    | External emergen<br>The external en | cy stop<br>nergency stop signal was input. |                                                                                                           |    |    |
|---|----------------------------------------------------------------------|-------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|----|----|
|   | Investigation details                                                |                                     | Investigation results                      | Remedies                                                                                                  | С٧ | CR |
| 1 | Check whether the specifications allow use of the external emergency |                                     | Use not allowed.                           | Invalidate the external emergency stop.                                                                   | 0  |    |
|   | stop.                                                                |                                     | Use is allowed.                            | Investigate item 2.                                                                                       |    |    |
| 2 | Measure the input                                                    |                                     | 24V is input.                              | Replace the power supply unit.                                                                            |    |    |
|   | CN23 connector. (While emergency stop is cancelled.)                 |                                     | 24V is not input.                          | Check whether the external<br>emergency stop cable is broken, or<br>check the external contact operation. | 0  |    |

|   | EB                                |            | warning<br>eration level is 80% or more. |          |    |    |
|---|-----------------------------------|------------|------------------------------------------|----------|----|----|
|   | Investigati                       | on details | Investigation results                    | Remedies | C٧ | CR |
| 1 | 1 Check the alarm No. "73" items. |            |                                          | 0        |    |    |

#### 6-3-4 Parameter numbers during initial parameter error

If an initial parameter error (alarm 37) occurs, the alarm and the number of the parameter that may have been set exceeding the setting range will appear on the CNC Diagnosis screen. (For M60S, E60 Series NC.)



If an error number larger than the servo parameter number is displayed for the servo drive unit (MDS-C1-V1/V2), the alarm is occurring for several related parameters. Refer to the following table, and correctly set the parameters.

| Error parameter No. | Details                                                                                                                               | Related parameters                                    |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 2269                | The CNC setting maximum rapid traverse rate value is incorrect.<br>The CNC system software may be illegal. Turn the power ON again.   | NC setting<br>rapic                                   |
| 2271                | The CNC setting maximum cutting speed setting value is incorrect.<br>The CNC system software may be illegal. Turn the power ON again. | NC setting clamp                                      |
| 2301                | The following settings are overflowing.<br>Electronic gears<br>Position loop gain<br>Speed feedback                                   | SV001, SV002 SV003,<br>SV018<br>SV019, SV020<br>SV049 |
| 2302                | The absolute position parameter is valid when OSE104 and OSE105 are connected.                                                        | SV017, SV025                                          |
| 2303                | The servo option is not available.<br>The closed loop or dual feedback control function is set.                                       | SV025, SV017                                          |
| 2304                | The servo option is not available. The SHG control function is set.                                                                   | SV057, SV058                                          |
| 2305                | The servo option is not available. The adaptive filter function is set.                                                               | SV027                                                 |
| 2306                | The servo option is not available. The MP scale absolute position function is set.                                                    | SV017                                                 |
| 2308                | The valid/invalid setting of the 4th or 5th notch filter is changed from the initial setting.                                         | SV087, SV088                                          |

## 6-3-5 Troubleshooting the spindle system when there is no alarm or warning

If an abnormality is observed in the spindle system but no alarm or warning has occurred, refer to the following table and check the state.

|   | Investigation item                                                                                                                                                                                                                                      | Investigation results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remedies                                                          |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1 | Check the wiring around the spindle drive unit.                                                                                                                                                                                                         | The wiring is incorrect, the screws are loose, or the cables are disconnected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Correctly wire. Correctly tighten the screws. Replace the cables. |
|   | Also check for loosening in the terminal screws and disconnec- tions, etc.                                                                                                                                                                              | The wiring is incorrect, the screws are boose, or the cables are disconnected.       Scr         Isoparticular problems found.       Invirent         Isoparticular problems found.       Re         The voltage is exceeding the pecification value.       Re         The voltage is within the specification value.       Invirent         The voltage is within the specification value.       Invirent         The correct values are not set.       Se         The correct values are set.       Invirent         The signals are not input or the equence is incorrect.       Co         The orientation command is input.       Invirent | Investigate investigation item 2 and remedy.                      |
| 2 | Check the input voltage.                                                                                                                                                                                                                                | specification value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Restore the power to the correct state.                           |
| 2 | Check the liput voltage.                                                                                                                                                                                                                                | The voltage is within the specification value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Investigate investigation item 3 and remedy.                      |
|   |                                                                                                                                                                                                                                                         | The correct values are not set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Set the correct values.                                           |
| 3 | Check all of the spindle parameters.                                                                                                                                                                                                                    | The correct values are set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Investigate investigation item 4 and remedy.                      |
|   | Check the input signals.<br>• Are the READY, forward run and<br>reverse run signals input?                                                                                                                                                              | The signals are not input or the sequence is incorrect.<br>The orientation command is input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Correct the input signals.                                        |
| 4 | <ul> <li>In particular, the forward run and<br/>reverse run signals must be input at<br/>least one second after READY is<br/>turned ON.</li> <li>Check whether the forward run and<br/>reverse run signals are turned ON<br/>simultaneously.</li> </ul> | No particular problems found.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Investigate investigation item 5 and remedy.                      |
| 5 | Check the speed command.                                                                                                                                                                                                                                | The speed command is not input correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Input the correct speed command.                                  |
|   |                                                                                                                                                                                                                                                         | The speed command is input correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Replace the unit.                                                 |

[1] No abnormality is displayed, but the motor does not rotate.

# [2] No fault is displayed, but the motor only rotates slowly, or a large noise is heard from the motor.

|   | Investigation item                                                         | Investigation results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remedies                                                                                   |
|---|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|   | Check the U, V and W wiring between the                                    | The wires are not connected correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Correctly connect.                                                                         |
| 1 | spindle drive unit and motor.                                              | The wires are connected correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Investigate investigation item 2 and remedy.                                               |
| 2 | Check the input voltage.                                                   | One of the three phases is not within the specification value.<br>No particular problems found.                                                                                                                                                                                                                                                                                                                                                                                                                      | Restore the power to the correct state.<br>Investigate investigation item 3 and<br>remedy. |
| 3 | Check the aread command                                                    | The speed command is not input correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Check the NC and PLC sequence.                                                             |
| 3 | Check the speed command.                                                   | The wires are not connected correctly. C The wires are connected correctly. The wires are connected correctly. The wires are connected correctly. C The of the three phases is not within the R specification value. The speed command is not input correctly. The speed command is input correctly. The speed command is input correctly. The speed command is input correctly. The connector is disconnected (or oose). The connector is not disconnected (or oose). The connection is faulty or disconnected. R C | Investigate investigation item 4 and remedy.                                               |
| 4 | Tug on the connector by hand to check whether the speed detector connector | The connector is disconnected (or loose).                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correctly connect the connector.                                                           |
| 4 | (drive unit side and speed detector side) is loose.                        | The connector is not disconnected (or loose).                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Investigate investigation item 5 and remedy.                                               |
| 5 | Turn the power OFF, and check the connection of the speed detector cable   | The connection is faulty or disconnected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Replace the detector cable.<br>Correct the connection.                                     |
|   | with a tester.                                                             | The connection is normal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Replace the drive unit.                                                                    |

|   | •                                                              | •                                         |                                                                                     |
|---|----------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|
|   | Investigation item                                             | Investigation results                     | Remedies                                                                            |
| 1 | Check the speed command.                                       | The speed command is not input correctly. | Input the correct speed command.<br>Investigate investigation item 2 and<br>remedy. |
| I | Theck the speed command.                                       | The speed command is correct.             |                                                                                     |
|   | Check whether there is slipping between                        | There is slipping.                        | Repair the machine side.                                                            |
| 2 | the motor and spindle. (When connected with a belt or clutch.) | No particular problems found.             | Investigate investigation item 3 and remedy.                                        |
| 2 | Check the spindle parameters (SP017,                           | The correct values are not set.           | Set the correct values.                                                             |
| 3 | SP034, SP040, SP257 and following).                            | The correct values are set.               | Replace the drive unit.                                                             |

#### [3] The rotation speed command and actual rotation speed do not match.

#### [4] The starting time is long or has increased in length.

|   | Investigation item                                         | Investigation results                | Remedies                                     |
|---|------------------------------------------------------------|--------------------------------------|----------------------------------------------|
|   | Check whether the friction torque has                      | The friction torque has increased.   | Repair the machine side.                     |
| 1 | increased.                                                 | No particular problems found.        | Investigate investigation item 2 and remedy. |
|   | Manually instate the material bearing and                  | The bearings do not rotate smoothly. | Replace the spindle motor.                   |
| 2 | Manually rotate the motor bearings and check the movement. | The bearings rotate smoothly.        | Investigate investigation item 3 and remedy. |
| 2 | Check whether the torque limit signal has                  | The signal has been input.           | Do not input this signal.                    |
| 3 | been input.                                                | The signal is not input.             | Replace the drive unit.                      |

## [5] The motor stops during cutting.

|   | Investigation item                  | Investigation results                          | Remedies                                              |
|---|-------------------------------------|------------------------------------------------|-------------------------------------------------------|
| 1 | Check the load rate during cutting. | The load meter sways past 120% during cutting. | Reduce the load.                                      |
|   |                                     | No particular problems found.                  | Investigate the same matters as item (4), and remedy. |

## [6] The vibration and noise (gear noise), etc., are large.

|   | Investigation item                                                         | Investigation results                                                                                                                                                                                                                                                          | Remedies                                                                                                |
|---|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1 | Check the machine's dynamic balance.                                       | The same noise is heard during coasting.                                                                                                                                                                                                                                       | Repair the machine side.                                                                                |
| I | (Coast from the maximum speed.)                                            | No particular problems found.                                                                                                                                                                                                                                                  | Investigate investigation item 2 and remedy.                                                            |
| 2 | Check whether there is a resonance point in the machine. (Coast from the   | Vibration and noise increase at a set rotation speed during coasting.                                                                                                                                                                                                          | Repair the machine side.                                                                                |
| 2 | maximum speed.)                                                            | No particular problems found.                                                                                                                                                                                                                                                  | Investigate investigation item 3 and remedy.                                                            |
|   |                                                                            | The backlash is great.                                                                                                                                                                                                                                                         | Repair the machine side.                                                                                |
| 3 | Check the machine's backlash.                                              | No particular problems found.                                                                                                                                                                                                                                                  | Investigate investigation item 4 and remedy.                                                            |
|   | Check the spindle perometer actings                                        | Symptoms decrease when setting value is set to approx. half.                                                                                                                                                                                                                   | Change the setting value.<br>Note that the impact response will<br>drop.                                |
| 4 | Check the spindle parameter settings.<br>(SP022, SP023, SP056)             | The symptoms do not change even when the above value is set.                                                                                                                                                                                                                   | Return the setting values to the<br>original values.<br>Investigate investigation item 5 and<br>remedy. |
| 5 | Tug on the connector by hand to check whether the speed detector connector | The connector is disconnected (or loose).                                                                                                                                                                                                                                      | Correctly connect the connector.                                                                        |
| 5 | (spindle drive unit side and speed detector side) is loose.                | ymptoms decrease when setting value<br>set to approx. half.<br>he symptoms do not change even<br>then the above value is set.<br>he connector is disconnected (or<br>toose).<br>he connector is not disconnected (or<br>toose).<br>he connection is faulty or<br>sisconnected. | Investigate investigation item 6 and remedy.                                                            |
| 6 | Turn the power OFF, and check the connection of the speed detector cable   | The connection is faulty or<br>disconnected.                                                                                                                                                                                                                                   | Replace the detector cable.<br>Correct the connection.                                                  |
|   | with a tester.                                                             | The connection is normal.                                                                                                                                                                                                                                                      | Replace the drive unit.                                                                                 |

## [7] The spindle coasts during deceleration.

|                                          | Investigation item                      | Investigation results   | Remedies                 |
|------------------------------------------|-----------------------------------------|-------------------------|--------------------------|
|                                          | Check whether there is slipping between | There is slipping.      | Repair the machine side. |
| 1 the motor and spindle. (When connected | No particular problems found.           | Replace the drive unit. |                          |

## [8] The rotation does not stabilize.

|   | Investigation item                                                         | Investigation results                                                         | Remedies                                                                                                |
|---|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|   | Check the spindle parameter settings.                                      | values are both set to approx. double. Note that the gear noise may increase. |                                                                                                         |
| 1 | (SP022, SP023)                                                             | The symptoms do not change even when the above value is set.                  | Return the setting values to the<br>original values.<br>Investigate investigation item 2 and<br>remedy. |
| 2 | Tug on the connector by hand to check whether the speed detector connector | The connector is disconnected (or loose).                                     | Correctly connect the connector.                                                                        |
| 2 | (spindle drive unit side and speed detector side) is loose.                | The connector is not disconnected (or loose).                                 | Investigate investigation item 3 and remedy.                                                            |
| 3 | Turn the power OFF, and check the connection of the speed detector cable   | The connection is faulty or<br>disconnected.                                  | Replace the detector cable.<br>Correct the connection.                                                  |
| 3 | with a tester.<br>(Especially check the shield wiring.)                    | The connection is normal.                                                     | Investigate investigation item 4 and remedy.                                                            |
|   | Investigate the wiring and installation                                    | The grounding is incomplete.                                                  | Correctly ground.                                                                                       |
| 4 | <ul><li>environment.</li><li>Is the ground correctly connected?</li></ul>  | The alarm occurs easily when a specific device operates.                      | Use noise measures on the device described on the left.                                                 |
|   | • Are there any noise-generating devices near the drive unit?              | No particular problems found.                                                 | Replace the drive unit.                                                                                 |

## [9] The speed does not rise above a set level.

|   | Investigation item                                                         | Investigation results                         | Remedies                                               |
|---|----------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|
| 1 | Check the speed command.<br>Check whether the override input is input      | The speed command is not input correctly.     | Input the correct speed command.                       |
|   | from the machine operation panel.                                          | The speed command is input correctly.         | Investigate investigation item 2 and remedy.           |
|   | Check whether the load has suddenly                                        | The load has become heavier.                  | Repair the machine side.                               |
| 2 | become heavier.                                                            | No particular problems found.                 | Investigate investigation item 3 and remedy.           |
|   | Manually retate the restory beautings and                                  | The bearings do not rotate smoothly.          | Replace the spindle motor.                             |
| 3 | Manually rotate the motor bearings and check the movement.                 | The bearings rotate smoothly.                 | Investigate investigation item 4 and remedy.           |
| 4 | Tug on the connector by hand to check whether the speed detector connector | The connector is disconnected (or loose).     | Correctly connect the connector.                       |
| 4 | (spindle drive unit side and speed detector side) is loose.                | The connector is not disconnected (or loose). | Investigate investigation item 5 and remedy.           |
| 5 | Turn the power OFF, and check the connection of the speed detector cable   | The connection is faulty or disconnected.     | Replace the detector cable.<br>Correct the connection. |
|   | with a tester.<br>(Especially check the shield wiring.)                    | The waveform is normal.                       | Replace the spindle drive unit.                        |

| 7-1 Inspections                |  |
|--------------------------------|--|
|                                |  |
|                                |  |
| 7-3-1 Replacing the drive unit |  |
|                                |  |

| <ol> <li>Before starting maintenance or inspections, turn the main circuit power and<br/>control power both OFF. Wait at least ten minutes for the CHARGE lamp to<br/>turn OFF, and then using a tester, confirm that the input and output voltage<br/>are zero. Failure to observe this could lead to electric shocks.</li> <li>Inspections must be carried out by a qualified technician. Failure to observe<br/>this could lead to electric shocks. Contact your nearest Mitsubishi branch or<br/>dealer for repairs and part replacement.</li> </ol> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Never perform a megger test (measure the insulation resistance) of the<br/>servo drive unit. Failure to observe this could lead to faults.</li> <li>The user must never disassemble or modify this product.</li> </ol>                                                                                                                                                                                                                                                                                                                          |

#### 7-1 Inspections

Periodic inspection of the following items is recommended.

- [1] Are any of the screws on the terminal block loose? If loose, tighten them.
- [2] Is any abnormal noise heard from the servomotor bearings or brake section?
- [3] Are any of the cables damaged or cracked? If the cables move with the machine, periodically inspect the cables according to the working conditions.
- [4] Is the core of the load coupling shaft deviated?

## 7-2 Service parts

A guide to the part replacement cycle is shown below. Note that these will differ according to the working conditions or environmental conditions, so replace the parts if any abnormality is found. Contact Mitsubishi branch or your dealer for repairs or part replacements.

| Part name        |                     | Standard replacement time | Remarks                              |
|------------------|---------------------|---------------------------|--------------------------------------|
|                  | Smoothing capacitor | 10 years                  | The standard replacement time is a   |
| Servo drive unit | Cooling fan         | 10,000 to 30,000 hours    | reference. Even if the standard      |
|                  | Cooling fail        | (2 to 3 years)            | replacement time is not reached, the |
|                  | Battery             | 10,000 hours              | part must be replaced if any         |
|                  | Bearings            | 20,000 to 30,000 hours    | abnormality is found.                |
| Servomotor       | Detector            | 20,000 to 30,000 hours    |                                      |
|                  | Oil seal, V-ring    | 5,000 hours               |                                      |

[1] Power smoothing capacitor : The characteristics of the power smoothing capacitor will deteriorate due to the effect of ripple currents, etc. The capacitor life is greatly affected by the ambient temperature and working conditions. However, when used continuously in a normal air-conditioned environment, the service life will be ten years.
 [2] Relays : Contact faults will occur due to contact wear caused by the

- switching current. The service life will be reached after 100,000 cumulative switches (switching life) although this will differ according to the power capacity.
- [3] Servomotor bearings
   : The motor bearings should be replaced after 20,000 to 30,000 hours of rated load operation at the rated speed. This will be affected by the operation state, but the bearings must be replaced when any abnormal noise or vibration is found in the inspections.
- [4] Servomotor oil seal, V-ring : These parts should be replaced after 5,000 hours of operation at the rated speed. This will be affected by the operation state, but these parts must be replaced if oil leaks, etc., are found in the inspections.

## 7-3 Adding and replacing units and parts

|  | <ol> <li>Correctly transport the product according to its weight. Failure to do so could<br/>result in injury.</li> </ol>                                                  |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | 2. Do not stack the product above the indicated limit.                                                                                                                     |
|  | 3. Installation directly on or near combustible materials could result in fires.                                                                                           |
|  | 4. Install the unit as indicated at a place which can withstand the weight.                                                                                                |
|  | 5. Do not get on or place heavy objects on the unit. Failure to observe this could result in injury.                                                                       |
|  | 6. Always use the unit within the designated environment condition range.                                                                                                  |
|  | <ol><li>Do not allow conductive foreign matter such as screws or metal chips, or<br/>combustible foreign matter such as oil enter the servo drive or servomotor.</li></ol> |
|  | <ol> <li>Do not block the intake or exhaust ports of the servo drive of servomotor.<br/>Failure to observe this could result in faults.</li> </ol>                         |
|  | <ol><li>The servo drive and servomotor are precision devices. Do not drop them or<br/>apply strong impacts.</li></ol>                                                      |
|  | 10.Do not install or operate a servo drive or servomotor which is damaged or missing parts.                                                                                |
|  | 11. When the unit has been stored for a long time, contact the Service Center or Service Station.                                                                          |

## 7-3-1 Replacing the drive unit

Replace the unit with the following procedures.

#### (1) Replacing the servo drive unit

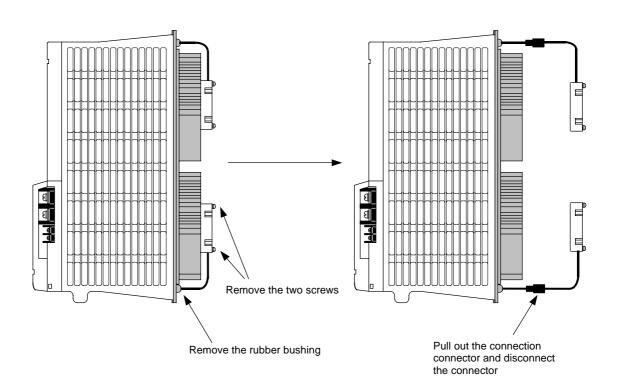
- [1] Disconnect the connectors connected to CN1A, CN1B, CN9, CN4, CN2L, CN3L, CN2M, CN3M and CN20.
- [2] Disconnect all wires connected to the terminal block: LU, LV, LW, MU, MV, MW, (=), L+, L-, L11 and L21.
- [3] Remove the two (four) screw fixing the unit onto the control unit. Remove the unit from the control panel.
- [4] Install the new unit following the removal procedures in reverse.

(Note) The connector and terminal block names differ for the MDS-C1-V1 unit. (CN2L, CN3L  $\rightarrow$  CN2, CN3 LU, LV, LW  $\rightarrow$  U, V, W) The CN2M, CN3M connector and MU, MV, MW connectors are not provided.

#### (2) Replacing the spindle drive unit

- [1] Disconnect the connectors connected to CN1A, CN1B, CN9, CN4, CN5, CN6, CN7 and CN8.
- [2] Disconnect all wires connected to the terminal block: U, V, W, (=), L+, L-, L11 and L21.
- [3] Remove the two (four) screw fixing the unit onto the control unit. Remove the unit from the control panel.
- [4] Install the new unit following the removal procedures in reverse.

#### (3) Replacing the power supply unit


- [1] Disconnect the connectors connected to CN4, CN9 and CN23.
- [2] Disconnect all wires connected to the terminal block's L1, L2, L3, (=), L+, L-, L11, L21 and MC1.
- [3] Remove the two (four) screw fixing the unit onto the control unit. Remove the unit from the control panel.
- [4] Install the new unit following the removal procedures in reverse.

## 7-3-2 Replacing the unit fan

Replace the unit fan with the following procedures.

#### **Replacement procedure**

- [1] Turn the NF for the 200/230VAC input power OFF, and wait for the CHARGE lamp on the power supply unit to turn OFF before removing the unit.
- [2] Remove the fan guard from the back of the power supply unit, and remove the two fan mounting screws.
- [3] Remove the rubber bushing for the fan power cable, and pull out the connection connector.
- [4] Disconnect the connection connector, and replace the fan.



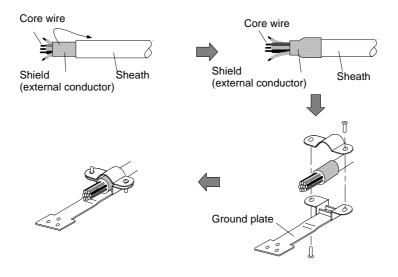
| Appendix 1-1 Selection of cable                   | A1-2 |
|---------------------------------------------------|------|
| Appendix 1-1-1 Cable wire and assembly            |      |
| Appendix 1-1-2 Flexible conduits                  |      |
| Appendix 1-2 Cable connection diagram             |      |
| Appendix 1-3 Connector outline dimension drawings |      |

## Appendix 1-1 Selection of cable

#### Appendix 1-1-1 Cable wire and assembly

#### (1) Cable wire

The following shows the specifications and processing of the wire used in each cable. Manufacture the cable using the following recommended wire or equivalent parts.


| Recommended                                                                        |                                 |                    |                          | Wire characteristics     |                         |                      |                          |                                  |                                     |
|------------------------------------------------------------------------------------|---------------------------------|--------------------|--------------------------|--------------------------|-------------------------|----------------------|--------------------------|----------------------------------|-------------------------------------|
| wire model<br>(Cannot be directly<br>ordered from<br>Mitsubishi<br>Electric Corp.) | Finished<br>outside<br>diameter | Sheath<br>material | No. of<br>pairs          | Config-<br>uration       | Conductor<br>resistance | Withstand<br>voltage | Insulation<br>resistance | Heat<br>resistant<br>temperature | Applica-<br>tion                    |
| UL20276 AWG28<br>10pair                                                            | 6.1mm                           | PVC                | 10                       | 7<br>strands/<br>0.13mm  | 222Ω/km<br>or less      | AC350/ 1min          | 1MΩ/km<br>or more        | 80°C                             | NC unit<br>communi-<br>cation cable |
| A14B2343 (Note 1)                                                                  | 7.2mm                           | PVC                | 6                        | 40<br>strands/<br>0.08mm | 105Ω/km<br>or less      | AC500/ 1min          | 1500MΩ/k<br>m or more    | 105°C                            | Detector<br>cable                   |
| TS-91026 (Note 2)                                                                  | 11.6mm PVC                      | PVC                | 2<br>(0.3 mm²)           | 60<br>strands/<br>0.08mm | 63Ω/km<br>or less       |                      | 60MΩ/km                  | 60°C                             | Detector<br>cable                   |
|                                                                                    |                                 | 10<br>(0.2 mm²)    | 40<br>strands/<br>0.08mm | 95Ω/km<br>or less        | 1min                    | or more              |                          | (Cable length:<br>20m or more)   |                                     |

(Note 1) Junko Co. (Dealer: Toa Denki)

(Note 2) BANDO ELECTRIC WIRE (http://www.bew.co.jp)

#### (2) Cable assembly

Assemble the cable as shown in the following drawing, with the cable shield wire securely connected to the ground plate of the connector.

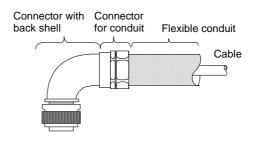


**CAUTION** Do not mistake the connection when manufacturing the detector cable. Failure to observe this could lead to faults, runaway or fires.

#### (3) Cable protection tube (noise countermeasure)

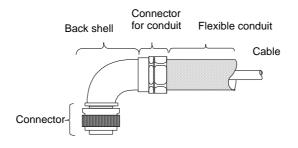
If influence from noise is unavoidable, or further noise resistance is required, selecting a flexible tube and running the signal cable through this tube is effective. This is also an effective countermeasure for preventing the cable sheath from being cut or becoming worn. A cable clamp (MS3057) is not installed on the detector side, so be particularly careful of broken wires in applications involving bending and vibration.

Connector Supplier Tube Drive unit side Installation screws Motor detector side RBC-104 (straight) G16 Nippon Flex FBA-4 RBC-204 (45°) G16 RCC-104-CA2022 (FePb wire braid sheath) Control Corp. RBC-304 (90°) G16 PSG-104 (straight) Screw diameter ø26.4 DAIWA DENGYO Hi-flex PLG-17 (90°) Screw diameter ø26.4 PDC20-17 CO., LTD PT #17 (FePb sheath) PS-17 (straight) PF1/2 Purika Tube Sankei Works BC-17 (straight) Wire tube screws : 15 PDC20-17 PA-2 #17 (FePb sheath)


(Note) None of the parts in this table can be ordered from Mitsubishi Electric Corp.

#### Appendix 1-1-2 Flexible conduits

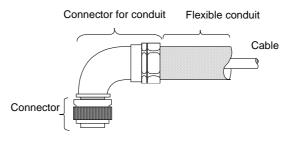
Basically, splash proofing can be ensured if cab-tire cable and connectors with IP65 or higher specifications are used. However, to further improve the oil resistance (chemical resistance to oil), weather resistance (resistance to the environment when used outdoors, etc.), durability, tensile strength, flattening strength, etc., run the cable through a flexible conduit when wiring.


The following shows an example of a flexible conduit. Contact the connector maker for more information.

#### (1) Method for connecting to a connector with back shell



|              |                                                             | Model                |                      |                          |                                          |  |  |  |  |
|--------------|-------------------------------------------------------------|----------------------|----------------------|--------------------------|------------------------------------------|--|--|--|--|
| Appli-       | Applicable motors                                           | DI                   | DK                   | Nippon Flex              |                                          |  |  |  |  |
| cation       |                                                             | Connector (straight) | Connector (angle)    | Connector for<br>conduit | Flexible conduit                         |  |  |  |  |
| For<br>power | HA053N, HA13N<br>HA23N, HA33N                               | CE05-6A18-12SD-B-BSS | CE05-8A18-12SD-B-BAS | RCC-103CA18              | VF-03<br>(Min. inside<br>diameter: 10.6) |  |  |  |  |
|              |                                                             |                      |                      | RCC-104CA18              | VF-04<br>(Min. inside<br>diameter: 14)   |  |  |  |  |
| HC53, HC103  | HC52, HC102, HC152<br>HC53, HC103, HC153<br>HC103R, HC153R, | CE05-6A22-23SD-B-BSS | CE05-8A22-23SD-B-BAS | RCC-104CA2022            | VF-04<br>(Min. inside<br>diameter: 14)   |  |  |  |  |
|              | HC203R                                                      |                      |                      | RCC-106CA2022            | VF-06<br>(Min. inside<br>diameter: 19)   |  |  |  |  |
|              | HC202, HC352, HC452<br>HC203, HC353<br>HC353R, HC503R       | CE05-6A24-10SD-B-BSS | CE05-8A24-10SD-B-BAS | RCC-106CA2428            | VF-06<br>(Min. inside<br>diameter: 19)   |  |  |  |  |
|              |                                                             |                      |                      | RCC-108CA2428            | VF-08<br>(Min. inside<br>diameter: 24.4) |  |  |  |  |
|              | HC702, HC902<br>HC453, HC703                                | CE05-6A32-17SD-B-BSS | CE05-8A32-17SD-B-BAS | RCC108CA32               | VF-08<br>(Min. inside<br>diameter: 24.4) |  |  |  |  |
|              |                                                             | 0200-0432-1730-0-033 | 0200-0432-1130-0-043 | RCC110CA32               | VF-10<br>(Min. inside<br>diameter: 33.0) |  |  |  |  |


(Note) None of the parts in this table can be ordered from Mitsubishi Electric Corp.



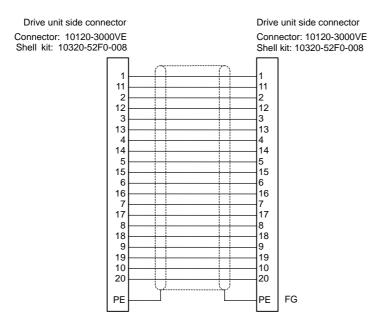
|              |                                                           |                                                                                   | Model                             |                          |                                     |  |  |  |  |  |
|--------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|--------------------------|-------------------------------------|--|--|--|--|--|
| Appli-       | Applicable motors                                         | DI                                                                                | ок                                | Nippon Flex              |                                     |  |  |  |  |  |
| cation       |                                                           | Connector/back shell (straight)                                                   | Connector/back<br>shell (angle)   | Connector for<br>conduit | Flexible conduit                    |  |  |  |  |  |
| For<br>brake | HA053NB to HA33NB<br>HC202B to HC902B<br>HC203B to HC703B | Select according to section "(2) Method for connecting to the connector main body |                                   |                          |                                     |  |  |  |  |  |
| For detector | HA053N to HA33N<br>HC52 to HC902, HC53 to HC703           | Connector<br>MS3106A22-14S                                                        | Connector<br>MS3106A22-14S        | RCC-104CA2022            | VF-04<br>(Min. Inside diameter: 14) |  |  |  |  |  |
|              | HC103R to HC503R<br>HA-LF11K2-S8, HA-LF15K2-S8            | (D190)<br>Back shell<br>CE02-22BS-S                                               | (D190)<br>Back shell<br>CE-22BA-S | RCC-106CA2022            | VF-06<br>(Min. Inside diameter: 19) |  |  |  |  |  |

 $(\ensuremath{\textit{Note}})$  None of the parts in this table can be ordered from Mitsubishi Electric Corp.

# (2) Method for connecting to the connector main body

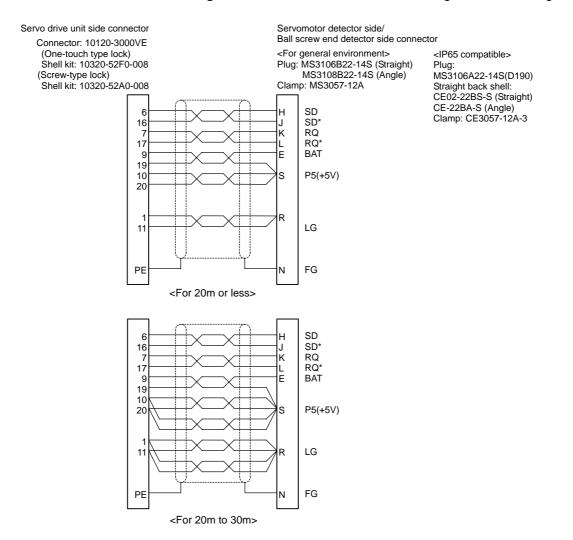


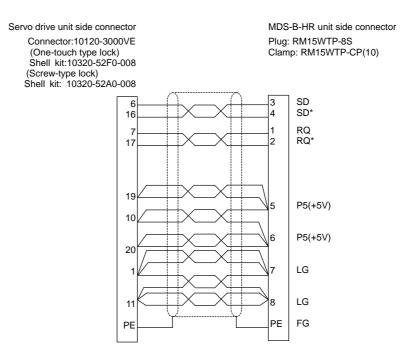
|                  |                                                                    |                       | I                                                | Nodel                                          |                                                                                |
|------------------|--------------------------------------------------------------------|-----------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------|
| Appli-<br>cation | Applicable motors                                                  | DDK                   |                                                  | DAIWA                                          | DENGYO                                                                         |
| oution           |                                                                    | Connector (straight)  | Connector f                                      | or conduit                                     | Flexible conduit                                                               |
| For<br>power     | HA053N, HA13N<br>HA23N, HA33N                                      | CE05-6A18-12SD-B      | MSA-12-18<br>MAA-12-18<br>MSA-16-18<br>MAA-16-18 | (Straight)<br>(Angle)<br>(Straight)<br>(Angle) | FCV12<br>(Min. inside diameter: 12.3)<br>FCV16<br>(Min. inside diameter: 15.8) |
|                  | HC52, HC102, HC152<br>HC53, HC103, HC153<br>HC103R, HC153R, HC203R | CE05-6A22-23SD-B      | MSA-16-22<br>MAA-16-22<br>MSA-22-22<br>MAA-22-22 | (Straight)<br>(Angle)<br>(Straight)<br>(Angle) | FCV16<br>(Min. inside diameter: 15.8)<br>FCV22<br>(Min. inside diameter: 20.8) |
|                  | HC202, HC352, HC452<br>HC203, HC353<br>HC353R, HC503R              | CE05-6A24-10SD-B      | MSA-22-24<br>MAA-22-24<br>MSA-28-24<br>MAA-28-24 | (Straight)<br>(Angle)<br>(Straight)<br>(Angle) | FCV22<br>(Min. inside diameter: 20.8)<br>FCV28<br>(Min. inside diameter: 26.4) |
|                  | HC702, HC902<br>HC453, HC703                                       | CE05-6A32-17SD-B      | Please contac                                    | t to a maker.                                  | FCV36<br>(Min. inside diameter: 35.0)                                          |
| For<br>brake     | HA053NB to HA33NB<br>HC202B to HC902B<br>HC203B to HC703B          | MS3106A10SL-4S (D190) | MSA-10-10<br>MAA-10-10                           | (Straight)<br>(Angle)                          | FCV10<br>(Min. inside diameter: 10.0)                                          |
| For<br>detector  | ,                                                                  |                       | MSA-16-22<br>MAA-16-22                           | (Straight)<br>(Angle)                          | FCV16<br>(Min. inside diameter: 15.8)                                          |
|                  | HC53 to HC703<br>HC103R to HC503R<br>HA-LF11K2-S8,<br>HA-LF15K2-S8 | MS3106A22-14S (D190)  | MSA-22-22<br>MAA-22-22                           | (Straight)<br>(Angle)                          | FCV22<br>(Min. inside diameter: 20.8)                                          |


(Note) None of the parts in this table can be ordered from Mitsubishi Electric Corp.

# Appendix 1-2 Cable connection diagram

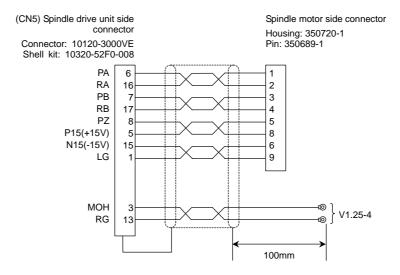
| • | <ol> <li>Do not mistake the connection when manufacturing the detector cable.<br/>Failure to observe this could lead to faults, runaway or fires.</li> </ol>                                                     |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <ol> <li>Do not connect anything to pins unless otherwise particularly specified when<br/>manufacturing a cable. (Leave OPEN)</li> <li>Contact Mitsubishi when manufacturing a cable longer than 30m.</li> </ol> |


# (1) NC bus cable

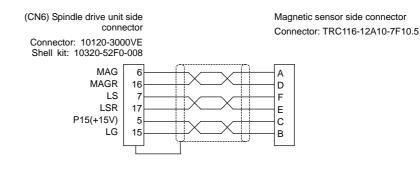

# <SH21 cable connection diagram>



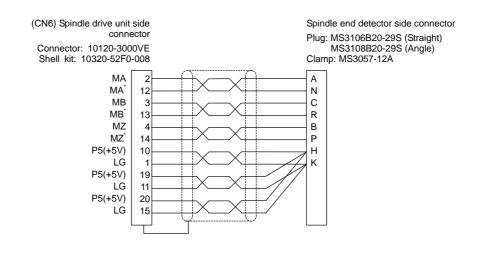
# (2) Servo detector cable


# <CNV12/CNV13 cable connection diagram> The connection differs according to the cable length.



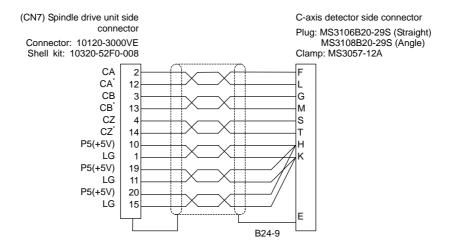



# <CNL3H1,CNL3H2,CNL3H1-S,CNL3H2-S cable connection diagram>

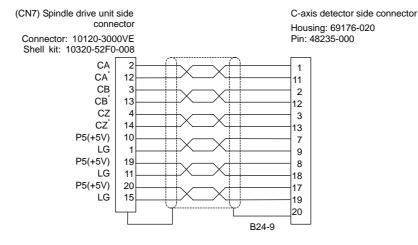

# (3) Spindle detector cable<CNP5 cable connection diagram>



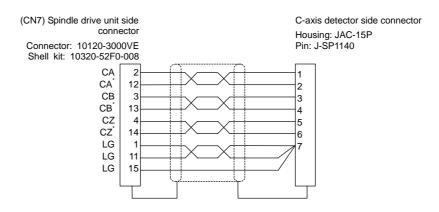
#### <CNP6M cable connection diagram>



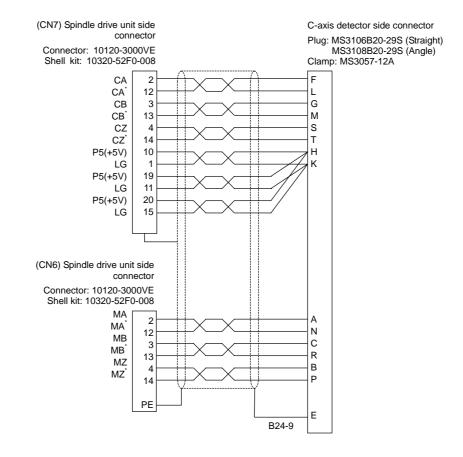

#### <CNP6A cable connection diagram>



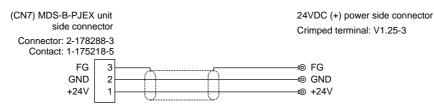

**CAUTION** The shield of the spindle detector cable is not connected to the "FG" (earth). Do not connect the cable shield to the earth by clamping the cable, etc.


#### <CNP7A cable connection diagram>

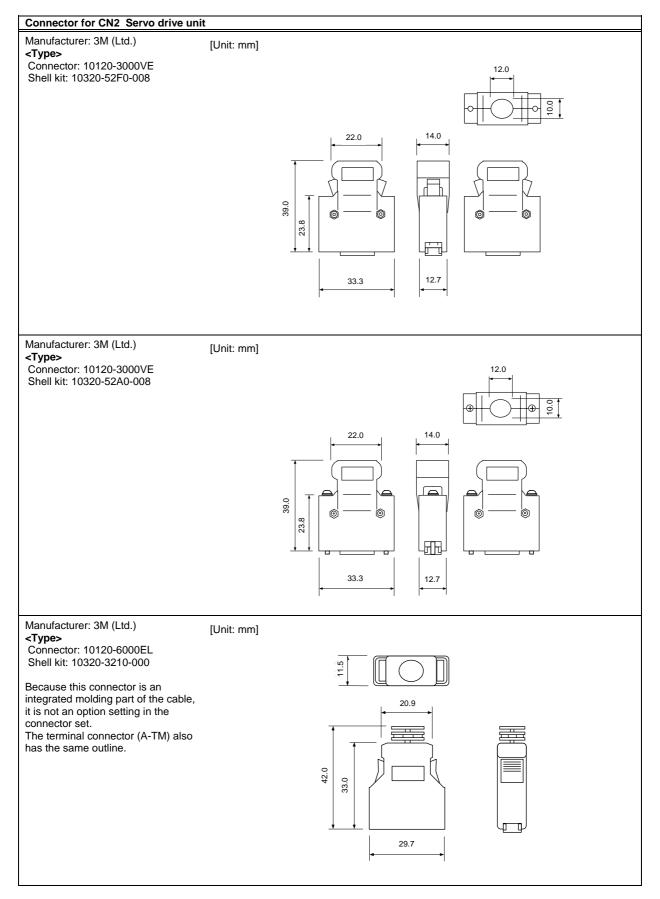



# <CNP7B cable connection diagram>

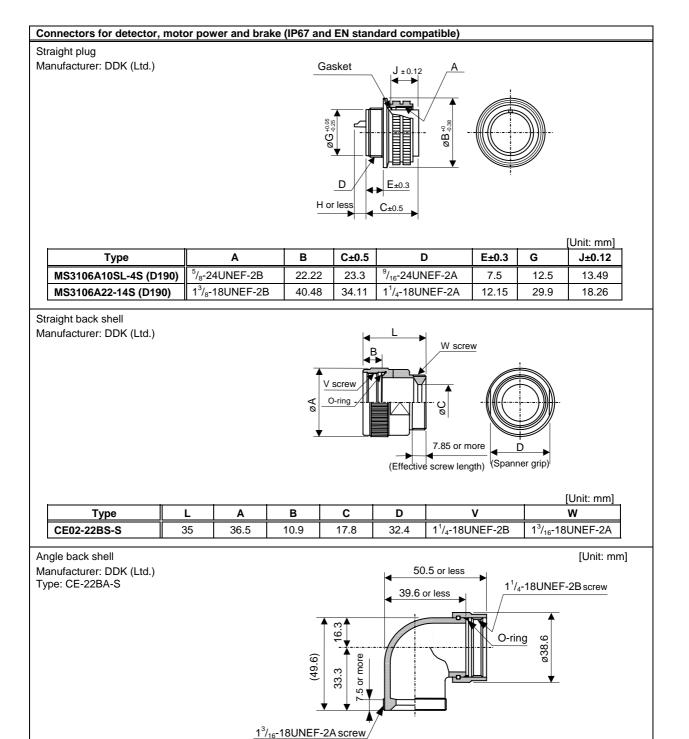


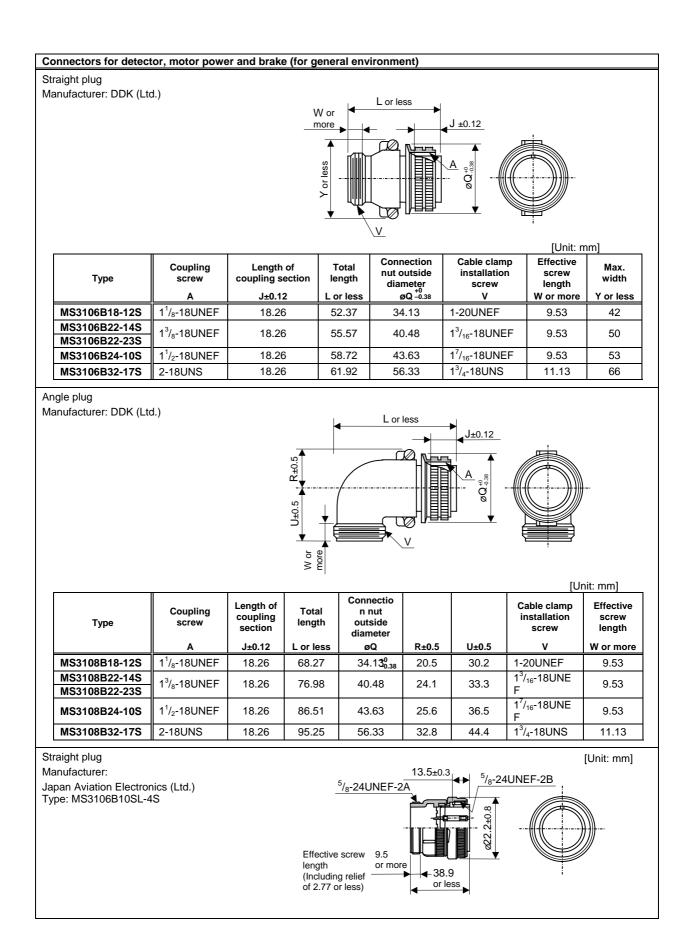

# <CNP7H cable connection diagram>

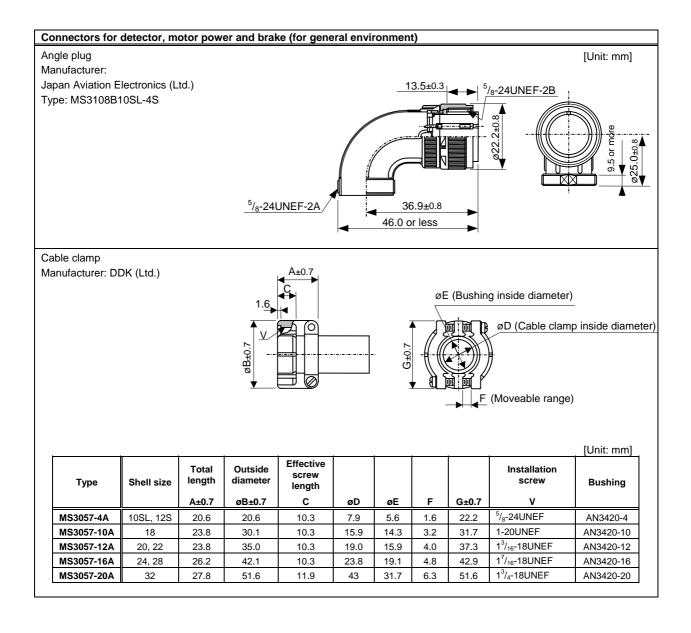



# <CNP67A cable connection diagram>




# <FCUA-R220 cable connection diagram>





# Appendix 1-3 Connector outline dimension drawings



| Connectors for detecto                                                                                                                                                                                                               | or and r             | notor                                                                                                                                                                                                                                                                                                                    | power (IF                     | P67 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EN sta                                                                                                                                                                                                                       | andard                                                                            | com                                             | patibl                                                                                                                                     | e)                                                         |                                     |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Straight plug                                                                                                                                                                                                                        | \<br>\               |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W                                                                                                                                                                                                                            | <b>—</b>                                                                          | D or                                            | less                                                                                                                                       | <b>&gt;</b>                                                | Δ                                   |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| Manufacturer: DDK (Ltd.                                                                                                                                                                                                              | .)                   |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              | 7.8                                                                               | 35 or                                           | more                                                                                                                                       | -                                                          | A                                   |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   |                                                 |                                                                                                                                            | umu                                                        |                                     |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   | 7                                               |                                                                                                                                            |                                                            |                                     |                                                                                                                                              |                                                                                            | ٨                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | øC± 0.8                                                                                                                                                                                                                      | <b> </b> -×                                                                       |                                                 | ┈╢╫┣                                                                                                                                       | <b>   - -</b>                                              | Ø <b>B</b> <sup>+0</sup>            |                                                                                                                                              | )))))                                                                                      | ) <b>))</b>                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ă                                                                                                                                                                                                                            | Ľ                                                                                 |                                                 |                                                                                                                                            |                                                            | Ø                                   |                                                                                                                                              |                                                                                            | /                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>_</b>                                                                                                                                                                                                                     | _ L                                                                               |                                                 | ╜╟╘                                                                                                                                        | <del>70</del> 2°                                           | <b>•</b>                            |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      | n                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   |                                                 |                                                                                                                                            |                                                            |                                     | [Unit: r                                                                                                                                     | mm]                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| Туре                                                                                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                          | Α                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B <sup>+0</sup><br>-0.38                                                                                                                                                                                                     |                                                                                   |                                                 | ) or le                                                                                                                                    |                                                            |                                     | W                                                                                                                                            |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| CE05-6A18-12SD-B                                                                                                                                                                                                                     |                      | _                                                                                                                                                                                                                                                                                                                        | 18UNEF-                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84.13                                                                                                                                                                                                                        | 32.1                                                                              |                                                 | 57                                                                                                                                         |                                                            | 1-20UNE                             |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| CE05-6A22-23SD-B                                                                                                                                                                                                                     |                      | -                                                                                                                                                                                                                                                                                                                        | 18UNEF-                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.48                                                                                                                                                                                                                         | 38.3                                                                              |                                                 | 61                                                                                                                                         |                                                            | 1 <sup>3</sup> / <sub>16</sub> -18L |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| CE05-6A24-10SD-B                                                                                                                                                                                                                     |                      | _                                                                                                                                                                                                                                                                                                                        | 18UNEF-                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.63                                                                                                                                                                                                                         | 42.0                                                                              |                                                 | 68                                                                                                                                         |                                                            | 1 <sup>7</sup> / <sub>16</sub> -18L |                                                                                                                                              | 4                                                                                          |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| CE05-6A32-17SD-B                                                                                                                                                                                                                     | -BSS                 | 2-18                                                                                                                                                                                                                                                                                                                     | BUNS-2B                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.33                                                                                                                                                                                                                         | 54.2                                                                              | 2                                               | 79                                                                                                                                         |                                                            | 1 <sup>3</sup> / <sub>4</sub> -18U  | NS-2A                                                                                                                                        |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| Angle plug                                                                                                                                                                                                                           |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   |                                                 | <u> </u>                                                                                                                                   |                                                            |                                     |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| Manufacturer: DDK (Ltd.                                                                                                                                                                                                              | .)                   |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              | -                                                                                 |                                                 | D or le                                                                                                                                    | ess                                                        |                                     | А                                                                                                                                            |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      | ,                    |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   |                                                 |                                                                                                                                            |                                                            |                                     |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   |                                                 |                                                                                                                                            |                                                            |                                     |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               | R±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                            |                                                                                   | 1                                               |                                                                                                                                            |                                                            |                                     | _                                                                                                                                            |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e                                                                                                                                                                                                                            |                                                                                   | <u> </u>                                        | X-                                                                                                                                         | ·  - · - <b>    </b>                                       |                                     | ØB <sup>+0</sup><br>-0.38                                                                                                                    |                                                                                            | )                                                                                           | <u>}</u> ,₩,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               | (S)±1<br>U±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or more                                                                                                                                                                                                                      | 1                                                                                 |                                                 |                                                                                                                                            |                                                            |                                     |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , y<br>∠                                                                                                                                                                                                                     |                                                                                   |                                                 | Ĺ ⊟                                                                                                                                        |                                                            |                                     |                                                                                                                                              |                                                                                            |                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               | <b>*</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              | ┥                                                                                 |                                                 | J                                                                                                                                          |                                                            |                                     |                                                                                                                                              |                                                                                            | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>w</u> /                                                                                                                                                                                                                   | ,<br>,                                                                            | i                                               |                                                                                                                                            |                                                            |                                     |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   |                                                 |                                                                                                                                            |                                                            |                                     |                                                                                                                                              |                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|                                                                                                                                                                                                                                      |                      |                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   |                                                 |                                                                                                                                            |                                                            |                                     |                                                                                                                                              |                                                                                            | ĮŪ                                                                                          | nit: mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| Туре                                                                                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                          | Δ                             | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0                                                                                                                                                                                                                           | Dorl                                                                              | <b>655</b>                                      |                                                                                                                                            | w                                                          | ,                                   | R+0 7                                                                                                                                        | 11+0.7                                                                                     | _                                                                                           | Var                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                        |
| Туре                                                                                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                          | Α                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +0<br>-0.38                                                                                                                                                                                                                  | D or le                                                                           |                                                 |                                                                                                                                            | W                                                          |                                     | R±0.7                                                                                                                                        |                                                                                            | (S) ±                                                                                       | 1 Y or<br>more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| CE05-8A18-12SD-B                                                                                                                                                                                                                     |                      |                                                                                                                                                                                                                                                                                                                          | 8UNEF-2                       | 2B 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .13                                                                                                                                                                                                                          | 69.                                                                               | 5                                               |                                                                                                                                            | UNEF                                                       | -2A                                 | 13.2                                                                                                                                         | 30.2                                                                                       | <b>(S) ±</b><br>43.4                                                                        | 1 Y or<br>more<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                        |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B                                                                                                                                                                                                 | -BAS                 | 1 <sup>3</sup> / <sub>8</sub> -1                                                                                                                                                                                                                                                                                         | 8UNEF-2<br>8UNEF-2            | 2B 34<br>2B 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .13<br>.48                                                                                                                                                                                                                   | 69.9<br>75.9                                                                      | 5                                               | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN                                              | F-2A<br>NEF-2A                      | 13.2<br>16.3                                                                                                                                 | 30.2<br>33.3                                                                               | <b>(S) ±</b><br>43.4<br>49.6                                                                | Y or<br>more           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                        |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B                                                                                                                                                                             | -BAS<br>-BAS         | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .13<br>.48<br>.63                                                                                                                                                                                                            | 69.9<br>75.9<br>86.3                                                              | 5<br>5<br>3                                     | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN<br>-18UN                                     | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                        |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B                                                                                                                                                                                                 | -BAS<br>-BAS         | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2            | 2B 34<br>2B 40<br>2B 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .13<br>.48                                                                                                                                                                                                                   | 69.9<br>75.9                                                                      | 5<br>5<br>3                                     | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN                                              | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3                                                                                                                                 | 30.2<br>33.3                                                                               | <b>(S) ±</b><br>43.4<br>49.6                                                                | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B                                                                                                                                                         | -BAS<br>-BAS         | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .13<br>.48<br>.63                                                                                                                                                                                                            | 69.5<br>75.5<br>86.3<br>93.5                                                      | 5<br>5<br>3<br>5                                | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN<br>-18UN                                     | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .13<br>.48<br>.63                                                                                                                                                                                                            | 69.9<br>75.9<br>86.3<br>93.9<br>(I                                                | 5<br>5<br>3                                     | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN<br>-18UN                                     | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B                                                                                                                                                         | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .13<br>.48<br>.63                                                                                                                                                                                                            | 69.9<br>75.9<br>86.3<br>93.9<br>(I                                                | 5<br>5<br>3<br>5                                | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN<br>-18UN                                     | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                              | 69.9<br>75.9<br>86.3<br>93.9<br>(I                                                | 5<br>5<br>3<br>5                                | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN<br>-18UN                                     | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.13<br>.48<br>.63<br>.33                                                                                                                                                                                                    | 69.9<br>75.9<br>86.3<br>93.9<br>(I                                                | 5<br>5<br>3<br>5                                | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN<br>-18UN                                     | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.13<br>.48<br>.63<br>.33                                                                                                                                                                                                    | 69.5<br>75.5<br>93.5<br>93.5                                                      | 5<br>5<br>3<br>5                                | 1 <sup>3</sup> / <sub>16</sub>                                                                                                             | UNEF<br>-18UN<br>-18UN                                     | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43<br>56<br>V scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5                                                      | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>7</sup> / <sub>16</sub> •<br>1 <sup>3</sup> / <sub>4</sub> −                         | UNEF<br>-18UN<br>-18UN<br>18UN                             | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43<br>56<br>V scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5                                                      | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>7</sup> / <sub>16</sub> •<br>1 <sup>3</sup> / <sub>4</sub> −                         | UNEF<br>-18UN<br>-18UN<br>18UN                             | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2                                                                                                                         | 30.2<br>33.3<br>36.5                                                                       | <b>(S) ±</b><br>43.4<br>49.6<br>54.7                                                        | Y or<br>more           7.5           7.5           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43<br>56<br>V scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5<br>•                                                 | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>7</sup> / <sub>16</sub> •<br>1 <sup>3</sup> / <sub>4</sub> −                         | UNEF<br>-18UN<br>-18UN                                     | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2<br>24.6                                                                                                                 | 30.2<br>33.3<br>36.5<br>44.5                                                               | <b>(S)</b> ± 43.4<br>49.6<br>54.7<br>61.9                                                   | Y or<br>more           7.5           7.5           7.5           8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43<br>56<br>V scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5<br>•                                                 | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>7</sup> / <sub>16</sub> •<br>1 <sup>3</sup> / <sub>4</sub> −                         | UNEF<br>-18UN<br>-18UN<br>18UN                             | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2<br>24.6                                                                                                                 | 30.2<br>33.3<br>36.5<br>44.5                                                               | <b>(S)</b> ± 43.4<br>49.6<br>54.7<br>61.9                                                   | Y or<br>more           7.5           7.5           7.5           8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43<br>56<br>V scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5<br>•                                                 | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>-</sup><br>1 <sup>7</sup> / <sub>16</sub> -<br>1 <sup>3</sup> / <sub>4</sub> -                         |                                                            | -2A<br>NEF-2A<br>NEF-2A             | 13.2<br>16.3<br>18.2<br>24.6                                                                                                                 | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)                                         | <b>(S)</b> ± 43.4<br>49.6<br>54.7<br>61.9                                                   | Y or<br>more           7.5           7.5           7.5           8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43<br>56<br>V scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5<br>•                                                 | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>-</sup><br>1 <sup>7</sup> / <sub>16</sub> -<br>1 <sup>3</sup> / <sub>4</sub> -                         |                                                            | -2A<br>NEF-2A<br>NEF-2A<br>S-2A     | 13.2<br>16.3<br>18.2<br>24.6                                                                                                                 | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)                                         | (S) ±<br>43.4<br>49.6<br>54.7<br>61.9                                                       | 1 Y or<br>more<br>7.5<br>7 7.5<br>9 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1<br>2-18L                                                                                                                                                                                                                                            | 8UNEF-2<br>8UNEF-2<br>JNS-2B  | 2B 34<br>2B 40<br>2B 43<br>56<br>V screv<br>↓<br>↓<br>↓<br>↓<br>Effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5<br>•                                                 | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>-</sup><br>1 <sup>7</sup> / <sub>16</sub> -<br>1 <sup>3</sup> / <sub>4</sub> -                         |                                                            | 2A<br>NEF-2A<br>NEF-2A<br>S-2A      | 13.2<br>16.3<br>18.2<br>24.6                                                                                                                 | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)                                         | (S) ±<br>43.4<br>49.6<br>54.7<br>61.9                                                       | Y or<br>more           7.5           7.5           7.5           8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp                                                                                                                                          | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1                                                                                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>8UNEF-2 | 2B 34<br>2B 40<br>2B 43<br>56<br>V scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5<br>•                                                 | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>-</sup><br>1 <sup>7</sup> / <sub>16</sub> -<br>1 <sup>3</sup> / <sub>4</sub> -                         |                                                            | 2A<br>NEF-2A<br>NEF-2A<br>S-2A      | 13.2<br>16.3<br>18.2<br>24.6<br>4.6<br>(Ca<br>dian<br>e of one<br>e of one                                                                   | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)                                         | (S) ±<br>43.4<br>49.6<br>54.7<br>61.9                                                       | Y or<br>more           7.5           7.5           8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp<br>Manufacturer: DDK (Ltd.                                                                                                               | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1<br>2-18l                                                                                                                                                                                                                                            | 8UNEF-2<br>8UNEF-2<br>JNS-2B  | 2B 34<br>2B 40<br>2B 43<br>56<br>V screv<br>V screv<br>Effective<br>screw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .13<br>.48<br>.63<br>.33                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5<br>•                                                 | 5<br>5<br>3<br>5<br>D)                          | 1 <sup>3</sup> / <sub>16</sub> <sup>-</sup><br>1 <sup>7</sup> / <sub>16</sub> -<br>1 <sup>3</sup> / <sub>4</sub> -                         |                                                            | 2A<br>NEF-2A<br>NEF-2A<br>IS-2A     | 13.2<br>16.3<br>18.2<br>24.6<br>4.6<br>(Ca<br>dian<br>e of one<br>e of one                                                                   | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)<br>side)                                | (S) ±<br>43.4<br>49.6<br>54.7<br>61.9                                                       | Y or<br>more           7.5           7.5           7.5           8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp<br>Manufacturer: DDK (Ltd.                                                                                                               | -BAS<br>-BAS<br>-BAS | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1<br>2-18U<br>7<br>1/2                                                                                                                                                                                                                                | 8UNEF-2<br>8UNEF-2<br>JNS-2B  | 2B 34<br>2B 40<br>2B 43<br>56<br>V screv<br>V screv<br>Effective<br>screw<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.6<br>w                                                                                                                                                                                                                     | 69.5<br>75.5<br>93.5<br>93.5<br>• (I                                              | 5<br>5<br>3<br>5<br>D)<br>→                     | 1 <sup>3</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>7</sup> / <sub>16</sub> •<br>1 <sup>3</sup> / <sub>4</sub> -                         | UNEF<br>-18UN<br>-18UN<br>18UN                             | 2A<br>NEF-2A<br>NEF-2A<br>S-2A      | 13.2<br>16.3<br>18.2<br>24.6<br>(Ca<br>dian<br>e of one<br>ew                                                                                | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)<br>side)<br>Bushi                       | (S) ±<br>43.4<br>49.6<br>54.7<br>61.9<br>p insic                                            | Y or<br>more           7.5           7.5           8.5           8.5           9           8.5           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0   | nt<br>1                  |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp<br>Manufacturer: DDK (Ltd.<br>Type<br>CE3057-10A-2 (D265)<br>CE3057-12A-2 (D265)                                                         | BAS<br>BAS<br>BAS    | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1<br>2-18U<br>2-18U<br>1 <sup>2</sup> -18U<br>1 <sup>2</sup> -18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U<br>2-18U | 8UNEF-2<br>8UNEF-2<br>JNS-2B  | Effective<br>screw<br>length<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6<br>.13<br>.48<br>.63<br>.33<br>1.6<br>                                                                                                                                                                                   | 69.5<br>75.5<br>93.5<br>93.5<br>C                                                 | 5<br>5<br>3<br>5<br>D)<br>•<br>•<br>•<br>•      | 1 <sup>3</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>7</sup> / <sub>16</sub> •<br>1 <sup>3</sup> / <sub>4</sub> − <sup>•</sup>            |                                                            | 2A<br>NEF-2A<br>S-2A                | 13.2<br>16.3<br>18.2<br>24.6<br>4.6<br>4.6<br>4.6<br>4.6<br>4.6<br>4.6<br>4.6<br>4.6<br>4.6                                                  | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)<br>side)<br>Bushi<br>CE34200<br>CE34200 | (S) ±<br>43.4<br>49.6<br>54.7<br>61.9<br>p insic                                            | Y or<br>more           7.5           7.5           8.5           8.5           9           8.5           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0   | nt<br>1<br>3             |
| CE05-8A18-12SD-B           CE05-8A22-23SD-B           CE05-8A24-10SD-B           CE05-8A32-17SD-B           Cable clamp           Manufacturer: DDK (Ltd.           Type           CE3057-10A-2 (D265)           CE3057-12A-3 (D265) | BAS<br>BAS<br>BAS    | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1<br>2-18L<br>2-18L<br>Interpret 1<br>Length<br>A<br>23.8<br>23.8                                                                                                                                                                                     | 8UNEF-2<br>8UNEF-2<br>JNS-2B  | 2B 34<br>2B 40<br>2B 43<br>56<br>V screv<br>↓<br>0<br>↓<br>U<br>↓<br>0<br>↓<br>U<br>↓<br>0<br>↓<br>U<br>↓<br>0<br>↓<br>U<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>0<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓ | 1.6<br>.13<br>.48<br>.63<br>.33<br>.48<br>.63<br>.33<br>.48<br>.63<br>.33<br>.48<br>.63<br>.33<br>.48<br>.63<br>.33<br>.48<br>.63<br>.33<br>.48<br>.48<br>.63<br>.33<br>.48<br>.48<br>.48<br>.48<br>.48<br>.48<br>.48<br>.48 | 69.5<br>75.5<br>93.5<br>• (I<br>• A<br>C<br>• • • • • • • • • • • • • • • • • • • | 5<br>5<br>3<br>5<br>D)<br>•<br>•<br>•<br>•<br>• | 1 <sup>3</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>7</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>3</sup> / <sub>4</sub> - <sup>•</sup> | UNEF<br>18UN<br>-18UN<br>18UN<br>(Move<br>H<br>3.2<br>4    | 2A<br>NEF-2A<br>S-2A                | 13.2<br>16.3<br>18.2<br>24.6<br>4.6<br>6<br>6<br>6<br>6<br>7<br>7<br>8<br>6<br>7<br>7<br>8<br>7<br>7<br>8<br>7<br>8<br>7<br>7<br>8<br>7<br>8 | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)<br>side)<br>CE3420<br>CE3420<br>CE3420  | (S) ±<br>43.4<br>49.6<br>54.7<br>61.9<br>p insid<br>p insid                                 | Y or<br>more           7.5           7.5           8.5           8.5           0           8.5           0           8.5           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | nt<br>1<br>3<br>0        |
| CE05-8A18-12SD-B<br>CE05-8A22-23SD-B<br>CE05-8A24-10SD-B<br>CE05-8A32-17SD-B<br>Cable clamp<br>Manufacturer: DDK (Ltd.<br>Type<br>CE3057-10A-2 (D265)<br>CE3057-12A-2 (D265)                                                         | BAS<br>BAS<br>BAS    | 1 <sup>3</sup> / <sub>8</sub> -1<br>1 <sup>1</sup> / <sub>2</sub> -1<br>2-18l<br>2-18l<br>Ingth<br>A<br>23.8                                                                                                                                                                                                             | 8UNEF-2<br>8UNEF-2<br>JNS-2B  | 2B 34<br>2B 40<br>2B 43<br>56<br>V screv<br>V screv<br>L<br>0 <sup>+</sup><br>10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6<br>.13<br>.48<br>.63<br>.33<br>.33<br>.48<br>.63<br>.33<br>                                                                                                                                                              | 69.5<br>75.5<br>93.5<br>93.5<br>•<br>•<br>•<br>•                                  | 5<br>5<br>3<br>5<br>D)<br>•<br>•<br>•<br>•      | 1 <sup>3</sup> / <sub>16</sub> <sup>•</sup><br>1 <sup>7</sup> / <sub>16</sub> •<br>1 <sup>3</sup> / <sub>4</sub> - <sup>•</sup>            | UNEF<br>-18UN<br>-18UN<br>18UN<br>18UN<br>Move<br>H<br>3.2 | 2A<br>NEF-2A<br>NEF-2A<br>S-2A      | 13.2<br>16.3<br>18.2<br>24.6<br>24.6<br>(Ca<br>dian<br>e of one<br>ew<br>F-2B<br>NEF-2B<br>NEF-2B                                            | 30.2<br>33.3<br>36.5<br>44.5<br>ble clam<br>meter)<br>side)<br>Bushi<br>CE34200<br>CE34200 | (S) ±<br>43.4<br>49.6<br>54.7<br>61.9<br>p insid<br>p insid<br>10-2<br>12-2<br>12-3<br>16-2 | Y or<br>more           7.5           7.5           8.5           8.5           9           8.5           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0   | nt<br>1<br>3<br>0<br>5.5 |







| Appendix 2-1 Compliance to EC Directives            | A2-2 |
|-----------------------------------------------------|------|
| Appendix 2-1-1 European EC Directives               | A2-2 |
| Appendix 2-1-2 Cautions for EC Directive compliance | A2-2 |

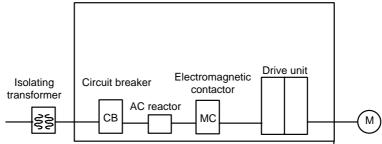
# Appendix 2-1 Compliance to EC Directives

# Appendix 2-1-1 European EC Directives

In the EU Community, the attachment of a CE mark (CE marking) is mandatory to indicate that the basic safety conditions of the Machine Directives (issued Jan. 1995), EMC Directives (issued Jan. 1996) and the Low-voltage Directives (issued Jan. 1997) are satisfied. The machines and devices in which the servo and spindle drive are assembled are the targets for CE marking.

# (1) Compliance to EMC Directives

The servo and spindle drive are components designed to be used in combination with a machine or device. These are not directly targeted by the Directives, but a CE mark must be attached to machines and devices in which these components are assembled. The next section "EMC Installation Guidelines", which explains the unit installation and control panel manufacturing method, etc., has been prepared to make compliance to the EMC Directives easier.


# (2) Compliance to Low-voltage Directives

The MDS-C1 Series units are targeted for the Low-voltage Directives. An excerpt of the precautions given in this specification is given below. Please read this section thoroughly before starting use. A Self-Declaration Document has been prepared for the EMC Directives and Low-voltage Directives. Contact Mitsubishi or your dealer when required.

# Appendix 2-1-2 Cautions for EC Directive compliance

Use the Low-voltage Directive compatible parts for the servo/spindle drive and servo/spindle motor. In addition to the items described in this instruction manual, observe the items described below.

# (1) Configuration



Use a type B (AC/DC detectable type) breaker

# (2) Environment

Use the units under an Overvoltage Protection Category III and Pollution Class of 2 or less environment as stipulated in IEC60664.

Install the servo/spindle drive unit in a control panel having a structure (IP54 or higher) in which water, oil, carbon or dust cannot enter.

Motor

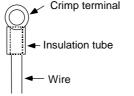
| Drive unit |    |
|------------|----|
|            | Du |

Drive unit

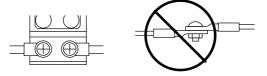
|                        | During operation | Storage          | During<br>transportation |                        | During operation | Storage          | During<br>transportation |
|------------------------|------------------|------------------|--------------------------|------------------------|------------------|------------------|--------------------------|
| Ambient<br>temperature | 0°C to 55°C      | -15°C to<br>70°C | -15°C to 70°C            | Ambient<br>temperature | 0°C to 40°C      | -15°C to 70°C    | -15°C to 70°C            |
| Humidity               | 90%RH or<br>less | 90%RH or<br>less | 90%RH or less            | Humidity               | 80%RH or<br>less | 90%RH or<br>less | 90%RH or<br>less         |
| Altitude               | 1000m or<br>less | 1000m or<br>less | 10000m or<br>less        | Altitude               | 1000m or<br>less | 1000m or<br>less | 10000m or<br>less        |

# (3) Power supply

- [1] If a control power supply of the drive unit is 200V, use the power supply under an Overvoltage Protection Category II as stipulated in IEC60664. In that case, insert a star-connection isolation transformer that is compliant with EN or IEC Standard into the primary input power supply of the drive unit.
- [2] Do not omit the circuit breaker and electromagnetic contactor.


#### (4) Earthing

- [1] To prevent electric shocks, always connect the servo/spindle drive unit protective earth (PE) terminal (terminal with () mark) to the protective earth (PE) on the control panel.
- [2] When connecting the earthing wire to the protective earth (PE) terminal, do not tighten the wire terminals together. Always connect one wire to one terminal.




#### (5) Wiring

[1] Always use crimp terminals with insulation tubes so that the connected wire does not contact the neighboring terminals.



[2] Do not connect the wires directly.



# (6) Selecting the wire size for EC Directive compliance

To comply with the EC Directives, select the wire size from the following table using each drive unit's capacity as a reference.

The wire types are as follow.

PVC : Polyvinyl chloride

EPR : Ethylene polypropylene

SIR : Silicon rubber

#### [1] MDS-C1-CV (L1, L2, L3, PE)

(The unit sizes are all mm<sup>2</sup>) CV-75 CV-110 CV-150 CV-220 CV-260 CV-300 CV-370 Type (MDS-C1-) CV-37 CV-55 CV-185 PVC 2.5 2.5 4 10 16 25 35 50 70 6 Wire 1.5 2.5 EPR 4 6 10 16 25 35 35 50 SIR 1.0 1.5 2.5 4 6 10 16 16 25 25 M4 M5 M8 Terminal screw size

#### [2] MDS-C1-SP (U, V, W, PE)

| Туре                   | e (MDS-C1-) | SP-04 | SP-075 | SP-15 | SP-22 | SP-37 | SP-55 | SP-75 | SP-110 | SP-150 | SP-185 | SP-220 | SP-260 | SP-300 |
|------------------------|-------------|-------|--------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
|                        | PVC         | 1.0   | 1.0    | 1.0   | 1.0   | 1.5   | 2.5   | 4     | 6      | 10     | 16     | 25     | 35     | 70     |
| Wire                   | EPR         | 1.0   | 1.0    | 1.0   | 1.0   | 1.5   | 2.5   | 4     | 6      | 10     | 16     | 25     | 35     | 50     |
|                        | SIR         | 1.0   | 1.0    | 1.0   | 1.0   | 1.0   | 1.0   | 2.5   | 4      | 6      | 10     | 10     | 16     | 25     |
| Terminal screw size M4 |             |       |        | M5    |       |       |       |       | M8     |        |        |        |        |        |

#### [3] MDS-C1-V1/V2 (U. V. W. PE)

| -      |                |       |       |       |       |       |       |       |       |       |        |        |
|--------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| Туре   | e (MDS-C1-)    | V1-01 | V1-03 | V1-05 | V1-10 | V1-20 | V1-35 | V1-45 | V1-70 | V1-90 | V1-110 | V1-150 |
|        | PVC            | 1.0   | 1.0   | 1.0   | 1.0   | 1.5   | 2.5   | 4     | 6     | 10    | 25     | 35     |
| Wire   | EPR            | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.5   | 4     | 6     | 10    | 16     | 25     |
|        | SIR            | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 2.5   | 2.5   | 4     | 10     | 16     |
| Termin | nal screw size |       |       | M4    |       |       |       | N     | 15    |       | N      | 18     |

#### [4] Wire size for L11 and L21 link bar

Select a 1.5mm<sup>2</sup> wire or larger regardless of the capacity. (This also applies to the wire between NFB-L11 and L21.)

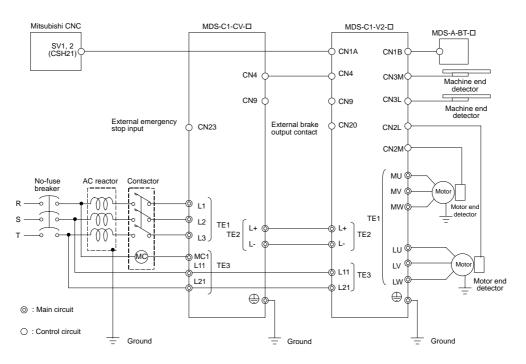
[5] Wire size for L+ and L- link bar (For unified sizes)

| Туре   | e (MDS-C1-)    | CV-37 | CV-55 | CV-75 | CV-110 | CV-150 | CV-185 | CV-220 | CV-260 | CV-300 | CV-370 |
|--------|----------------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
|        | PVC            | 2.5   | 2.5   | 6     | 10     | 16     | 25     | 35     | 50     | 70     | -      |
| Wire   | EPR            | 1.5   | 2.5   | 4     | 10     | 16     | 25     | 35     | 35     | 70     | 70     |
|        | SIR            | 1.0   | 1.5   | 2.5   | 4      | 10     | 10     | 16     | 25     | 35     | 35     |
| Termin | nal screw size |       |       |       |        | N      | 16     |        |        |        |        |

\* The wire sizes in the above table comply with EN60204 under the following conditions.

• Ambient temperature 40°C

• Wire laid along wall or in open cable tray


When using under other conditions, refer to EN60204 Appendix 5 and Appended Material C.

# (7) Peripheral devices

[1] Use EN/IEC Standards compliant parts for the no-fuse breaker and contactor.

# (8) Miscellaneous

- [1] Refer to "MDS-C1 INSTRUCTION MANUAL" for methods on complying with the EMC Directives.
- [2] Ground the facility according to each country's requirements.
- [3] The control circuit connector (O) is safely separated from the main circuit (O).
- [4] Inspect the appearance before installing the unit. Carry out a performance inspection of the final unit, and save the inspection records.



| Appendix 3-1 Introduction                                  |       |
|------------------------------------------------------------|-------|
| Appendix 3-2 EMC instructions                              | A3-2  |
| Appendix 3-3 EMC measures                                  | A3-3  |
| Appendix 3-4 Measures for panel structure                  | A3-3  |
| Appendix 3-4-1 Measures for control panel unit             | A3-3  |
| Appendix 3-4-2 Measures for door                           | A3-4  |
| Appendix 3-4-3 Measures for operation board panel          | A3-4  |
| Appendix 3-4-4 Shielding of the power supply input section | A3-4  |
| Appendix 3-5 Measures for various cables                   | A3-5  |
| Appendix 3-5-1 Measures for wiring in panel                | A3-5  |
| Appendix 3-5-2 Measures for shield treatment               | A3-5  |
| Appendix 3-5-3 Servo/spindle motor power cable             |       |
| Appendix 3-5-4 Servo motor feedback cable                  | A3-7  |
| Appendix 3-5-5 Spindle motor feedback cable                | A3-7  |
| Appendix 3-6 EMC countermeasure parts                      |       |
| Appendix 3-6-1 Shield clamp fitting                        | A3-8  |
| Appendix 3-6-2 Ferrite core                                | A3-9  |
| Appendix 3-6-3 Power line filter                           | A3-10 |
| Appendix 3-6-4 Surge protector                             | A3-15 |
|                                                            |       |

# Appendix 3-1 Introduction

EMC Instructions became mandatory as of January 1, 1996. The subject products must have a CE mark attached indicating that the product complies with the Instructions.

As the NC unit is a component designed to control machine tools, it is believed to be out of the direct EMC Instruction subject. However, we would like to introduce the following measure plans to backup EMC Instruction compliance of the machine tool as the NC unit is a major component of the machine tools.

- [1] Methods for installation in control/operation panel
- [2] Methods of wiring cable outside of panel
- [3] Introduction of countermeasure parts

Mitsubishi is carrying out tests to confirm the compliance to the EMC Standards under the environment described in this manual. However, the level of the noise will differ according to the equipment type and layout, control panel structure and wiring lead-in, etc. Thus, we ask that the final noise level be confirmed by the machine manufacturer.

These contents are the same as the EMC INSTALLATION GUIDELINES (BNP-B8582-45). For measures for CNC, refer to "EMC INSTALLATION GUIDELINES" (BNP-B2230).

# Appendix 3-2 EMC instructions

The EMC Instructions regulate mainly the following two withstand levels.

Emission ..... Capacity to prevent output of obstructive noise that adversely affects external sources.

Immunity ..... Capacity not to malfunction due to obstructive noise from external sources.

The details of each level are classified as Table 1. It is assumed that the Standards and test details required for a machine are about the same as these.

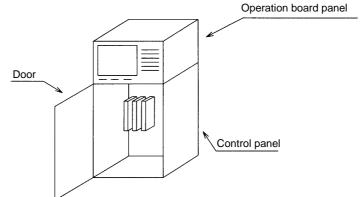
| Class    | Name                                       | Details                                                                                            | Generic<br>Standard                                     | Standards for<br>determining test<br>and measurement |
|----------|--------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| Emission | Radiated noise<br>Conductive noise         | Electromagnetic noise radiated through the air<br>Electromagnetic noise discharged from power line | EN61000-6-4<br>EN61800-3<br>(Industrial<br>environment) | EN55011                                              |
|          | Static electricity<br>electrical discharge | Example) Withstand level of discharge of<br>electricity charged in a human body.                   |                                                         | IEC61000-4-2                                         |
|          | Radiated magnetic field                    | Example) Simulation of immunity from digital<br>wireless transmitters                              |                                                         | IEC61000-4-3                                         |
|          | Burst immunity                             | Example) Withstand level of noise from relays or<br>connecting/disconnecting live wires            | EN61000-6-2                                             | IEC61000-4-4                                         |
| Immunity | Conductive<br>immunity                     | Example) Withstand level of noise entering<br>through power line, etc.                             | EN61800-3<br>(Industrial                                | IEC61000-4-6                                         |
|          | Power supply<br>frequency field            | Example) 50/60Hz power frequency noise                                                             | environment)                                            | IEC61000-4-8                                         |
|          | Power dip<br>(fluctuation)                 | Example) Power voltage drop withstand level                                                        |                                                         | IEC61000-4-11                                        |
|          | Surge                                      | Example) Withstand level of noise caused by<br>lightning                                           |                                                         | IEC61000-4-5                                         |

Table 1

# Appendix 3-3 EMC measures

The main items relating to EMC measures include the following.

- [1] Store the device in an electrically sealed metal panel.
- [2] Earth all conductors that are floating electrically. (Lower the impedance.)
- [3] Wire the power line away from the signal wire.
- [4] Use shielded wires for the cables wired outside of the panel.
- [5] Install a noise filter.

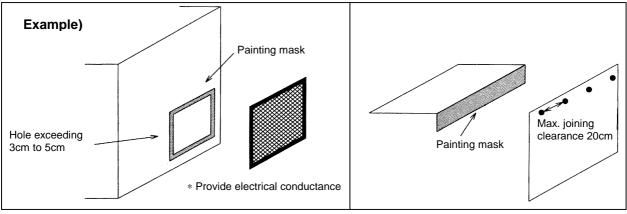

Ensure the following items to suppress noise radiated outside of the panel.

- [1] Securely install the devices.
- [2] Use shielded wires.
- [3] Increase the panel's electrical seal. Reduce the gap and hole size.

Note that the electromagnetic noise radiated in the air is greatly affected by the clearance of the panel and the quality of the cable shield.

# Appendix 3-4 Measures for panel structure

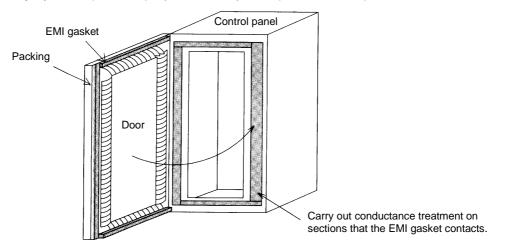
The design of the panel is a very important factor for the EMC measures, so take the following measures into consideration.




# Appendix 3-4-1 Measures for control panel unit

- [1] Use metal for all materials configuring the panel.
- [2] For the joining of the top plate and side plates, etc., mask the contact surface with paint, and fix with welding or screws.

In either case, keep the joining clearance to a max. of 20cm for a better effect.


- [3] Note that if the plate warps due to the screw fixing, etc., creating a clearance, noise could leak from that place.
- [4] Plate the metal plate surface (with nickel, tin) at the earthing section, such as the earthing plate.
- [5] The max. tolerable hole diameter of the openings on the panel surface, such as the ventilation holes, must be 3cm to 5cm. If the opening exceeds this size, use a measure to cover it. Note that even when the clearance is less than 3cm to 5cm, noise may still leak if the clearance is long.



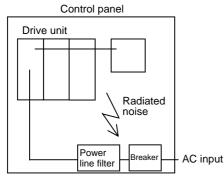
# Appendix 3-4-2 Measures for door

- [1] Use metal for all materials configuring the door.
- [2] Use an EMI gasket or conductive packing for the contact between the door and control panel unit.
- [3] The EMI gasket or conductive packing must contact at a uniform and correct position of the metal surface of the control panel unit.
- [4] The surface of the control panel unit contacted with the EMI gasket or conductive packing must have conductance treatment.

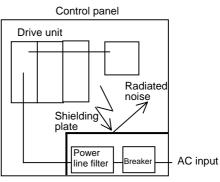
Example) Weld (or screw) a plate that is plated (with nickel, tin).



[5] As a method other than the above, the control panel unit and door can be connected with a plain braided wire. In this case, the panel and door should be contacted at as many points as possible.


# Appendix 3-4-3 Measures for operation board panel

- [1] Always connect the operation board and indicator with an earthing wire.
- [2] If the operation board panel has a door, use an EMI gasket or conductive packing between the door and panel to provide electrical conductance in the same manner as the control panel.
- [3] Connect the operation board panel and control panel with a sufficiently thick and short earthing wire.


Refer to the "EMC INSTALLATION GUIDELINES" BNP-B2230 for the NC for more details.

# Appendix 3-4-4 Shielding of the power supply input section

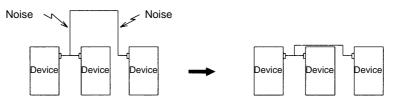
- [1] Separate the input power supply section from other parts in the control panel so that the input power supply cable will not be contaminated by radiated noise.
- [2] Do not lead the power line through the panel without passing it through a filter.



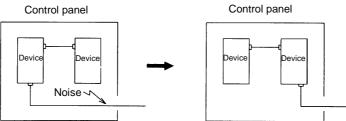
The power supply line noise is eliminated by the filter, but cable contains noise again because of the noise radiated in the control panel.



Use a metal plate, etc., for the shielding partition. Make sure not to create a clearance.


# Appendix 3-5 Measures for various cables

The various cables act as antennas for the noise and discharge the noise externally. Thus appropriate treatment is required to avoid the noise.


The wiring between the drive unit and motor act as an extremely powerful noise source, so apply the following measures.

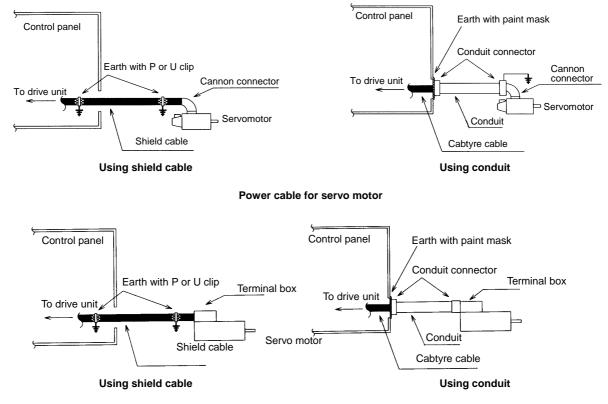
# Appendix 3-5-1 Measures for wiring in panel

[1] If the cables are led unnecessarily in the panel, they will easily pick up the radiated noise. Thus, keep the wiring length as short as possible.



[2] The noise from other devices will enter the cable and be discharged externally, so avoid internal wiring near the openings.

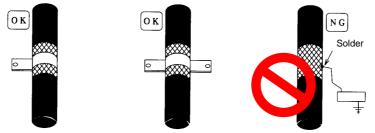



[3] Connect the control device earthing terminal and earthing plate with a thick wire. Take care to the leading of the wire.

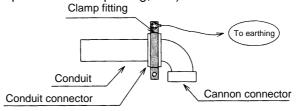
# Appendix 3-5-2 Measures for shield treatment

# Common items

Use of shield clamp fittings is recommended for treating the shields. The fittings are available as options, so order as required. (Refer to section "Appendix 7-6-1 Shield clamp fitting".) Clamp the shield at a position within 10cm from the panel lead out port.

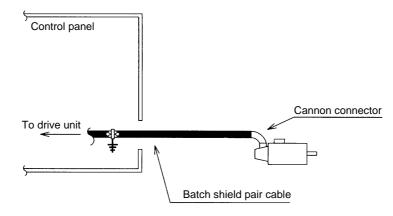

|       | <ol> <li>When leading the cables, including the grounding wire (FG), outside of the<br/>panel, clamp the cables near the panel outlet (recommendation: within<br/>10cm).</li> </ol> |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POINT |                                                                                                                                                                                     |




# Appendix 3-5-3 Servo/spindle motor power cable

Power cable for spindle motor

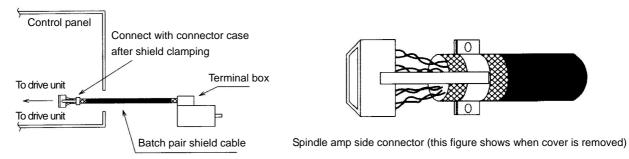
- [1] Use four wires (3-phase + earthing) for the power cable that are completely shielded and free from breaks.
- [2] Earth the shield on both the control panel side and motor chassis side.
- [3] Earth the shield with a metal P clip or U clip.
- (A cable clamp fitting can be used depending on the wire size.)
- [4] Directly earth the shield. Do not solder the braided shield onto a wire and earth the end of the wire.




- [5] When not using a shield cable for the power cable, use a conventional cabtyre cable. Use a metal conduit outside the cable.
- [6] Earth the power cable on the control panel side at the contact surface of the conduit connector and control panel. (Mask the side wall of the control panel with paint.)
- [7] Follow the treatment shown in the example for the conduit connector to earth the power cable on the motor side. (Example: Use a clamp fitting, etc.)



# Appendix 3-5-4 Servo motor feedback cable


Use a conventional batch shield pair cable for feed back cable of the servo motor to earth on NC side (inside the control panel.)



Feed back cable for servomotor

# Appendix 3-5-5 Spindle motor feedback cable

Use a conventional batch shield cable for feedback cable of the spindle motor.

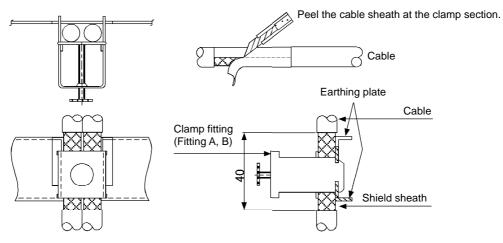


(Note) Shield of the spindle motor feedback cable is not FG. Do not earth.

Feed back cable for spindle motor

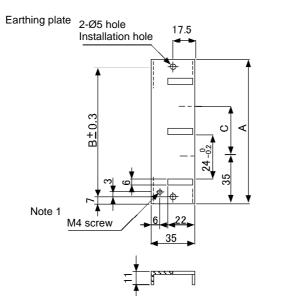
# Appendix 3-6 EMC countermeasure parts

# Appendix 3-6-1 Shield clamp fitting

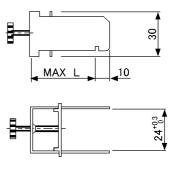

The effect can be enhanced by connecting the cable directly to the earthing plate.

Install an earthing plate near each panel's outlet (within 10cm), and press the cable against the earthing plate with the clamp fitting.

If the cables are thin, several can be bundled and clamped together.


Securely earth the earthing plate with the frame ground. Install directly on the cabinet or connect with an earthing wire.

Contact Mitsubishi if the earthing plate and clamp fitting set (AERSBAN- SET) is required.




View of clamp section

#### Outline drawing



Clamp fitting



[Unit: mm]

(Note 1) Screw hole for wiring to earthing plate in cabinet.(Note 2) The earthing plate thickness is 1.6mm.

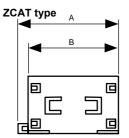
|              | Α   | В  | С  | Enclosed fittings          |                 | L  |
|--------------|-----|----|----|----------------------------|-----------------|----|
| AERSBAN-DSET | 100 | 86 | 30 | Clamp fitting $A \times 2$ | Clamp fitting A | 70 |
| AERSBAN-ESET | 70  | 56 | -  | Clamp fitting $B \times 1$ | Clamp fitting B | 45 |

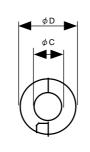
Caution

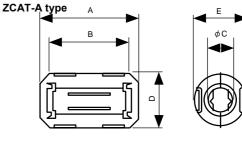
Shield of spindle detector cable is not connected to FG (earth). Do not earth the cable shield with cable clamp, etc.

# Appendix 3-6-2 Ferrite core

A ferrite core is integrated and mounted on the plastic case.


Quick installation is possible without cutting the interface cable or power cable.


This ferrite core is effective against common mode noise, allowing measures against noise to be taken without affecting the signal quality.


#### **Recommended ferrite core**

TDK ZCAT Series

Shape and dimensions









ZCAT-B type

6 3

П

А

۱D

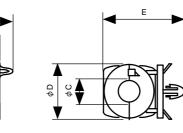



Fig.3

Fig.1

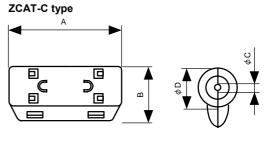



Fig.4

[Unit: mm]

| Part name                         | Fig. | Α  | В  | С   | D    | Е    | Applicable<br>cable outline | Weight | Recommended<br>ferrite core |
|-----------------------------------|------|----|----|-----|------|------|-----------------------------|--------|-----------------------------|
| ZCAT3035-1330 (-BK)* <sup>1</sup> | 1    | 39 | 34 | 13  | 30   |      | 13 max.                     | 63     | 0                           |
| ZCAT2035-0930-M (-BK)             | 2    | 35 | 29 | 13  | 23.5 | 22   | 10 to 13                    | 29     |                             |
| ZCAT2017-0930-M (-BK)             | 3    | 21 | 17 | 9   | 20   | 28.5 | 9 max.                      | 12     |                             |
| ZCAT2749-0430-M (-BK)             | 4    | 49 | 27 | 4.5 | 19.5 |      | 4.5 max.                    | 26     |                             |

\*1 A fixing band is enclosed when shipped.

ZCAT-B type: Cabinet fixed type, installation hole Ø4.8 to 4.9mm, plate thickness 0.5 to 2mm ZCAT-C type: Structured so that it cannot be opened easily by hand once closed.

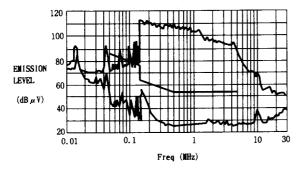
# Appendix 3-6-3 Power line filter

# (1) Power line filter for 200V

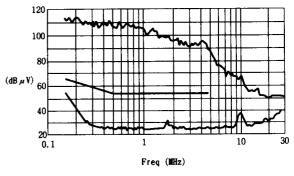
# HF3000A-TM Series for 200V

# Features

- 3-phase 3-wire type (250V series, 500V series)
- Compliant with noise standards German Official Notice Vfg243, EU Standards EN55011 (Class B)
- Effective for use with IGBT inverter and MOS-FET inverter.
- Easy mounting with terminal block structure, and outstanding reliability.

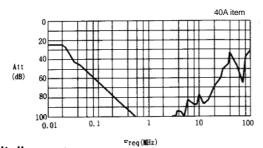

# Application

- Products which must clear noise standards German Official Notice Vfg243 and EU Standards EN55011 (Class B).
- For input of power converter using advanced high-speed power device such as IGBT MOS-FET.

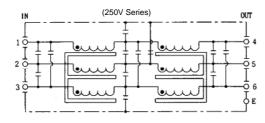

# ■ Specifications (250V series)

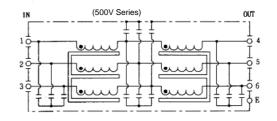
| Part name       | HF3005A<br>-TM | HF3010A<br>-TM | HF3015A<br>-TM | HF3020A<br>-TM | HF3030A<br>-TM | HF3040A<br>-TM | HF3050A<br>-TM | HF3060A<br>-TM | HF3080A<br>-TM | HF3100A<br>-TM | HF3150A<br>-TM |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Rated voltage   |                |                |                |                |                | 250VAC         | _              |                | _              |                |                |
| Rated current   | 5A             | 10A            | 15A            | 20A            | 30A            | 40A            | 50A            | 60A            | 80A            | 100A           | 150A           |
| Leakage current |                |                |                |                | 1.5mA N        | 1AX 250V       | AC 60Hz        |                |                |                |                |

<Example of measuring voltage at noise terminal> ... Measured with IGBT inverter

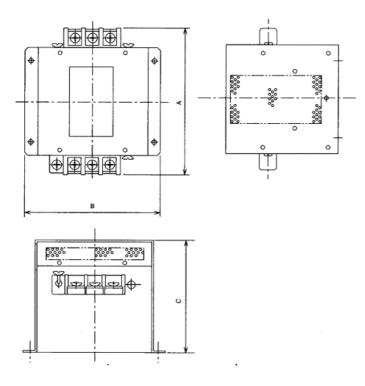






EU Standards EN55011 (Class B) measurement data

# <Typical characteristics>




# <Circuit diagram>





# <Outline dimensions>



[Unit: mm]

| Model      | I   | Dimensior | ı   |
|------------|-----|-----------|-----|
| Woder      | Α   | В         | С   |
| HF3005A-TM |     |           |     |
| HF3010A-TM | 180 | 170       | 130 |
| HF3015A-TM | 100 | 170       | 150 |
| HF3020A-TM |     |           |     |
| HF3030A-TM | 260 | 155       | 140 |
| HF3040A-TM | 200 | 100       | 140 |
| HF3050A-TM | 290 | 190       | 170 |
| HF3060A-TM | 290 | 190       | 230 |
| HF3080A-TM | 405 | 220       |     |
| HF3100A-TM | 400 | 220       | 210 |
| HF3150A-TM | 570 | 230       |     |

# MX13 Series 3-phase high attenuation noise filter for 200V

# Features

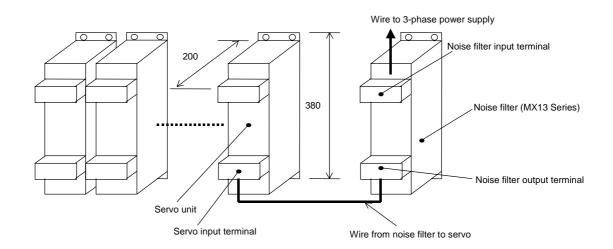
- Perfect for mounting inside control panel: New shape with uniform height and depth dimensions
- Easy mounting and maintenance work: Terminals are centrally located on the front
- Complaint with NC servo and AC servo noise:
- High attenuation of 40dB at 150KHz • Safety Standards:
- UL1283, CSA22.2 No.8, EN133200
- Patent and design registration pending



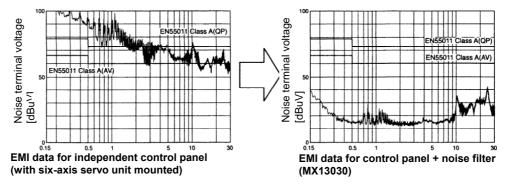
#### Specifications

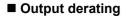
| Iten | n Type                                                    | MX13030                        | MX13050          | MX13100             | MX13150     |  |  |  |  |
|------|-----------------------------------------------------------|--------------------------------|------------------|---------------------|-------------|--|--|--|--|
| 1    | Rated voltage (AC)                                        | 3-phase 250VAC (50/60Hz)       |                  |                     |             |  |  |  |  |
| 2    | Rated current (AC)                                        | 30A                            | 50A              | 100A                | 150A        |  |  |  |  |
| 3    | Test voltage (AC for one minute across terminal and case) |                                | 2500VAC (100mA)  | at 25°C, 70% RH     |             |  |  |  |  |
| 4    | Insulation resistance (500VDC across terminal and case)   | 100MΩ min. at 25°C, 70% RH     |                  |                     |             |  |  |  |  |
| 5    | Leakage current (250V, 60Hz)                              | 3.5 m                          | A max.           | 8 mA                | max.        |  |  |  |  |
| 6    | DC resistance                                             | 30 m $\Omega$ max.             | 11 mΩ max.       | 5.5 m $\Omega$ max. | 3.5 mΩ max. |  |  |  |  |
| 7    | Temperature rise                                          | 30°C max                       |                  |                     |             |  |  |  |  |
| 8    | Working ambient temperature                               |                                | -25°C to         | +85°C               |             |  |  |  |  |
| 9    | Working ambient humidity                                  |                                | 30% to 95% RH (I | non condensing)     |             |  |  |  |  |
| 10   | Storage ambient temperature                               | -40°C to +85°C                 |                  |                     |             |  |  |  |  |
| 11   | Storage ambient humidity                                  | 10% to 95% RH (non condensing) |                  |                     |             |  |  |  |  |
| 12   | Weight (typ)                                              | 2.8kg                          | 3.9kg            | 11.5kg              | 16kg        |  |  |  |  |

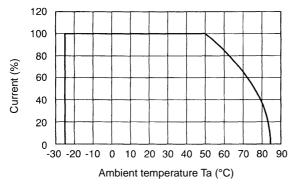
(Note) This is the value at Ta≤50°C.


Refer to the following output derating for Ta>50°C.

Contact: Densei-lambda Co., Ltd. Telephone: 03-3447-4411 (+81-3-3447-4411) Fax: 03-3447-7784 (+81-3-3447-7784) http://www.densei-lambda.com

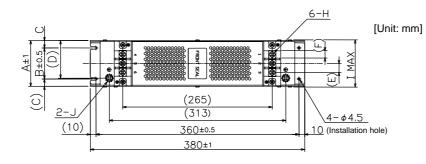

# Example of using MX13 Series

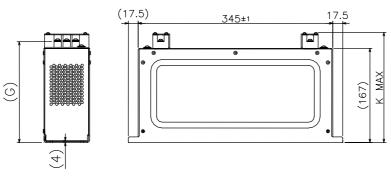

This is a noise filter with the same dimensions as the MDS-D/DH series drive unit depth (200mm) and height (380mm).


This unit can be laid out easily in the device by arraigning it in a row with the servo unit. As with the servo unit, the terminals are arranged on the front enabling ideal wire lead-out. Refer to the following figure for details.



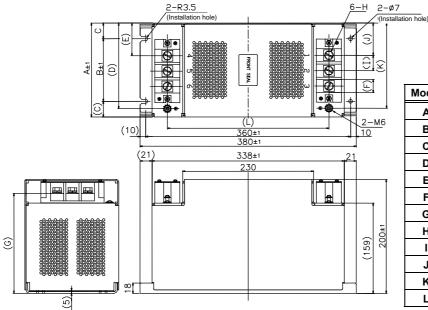
# ■ Example of noise terminal voltage attenuation






# ■ Outline dimension drawings


• MX13030, MX13050





| Model | MX13030  | MX13050  |  |  |
|-------|----------|----------|--|--|
| Α     | 66       | 81       |  |  |
| В     | 45       | 55       |  |  |
| С     | 10.5     | 13       |  |  |
| D     | 50       | 67       |  |  |
| Е     | 13       | 16       |  |  |
| F     | 10       | 13       |  |  |
| G     | 177      | 179      |  |  |
| н     | M4 screw | M6 screw |  |  |
| I     | 70       | 85       |  |  |
| J     | M4 screw | M6 screw |  |  |
| к     | 195      | 200      |  |  |

• MX13100, MX13150



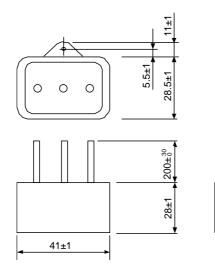
| Model | MX13100  | MX13150  |  |  |
|-------|----------|----------|--|--|
| Α     | 130      | 165      |  |  |
| В     | 90       | 110      |  |  |
| С     | 20       | 27.5     |  |  |
| D     | 115      | 150.5    |  |  |
| Е     | 37.5     | 57.5     |  |  |
| F     | 18       | 23       |  |  |
| G     | 174      | 176      |  |  |
| н     | M6 screw | M8 screw |  |  |
| I     | 21       | 27       |  |  |
| J     | 37.5     | 56.5     |  |  |
| к     | 115      | 149.5    |  |  |
| L     | 276      | 284      |  |  |

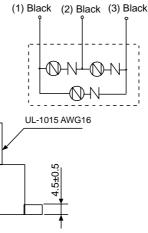
[Unit: mm]

# Appendix 3-6-4 Surge protector

Insert a surge protector in the power input section to prevent damage to the control panel or power supply unit, etc. caused by the surge (lightning or sparks, etc.) applied on the AC power line. Use a surge protector that satisfies the following electrical specifications.

# (1) 200V Surge protector


# 200V R·A·V BYZ Series

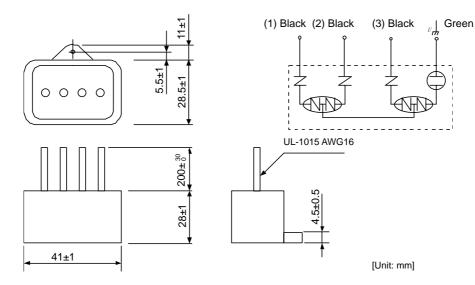

| Part name    | Circuit<br>voltage<br>50/60Hz | Maximum<br>tolerable<br>circuit voltage | Clamp<br>voltage | Surge<br>withstand<br>level<br>8/20 µS | Surge<br>withstand<br>voltage<br>1.2/50 μS | Electrostatic capacity | Service<br>temperature |
|--------------|-------------------------------|-----------------------------------------|------------------|----------------------------------------|--------------------------------------------|------------------------|------------------------|
| RAV-781BYZ-2 | 3AC 250V                      | 300V                                    | 783V±10%         | 2500A                                  | 20kV                                       | 75pF                   | -20 to 70°C            |

(Note) Refer to the manufacturer's catalog for details on the surge protector's characteristics and specifications.

#### Outline dimension drawings

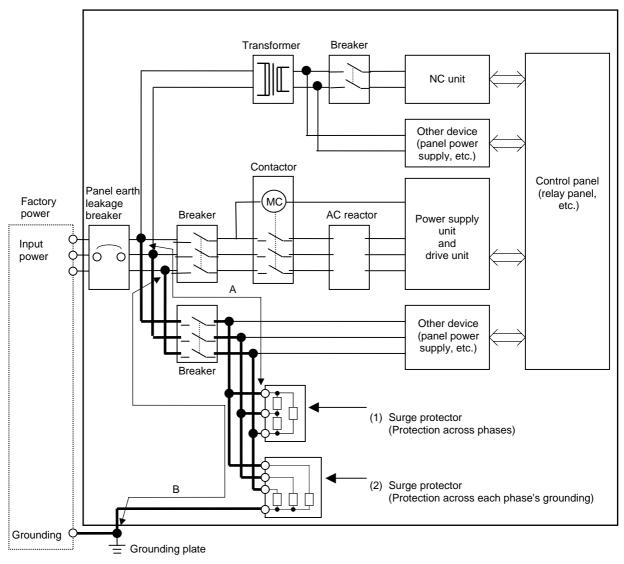
#### Circuit diagram






[Unit: mm]

#### 200V R·A·V BXZ Series


| Part name    | Circuit<br>voltage<br>50/60Hz | Maximum<br>tolerable<br>circuit voltage | Clamp<br>voltage | Surge<br>withstand<br>level<br>8/20 µS | Surge<br>withstand<br>voltage<br>1.2/50 μS | Electrostatic capacity | Service<br>temperature |  |
|--------------|-------------------------------|-----------------------------------------|------------------|----------------------------------------|--------------------------------------------|------------------------|------------------------|--|
| RAV-781BXZ-4 | 3AC 250V                      | 300V                                    | 1700V±10%        | 2500A                                  | 2kV                                        | 75pF                   | -20 to 70°C            |  |

(Note) Refer to the manufacturer's catalog for details on the surge protector's characteristics and specifications. <u>Outline dimension drawings</u> <u>Circuit diagram</u>



# (2) Example of surge protector installation

An example of installing the surge protector in the machine control panel is shown below. A short-circuit fault will occur in the surge protector if a surge exceeding the tolerance is applied. Thus, install a circuit protection breaker in the stage before the surge protector. Note that almost no current flows to the surge protector during normal use, so a breaker installed as the circuit protection for another device can be used for the surge protector.



Installing the surge absorber

The wires from the surge protector should be connected without extensions.
 If the surge protector cannot be installed just with the enclosed wires, keep the wiring length of A and B to 2m or less. If the wires are long, the surge protector's performance may drop and inhibit protection of the devices in the panel.
 Surge protector to be selected varies depending on input power voltage.

| Appendix 4-1 | Servo/spindle drive unit circuit categories based on higher harmonic suppression |       |
|--------------|----------------------------------------------------------------------------------|-------|
|              | countermeasure guidelines                                                        | .A4-2 |

# Appendix 4-1 Servo/spindle drive unit circuit categories based on higher harmonic suppression countermeasure guidelines

Refer to the following table and calculate the circuit category (conversion coefficient) and the power capacity based on higher harmonic suppression countermeasure guidelines.

#### Circuit category

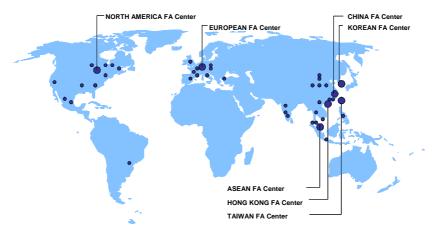
| Name                   | Model                                                                    | Circuit<br>category | Circuit type                                            | Conversion coefficient |
|------------------------|--------------------------------------------------------------------------|---------------------|---------------------------------------------------------|------------------------|
|                        | TRS Series                                                               | 3                   | 3-phase bridge (smoothing capacitor) with no reactor    | K31 = 3.4              |
|                        | MR-S1/S2/S3<br>MR-S11/12 Series                                          | 3                   | 3-phase bridge (smoothing capacitor) with no reactor    | K31 = 3.4              |
| AC servo<br>drive unit | MDS-A-SVJ<br>MDS-B-SJV2<br>MR-J2-CT Series                               | 3                   | 3-phase bridge (smoothing capacitor) with no reactor    | K31 = 3.4              |
|                        | MDS-A-V1/V2<br>MDS-B-V1/V14/V2/V24<br>MDS-C1-V1/V2 Series                | 3                   | 3-phase bridge (smoothing capacitor) with AC reactor    | K32 = 1.8              |
|                        | SFJ/SGJ Series                                                           | 3                   | 3-phase bridge (smoothing capacitor) with no reactor    | K31 = 3.4              |
| AC spindle             | MDS-A-SPJ<br>MDS-B-SPJ2 Series                                           | 3                   | 3-phase bridge (smoothing capacitor) with no reactor    | K31 = 3.4              |
| drive unit             | MDS-A-CSP-370/450                                                        | 3                   | 3-phase bridge (smoothing capacitor) with no reactor    | K31 = 3.4              |
|                        | MDS-A-SP/SPA<br>MDS-B-SP/SPA/SPH/SPM/SPX<br>MDS-C1-SP/SPH/SPM/SPX Series | 3                   | 3-phase bridge (smoothing capacitor) with no AC reactor | K32 = 1.8              |

Usage conditions: The power supply unit (MDS-A/B/C1-CV Series) applies when using the AC reactor (B-AL Series). When using the MDS-A-CR Series, calculate using the conversion coefficient K31 = 3.4 (no reactor).

# Power facility capacity

| Туре              | Rated<br>capacity<br>[kVA] | Туре             | Rated<br>capacity<br>[kVA] | Туре               | Rated<br>capacity<br>[kVA] |
|-------------------|----------------------------|------------------|----------------------------|--------------------|----------------------------|
| MDS-A/B/C1-SP-37  | 4.61                       | MDS-A/B/C1-V1-03 | 0.6                        | MDS-A/B/C1-V2-0503 | 1.6                        |
| MDS-A/B/C1-SP-55  | 6.77                       | MDS-A/B/C1-V1-05 | 1.0                        | MDS-A/B/C1-V2-0505 | 2.0                        |
| MDS-A/B/C1-SP-75  | 9.07                       | MDS-A/B/C1-V1-10 | 1.6                        | MDS-B/C1-V2-1003   | 2.2                        |
| MDS-A/B/C1-SP-110 | 13.1                       | MDS-A/B/C1-V1-20 | 2.7                        | MDS-A/B/C1-V2-1005 | 2.6                        |
| MDS-A/B/C1-SP-150 | 17.6                       | MDS-A/B/C1-V1-35 | 4.7                        | MDS-A/B/C1-V2-1010 | 3.2                        |
| MDS-A/B/C1-SP-185 | 21.8                       | MDS-A/B/C1-V1-45 | 5.9                        | MDS-A/B/C1-V2-2010 | 4.3                        |
| MDS-A/B/C1-SP-220 | 25.9                       | MDS-A/B/C1-V1-70 | 9.0                        | MDS-A/B/C1-V2-2020 | 5.4                        |
| MDS-A/B/C1-SP-260 | 30.0                       | MDS-A/B/C1-V1-90 | 11.5                       | MDS-A/B/C1-V2-3510 | 6.3                        |
| MDS-A/B/C1-SP-300 | 34.7                       |                  |                            | MDS-A/B/C1-V2-3520 | 7.4                        |
| MDS-B-SP-370      | 42.8                       |                  |                            | MDS-A/B/C1-V2-3535 | 9.4                        |
| MDS-B-SP-450      | 52.1                       |                  |                            | MDS-A/B/C1-V2-4520 | 8.6                        |
| MDS-B-SP-550      | 63.7                       |                  |                            | MDS-A/B/C1-V2-4535 | 10.6                       |
|                   |                            |                  |                            | MDS-C1-V2-4545     | 11.8                       |
|                   |                            |                  |                            | MDS-C1-V2-7070     | 18.0                       |

SP: Including SPA/SPH/SPM/SPX


V1: Including V14

V2: Including V24

# **Revision History**

| Date of revision | Manual No. | Revision details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June. 2004       | BNP-B2365* | First edition created.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mar. 2004        | BNP-B2365A | <ul> <li>Connection of power supply was fully revised.</li> <li>Wiring of the motor brake was fully revised.</li> <li>Peripheral control wiring was fully revised.</li> <li>"Setup" was fully revised.</li> <li>D/A output specifications for spindle drive unit were revised.</li> <li>Spindle control signal was revised.</li> <li>Adjusting the acceleration/deceleration operation was revised.</li> <li>Adjusting the orientation control was revised.</li> <li>Adjusting the C-axis control was revised.</li> <li>List of alarms was revised.</li> <li>List of warnings was revised.</li> <li>Miswrite is corrected.</li> </ul> |
| Feb. 2006        | BNP-B2365B | <ul> <li>Adjusting the acceleration/deceleration operation was revised.</li> <li>Troubleshooting "3B" and "77" were revised.</li> <li>Miswrite is corrected.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# **Global service network**



North America FA Center (MITSUBISHI ELECTRIC AUTOMATION INC.) Illinois CNC Service Center 500 CORPORATE WOODS PARKWAY, VERNON HILLS, IL. 60061, U.S.A. TEL: 41-847-478-2500 (Se FAX: 41-847-478-2650 (Se California CNC Service Center 5665 PLA2A DRIVE, C/PRESS, CA. 90630, U.S.A. TEL: 41-714-220-4796 FAX: 41-714-229-3818 Georgia CNC Service Center TEL: 41-714-220-4796 FAX: +1-/14-229-3810 Georgia CNC Service Center 2810 PREMIERE PARKWAY SUITE 400, DULUTH, GA., 30097, U.S.A. TEL: +1-678-258-4500 FAX: +1-678-258-4519 
 2810 PREMIERE PARKWAT SOUTLE 100, DELEMENT

 TEL: +1-678-258-4500
 FAX: +1-678-258-4509

 New Jersey CNC Service Center
 200 COTTONTALL LANE SOMERSET, NJ. 08873, U.S.A.

 TEL: +1-722-560-4500
 FAX: +1-732-560-4531

 Michigan CNC Service Satellite
 2545 3371 STREET, ALLEGAN, MI, 49010, U.S.A.

 TEL: +1-722-560-4500
 FAX: +1-269-673-4092

 Ohio CNC Service Satellite
 62W. 500 S, ANDERSON, IN., 46013, U.S.A.

 TEL: +1-847-478-2608
 FAX: +1-847-478-2690

 Texas CNC Service Satellite
 1000, NOLEN DRIVE SUITE 200, GRAPEVINE, TX. 76051, U.S.A.

 TEL: +1-72-51-7488
 FAX: +1-817-416-1439

 Canada CNC Service Center
 4299 14TH AVENUE MARKHAM, ON, L3R OJZ, CANADA

 TEL: +1-847-57-728
 FAX: +1-847-57-733

 Mexico CNC Service Center
 FAX: +1-475-7030

 Mexico CNC Service Center
 FAX: +1-930-745-7935

 Mexico CNC Service Center
 FAX: +1-930-745-7935

 TEL:
 +1:095-475-7728
 FAX:
 +1:095-475-7935

 Mexico CNC Service Center
 MARIANO ESCOBEDO 69 TLALNEPANTLA, 54030 EDO. DE MEXICO
 TEL:
 +52-55-9171-7698

 TEL:
 +52-55-9171-7698
 FAX:
 +52-55-9171-7698
 FAX:
 +52-55-9171-7698
 MARIANO ESCUDEUC USE TEL: 452-55-9171-7662 Monterrey CNC Service Satellite ARGENITIAN 3900, FRACC. LAS TORRES, MONTERREY, N.L., 64720, MEXICO TEL: +52-81-8365-4171 Brazil MITSUBISHI CNC Agent Service Center (AUTOMOTION IND. COM. IMP. E EXP. LTDA) ACESSO JOSE SARTORELLI, KM 2.1 18550-000 BOITUVA – SP, BRAZIL TFI: +55-15-3363-9900 FAX: +55-15-3363-9911

#### European FA Center (MITSUBISHI ELECTRIC EUROPE B.V.)

 European FA Center (MITSUBISHI ELECTRIC EUROPE B.V.,

 Germany CNC Service Center

 GOTHAER STRASSE 8, 40880 RATINGEN, GERMANY

 TEL: 449-2102486-0
 FAX:+49-2102486-591

 South Germany CNC Service Center

 KUR2E STRASSE. 40, 70794 FILDERSTADT-BONLANDEN, GERMANY

 FEL: 449-711-3270-010

 FAX: +49-711-3270-010

 Fax: 49-711-3270-010

 FAX: +49-711-3270-0141

 France CNC Service Center

 25, BOULEVARD DES BOUVETS, 92741 NANTERRE CEDEX FRANCE

 FEL: +43-1-41-02-83-13
 FAX: +43-1-49-01-07-25

 Lyon CNC Service Satellite

U.K CNC Service Center TRAVELLERS LANE, HATFIELD, HERTFORDSHIRE, AL10 8XB, U.K. TEL: 444-1707-282-846 FAX:-44-1707-278-992 Italy CNC Service Center ZONA INDUSTRIALE VIA ARCHIMEDE 35 20041 AGRATE BRIANZA, MILANO ITALY TEL: +43-433-60531-342 FAX: +39-039-6053-206 Spain CNC Service Satellite CTRA. DE RUBI, 76-80 -APDO.420 08190 SAINT CUGAT DEL VALLES, BARCELONA SPAIN TEL: +34-935-65-2236 FAX: Turkey MITSUBISHI CNC Agent Service Center (GENEL TEKNIK SISTEMLER LTD. STI.) DARULACEZE CAD. FAMAS IS MERKEZI A BLOCK NO.43 KAT2 80270 OKMEYDANI ISTANBUL, TURKEY 
 TURKEY
 TURKEY
 TURKEY
 TURKEY

 TURKEY
 TEL: +90-212-320-1640
 FAX: +90-212-320-1649

 Poland MTSUBISHI CNC Agent Service Center (MPL Technology Sp. z. o. o)
 UL SLUCZNA 34, 31-444 KRAKOW, POLAND

 TEL: +48-12-632-28-85
 FAX:

 Wroclaw MTSUBISHI CNC Agent Service Satellite (MPL Technology Sp. z. o. o)

 UL KOBIERZYCKA 23, 52-315 WROCLAW, POLAND

 TEL: +48-17-332-77-53

 FAX: +48-71-333-77-53

 Czech MITSUBISHI CNC Agent Service Center

 (AUTOCONT CONTROL SYSTEM S.R.O.)

 NEMOCNICNI 12, 702 00 OSTRAVA 2 CZECH REPUBLIC

 TEL: +48-12-636-152-426
 FAX: +420-596-152-112

ASEAN FA Center (MITSUBISHI ELECTRIC ASIA PTE. LTD.) Singapore CNC Service Center 307 ALEXANDRA ROAD #05-01/02 MITSUBISHI ELECTRIC BUILDING SINGAPORE 159943 TEL: +65-6478-2308 FAX: +65-6476-7439 Thailand MITSUBISHI CNC Agent Service Center (F. A. TECH CO., LTD) 898/19.20,21,22 S.V. CITY BUILDING OFFICE TOWER 1 FLOOR 12,14 RAMA III RD BANGPONGPANG, YANNAWA, BANGKOK 10120. THAILAND TEL: +66-2-682-652 FAX: +66-2-682-6020 Malaysia MITSUBISHI CNC Agent Service Center (FLEXIBLE AUTOMATION SYSTEM SDN. BHD.) 60, JALAN USJ 10/1B 47620 UEP SUBANG JAYA SELANGOR DARUL EHSAN MALAYSIA TEL: +60-3-5631-7605 FAX: +60-3-6631-7636 JOHOR MITSUBISHI CNC Agent Service Satellite (FLEXIBLE AUTOMATION SYSTEM SDN. BHD.) NO. 16, JALAN SHAHBANDAR 1, TAMAN UNGKU TUN AMINAH, 81300 SKUDAI, JOHOR MALAYSIA TEL: +60-7-557-3218 FAX: +60-7-557-3404 Indonesia MITSUBISHI CNC Agent Service Center (PT. AUTOTEKNINDO SUMBER MAKMUR) WISMA NUSANTIRA 14TH FLOOR JL. M.H. THAMRIN 59, JAKARTA 10350 INDONESIA TEL: +60-7-557-3417-144 FAX: +26-21-3917-164 India MITSUBISHI CNC Agent Service Center (PT. AUTOTEKNINDO SUMBER MAKMUR) WISMA NUSANTIRA 14TH FLOOR JL. M.H. THAMRIN 59, JAKARTA 10350 INDONESIA TEL: +60-21-3917-144 FAX: +20-2712-8115 BAGENER MITSUBISHI CNC Agent Service Center (MESSUNG SALES & SERVICES PVT. LTD.) B-36FF, PAVANA INDUSTRIAL PREMISES M.I.D.C., BHOASRI PUNE 411026, INDIA TEL: +91-20-2711-948 FAX: +91-20-2712-8115 EANGALCER MITSUBISHI CNC Agent Service Center (MESSUNG SALES & SERVICES PVT. LTD.) S1615, GTH FLOOR, MANIPAL CENTER, BANGALORE 560001, INDIA TEL: +91-80-502-2119 FAX: +91-80-532-0480 Delhi MITSUBISHI CNC Agent Parte Conter (MESSUNG SALES & SERVICES PVT. LTD.) 197, SECTOR 15 PART-2, OFF DELHI-JAIPUR HIGHWAY BEHIND 32ND MILESTONE GURGAON 122001, INDIA TEL: +91-80-509-2019 FAX: +91-80-532-0480 Delhi MITSUBISHI CNC Agent Parte Conter (MESSUNG SALES & SERVICES PVT. LTD.) 197, SECTOR 15 PART-2, OFF DELHI-JAIPUR HIGHWAY BEHIND 32ND MILESTONE GURGAON 12201, INDIA

122001, INDIA TEL: +91-98-1024-8895 FAX

 TEL: +91-98-1024-8995
 FAX:

 Philippines MITSUBISHI CNC Agent Service Center (FLEXIBLE AUTOMATION SYSTEM CORPORATION)
 UNIT No.411, ALABAMG CORPORATE CENTER KM 25, WEST SERVICE ROAD SOUTH SUPERHIGHWAY, ALABAMG MUNTINLUPA METRO MANILA, PHILIPPINES 1771

 TEL: +63-2-807-2416
 FAX: +63-2-807-2417

 Vietnam MITSUBISHI CNC Agent Service Center (SA GIANG TECHNO CO., LTD)
 47-49 HOANG SA ST. DAKAO WARD, DIST. 1H O CHI MINH CITY, VIETNAM

 TEL: +84-8-910-4763
 FAX: +84-8-910-2593

#### China FA Center (MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD.)

 
 China FA Center (MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD.)

 China CNC Service Center

 2/F., BLOCK 5 BLDG.AUTOMATION INSTRUMENTATION PLAZA, 103 CAOBAO RD.

 Shanyang CNC Service Center

 TEL: +86-21-6120-0808

 FAX: +86-21-6494-0178

 Shenyang CNC Service Center

 TEL: +86-24-2397-0185

 Beijing CNC Service Satellite

 9F, OFFICE TOWER1, HENDERSON CENTER, 18 JIANGUOMENNEI DAJIE, DONGCHENG DISTRICT,

 BELING 100005, CHINA

 FAX: +86-10-6518,8030
 EL: +86-10-6518-8830 FAX: +86-10-6518-8030 China MITSUBISHI CNC Agent Service Center (BEIJING JIAYOU HIGHTECH TECHNOLOGY DEVELOPMENT CO.) RM 709, HIGH TECHNOLOGY BUILDING NO.229 NORTH SI HUAN ZHONG ROAD, HAIDIAN DISTRICT, BEIJING 100083, CHINA TEL: +86-10-8288-3030 FAX: +86-10-6518-8030 Tianjin CNC Service Satellite RM909, TAIHONG TOWER, NO220 SHIZILIN STREET, HEBEI DISTRICT, TIANJIN, CHINA 300143

 RM509, TAIHONG TOWER, NO220 SHIZILIN STREET, HEBEI DISTRICT, TIANJIN, CHINA 300143

 TEL: -86-22-2653-9909
 FAX: +86-22-2635-99050

 Shenzhen CNC Service Satellite
 RM0202-2635-99050

 RM020, UNIT A, 13/F, TIANAN NATIONAL TOWER, RENMING SOUTH ROAD, SHENZHEN, CHINA 518005
 TEL: +86-755-515-6601

 FEL: +86-755-515-6601
 FAX: +86-755-8218-4776

 Changchun Service Satellite
 FAX: +86-755-8218-4776

 TEL: +86-73-150214540
 FAX: +86-431-5021690

 Hong Kong CNC Service Center
 UNIT A, 25/F RYODEN INDUSTRIAL CENTRE, 26-38 TA CHUEN PING STREET, KWAI CHUNG, NEW

 TERRITORIES, HONG KONG
 FAX: +852-2784-1323

Taiwan FA Center (MITSUBISHI ELECTRIC TAIWAN CO., LTD.) 

 Alwahi FA Center
 NO.8-1, GONG YEH 16'H RD., TAICHUNG INDUSTIAL PARK TAICHUNG CITY, TAIWAN R.O.C.

 TEL: +886-4-2359-0688
 FAX: +886-4-2359-0689

Taipei CNC Service Satellite TEL: +886-4-2359-0688 FAX: +886-4-2359-0689 Tainan CNC Service Satellite TEL: +886-4-2359-0688

FAX: +886-4-2359-0689

#### Korean FA Center (MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD.)

Korea CNC Service Center DONOSEO GAME CHANNEL BLDG. 2F. 660-11, DEUNGCHON-DONG KANGSEO-KU SEOUL, 157-030 KOREA TEL: +82-2-3660-9607 FAX: +82-2-3663-0475

# Notice

Every effort has been made to keep up with software and hardware revisions in the contents described in this manual. However, please understand that in some unavoidable cases simultaneous revision is not possible. Please contact your Mitsubishi Electric dealer with any questions or comments regarding the use of this product.

# **Duplication Prohibited**

This manual may not be reproduced in any form, in part or in whole, without written permission from Mitsubishi Electric Corporation.

© 2004-2006 MITSUBISHI ELECTRIC CORPORATION ALL RIGHTS RESERVED

# HEAD OFFICE : TOKYO BUILDING,2-7-3 MARUNOUCHI,CHIYODA-KU,TOKYO 100-8310,JAPAN

MODELMDS-C1 SeriesMODEL<br/>CODE008-306Manual No.BNP-B2365B(ENG)